
Physics of
Condensed Matter





Physics of
Condensed Matter

Prasanta K. Misra
Department of Physics
University of Houston

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier



Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1800, San Diego, CA 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

© 2012 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details
on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations
such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/
permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be
noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding,
changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information,
methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own
safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/
or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any
methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Misra, Prasanta K. (Prasanta Kumar)
Physics of condensed matter / Prasanta K. Misra.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-12-384954-0
1. Condensed matter. I. Title.
QC173.454.M57 2011
530.4'1–dc22 2010035448

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For information on all Academic Press publications
visit our Web site at www.elsevierdirect.com

Typeset by: diacriTech, Chennai, India



For Swayamprava, Debasis, Moushumi, Sandeep,
and Annika, Millan, Kishen, Nirvaan





Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTER 1 Basic Properties of Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Crystal Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Primitive Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Unit Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Wigner–Seitz Cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.4 Lattice Point Group. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Bravais Lattices in Two and Three Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Simple Cubic (sc) Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Lattice Constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Coordination Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Body-Centered Cubic (bcc) Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.5 Face-Centered Cubic (fcc) Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.6 Other Bravais Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Lattice Planes and Miller Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.4 Bravais Lattices and Crystal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.1 Crystal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.2 Lattice with a Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.4.3 Packing Fraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Crystal Defects and Surface Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.1 Crystal Defects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.5.2 Surface Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Some Simple Crystal Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.1 Sodium Chloride Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.2 Cesium Chloride Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6.3 Diamond Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.6.4 Zincblende Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.6.5 Hexagonal Close-Packed (hcp) Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 Bragg Diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.8 Laue Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.9 Reciprocal Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.9.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.9.2 Properties of the Reciprocal Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.9.3 Alternative Formulation of the Laue Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

vii



1.10 Brillouin Zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.10.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.10.2 One-Dimensional Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.10.3 Two-Dimensional Square Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.10.4 bcc Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.10.5 fcc Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.11 Diffraction by a Crystal Lattice with a Basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.11.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.11.2 Geometrical Structure Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.11.3 Application to bcc Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.11.4 Application to fcc Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.11.5 The Atomic Scattering Factor or Form Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

CHAPTER 2 Phonons and Lattice Vibrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1 Lattice Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.1.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.2 Normal Modes of a One-Dimensional Monoatomic Lattice . . . . . . . . . . . . . . . . . . . . . 41
2.1.3 Normal Modes of a One-Dimensional Chain with a Basis . . . . . . . . . . . . . . . . . . . . . . 44

2.2 Lattice Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.2.2 The Debye Model of Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.2.3 The Einstein Model of Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.1 Occupation Number Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
2.3.2 Creation and Annihilation Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.3.3 Field Operators and the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.4 Quantization of Lattice Waves. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.4.2 Quantization of Lattice Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 3 Free Electron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1 The Classical (Drude) Model of a Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Sommerfeld Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.2.2 Fermi Distribution Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.2.3 Density Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3.2.4 Free Electron Fermi Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.2.5 Ground-State Energy of the Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.2.6 Density of Electron States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

viii Contents



3.3 Fermi Energy and the Chemical Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.4 Specific Heat of the Electron Gas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.5 DC Electrical Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
3.6 The Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.7 Failures of the Free Electron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

CHAPTER 4 Nearly Free Electron Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.1 Electrons in a Weak Periodic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.2 Plane Wave Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2 Bloch Functions and Bloch Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.3 Reduced, Repeated (Periodic), and Extended Zone Schemes . . . . . . . . . . . . . . . . . . . 99

4.3.1 Reduced Zone Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.2 Repeated Zone Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3.3 Extended Zone Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.4 Band Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.5 Effective Hamiltonian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.6 Proof of Bloch’s Theorem from Translational Symmetry . . . . . . . . . . . . . . . . . . . . . . 103
4.7 Approximate Solution Near a Zone Boundary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.8 Different Zone Schemes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.8.1 Reduced Zone Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.8.2 Extended Zone Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
4.8.3 Periodic Zone Scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.9 Elementary Band Theory of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.9.2 Energy Bands in One Dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.9.3 Number of States in a Band. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

4.10 Metals, Insulators, and Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.11 Brillouin Zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.12 Fermi Surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.12.1 Fermi Surface (in Two Dimensions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
4.12.2 Fermi Surface (in Three Dimensions) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.12.3 Harrison’s Method of Construction of the Fermi Surface . . . . . . . . . . . . . . . . . . . . . 121
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

CHAPTER 5 Band-Structure Calculations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.2 Tight-Binding Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
5.3 LCAO Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Contents ix



5.4 Wannier Functions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
5.5 Cellular Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.6 Orthogonalized Plane-Wave (OPW) Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
5.7 Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
5.8 Muffin-Tin Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
5.9 Augmented Plane-Wave (APW) Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.10 Green’s Function (KKR) Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
5.11 Model Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.12 Empirical Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
5.13 First-Principles Pseudopotentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

CHAPTER 6 Static and Transport Properties of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
6.1 Band Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
6.2 Bond Picture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.3 Diamond Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.4 Si and Ge. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
6.5 Zinc-Blende Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
6.6 Ionic Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
6.7 Molecular Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.7.1 Molecular Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.7.2 Hydrogen-Bonded Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.8 Cohesion of Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.8.1 Molecular Crystals: Noble Gases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
6.8.2 Ionic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.8.3 Covalent Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.8.4 Cohesion in Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

6.9 The Semiclassical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
6.10 Liouville’s Theorem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.11 Boltzmann Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
6.12 Relaxation Time Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
6.13 Electrical Conductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
6.14 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.15 Weak Scattering Theory of Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.15.1 Relaxation Time and Scattering Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.15.2 The Collision Term. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.15.3 Impurity Scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

6.16 Resistivity Due to Scattering by Phonons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

x Contents



CHAPTER 7 Electron–Electron Interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
7.2 Hartree Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
7.3 Hartree–Fock Approximation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.3.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7.3.2 Hartree–Fock Theory for Jellium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

7.4 Effect of Screening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.4.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
7.4.2 Thomas–Fermi Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.4.3 Lindhard Theory of Screening. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

7.5 Friedel Sum Rule and Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.6 Frequency and Wave-Number-Dependent Dielectric Constant . . . . . . . . . . . . . . . . . . 217
7.7 Mott Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222
7.8 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

7.8.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.8.2 Local Density Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

7.9 Fermi Liquid Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.9.1 Quasiparticles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
7.9.2 Energy Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.9.3 Fermi Liquid Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

7.10 Green’s Function Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.10.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
7.10.2 Finite-Temperature Green’s Function Formalism for Interacting Bloch

Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
7.10.3 Exchange Self-Energy in the Band Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

CHAPTER 8 Dynamics of Bloch Electrons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.1 Semiclassical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
8.2 Velocity Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
8.3 k · p Perturbation Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
8.4 Quasiclassical Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
8.5 Effective Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
8.6 Bloch Electrons in External Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

8.6.1 Time Evolution of Bloch Electrons in an Electric Field . . . . . . . . . . . . . . . . . . . . . . . 250
8.6.2 Alternate Derivation for Bloch Functions in an External Electric

and Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
8.6.3 Motion in an Applied DC Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

8.7 Bloch Oscillations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
8.8 Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
8.9 Zener Breakdown (Approximate Method) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Contents xi



8.10 Rigorous Calculation of Zener Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
8.11 Electron–Phonon Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

CHAPTER 9 Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
9.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
9.2 Electrons and Holes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
9.3 Electron and Hole Densities in Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
9.4 Intrinsic Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
9.5 Extrinsic Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
9.6 Doped Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
9.7 Statistics of Impurity Levels in Thermal Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . 288

9.7.1 Donor Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
9.7.2 Acceptor Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
9.7.3 Doped Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

9.8 Diluted Magnetic Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
9.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
9.8.2 Magnetization in Zero External Magnetic Field in DMS. . . . . . . . . . . . . . . . . . . . . . 291
9.8.3 Electron Paramagnetic Resonance Shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
9.8.4 k

!��! Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
9.9 Zinc Oxide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

9.10 Amorphous Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
9.10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
9.10.2 Linear Combination of Hybrids Model for Tetrahedral Semiconductors . . . . . . . . 297
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303

CHAPTER 10 Electronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
10.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
10.2 p-n Junction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306

10.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
10.2.2 p-n Junction in Equilibrium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

10.3 Rectification by a p-n Junction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
10.3.1 Equilibrium Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
10.3.2 Nonequilibrium Case (V ≠ 0) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313

10.4 Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
10.4.1 Bipolar Transistors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
10.4.2 Field-Effect Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
10.4.3 Single-Electron Transistor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321

10.5 Integrated Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

xii Contents



10.6 Optoelectronic Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
10.7 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
10.8 Graphene-Based Electronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336

CHAPTER 11 Spintronics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339
11.2 Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
11.3 Giant Magnetoresistance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340

11.3.1 Metallic Multilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 340
11.4 Mott’s Theory of Spin-Dependent Scattering of Electrons . . . . . . . . . . . . . . . . . . . . . . 342
11.5 Camley–Barnas Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345
11.6 CPP-GMR. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

11.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348
11.6.2 Theory of CPP-GMR of Multilayered Nanowires . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

11.7 MTJ, TMR, and MRAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352
11.8 Spin Transfer Torques and Magnetic Switching. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
11.9 Spintronics with Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

11.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
11.9.2 Theory of an FM-T-N Junction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 358
11.9.3 Injection Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

CHAPTER 12 Diamagnetism and Paramagnetism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 369
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370
12.2 Atomic (or Ionic) Magnetic Susceptibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371

12.2.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 371
12.2.2 Larmor Diamagnetism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372
12.2.3 Hund’s Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
12.2.4 Van Vleck Paramagnetism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374
12.2.5 Landé g Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
12.2.6 Curie’s Law. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

12.3 Magnetic Susceptibility of Free Electrons in Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
12.3.1 General Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
12.3.2 Landau Diamagnetism and Pauli Paramagnetism. . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
12.3.3 De Haas–van Alphen Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383

12.4 Many-Body Theory of Magnetic Susceptibility of Bloch Electrons in Solids . . . 388
12.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
12.4.2 Equation of Motion in the Bloch Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

Contents xiii



12.4.3 Thermodynamic Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
12.4.4 General Formula for χ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390
12.4.5 Exchange Self-Energy in the Band Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
12.4.6 Exchange Enhancement of χs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
12.4.7 Exchange and Correlation Effects on χo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395
12.4.8 Exchange and Correlation Effects on χso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

12.5 Quantum Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
12.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
12.5.2 Two-Dimensional Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396
12.5.3 Quantum Transport of a Two-Dimensional Electron Gas in a Strong

Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397
12.5.4 Quantum Hall Effect from Gauge Invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400

12.6 Fractional Quantum Hall Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 407

CHAPTER 13 Magnetic Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 409
13.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 410
13.2 Magnetic Dipole Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
13.3 Models for Ferromagnetism and Antiferromagnetism. . . . . . . . . . . . . . . . . . . . . . . . . . 412

13.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
13.3.2 Heitler–London Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
13.3.3 Spin Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 414
13.3.4 Heisenberg Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
13.3.5 Direct, Indirect, and Superexchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
13.3.6 Spin Waves in Ferromagnets: Magnons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
13.3.7 Schwinger Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417
13.3.8 Application to the Heisenberg Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
13.3.9 Spin Waves in Antiferromagnets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

13.4 Ferromagnetism in Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
13.4.1 Ferromagnetism Near the Curie Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
13.4.2 Comparison of Spin-Wave Theory with the Weiss Field Model . . . . . . . . . . . . . . . 424
13.4.3 Ferromagnetic Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
13.4.4 Hysteresis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
13.4.5 Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427

13.5 Ferromagnetism in Transition Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
13.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
13.5.2 Stoner Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
13.5.3 Ferromagnetism in Fe, Co, and Ni from Stoner’s Model and

Kohn–Sham Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
13.5.4 Free Electron Gas Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431
13.5.5 Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

xiv Contents



13.6 Magnetization of Interacting Bloch Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
13.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
13.6.2 Theory of Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
13.6.3 The Quasiparticle Contribution to Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
13.6.4 Contribution of Correlations to Magnetization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
13.6.5 Single-Particle Spectrum and the Criteria for Ferromagnetic Ground State . . . . . . 437

13.7 The Kondo Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
13.8 Anderson Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
13.9 The Magnetic Phase Transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440

13.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 440
13.9.2 The Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441
13.9.3 Landau Theory of Second-Order Phase Transitions . . . . . . . . . . . . . . . . . . . . . . . . . . 441
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 443
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448

CHAPTER 14 Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451
14.1 Properties of Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452

14.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
14.1.2 Type I and Type II Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453
14.1.3 Second-Order Phase Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
14.1.4 Isotope Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454
14.1.5 Phase Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 454

14.2 Meissner–Ochsenfeld Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
14.3 The London Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
14.4 Ginzburg–Landau Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456

14.4.1 Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 456
14.4.2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
14.4.3 Coherence Length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
14.4.4 London Penetration Depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 458

14.5 Flux Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
14.6 Josephson Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

14.6.1 Two Superconductors Separated by an Oxide Layer . . . . . . . . . . . . . . . . . . . . . . . . . 460
14.6.2 AC and DC Josephson Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462

14.7 Microscopic Theory of Superconductivity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
14.7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 462
14.7.2 Quasi-Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
14.7.3 Cooper Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
14.7.4 BCS Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 466
14.7.5 Ground State of the Superconducting Electron Gas . . . . . . . . . . . . . . . . . . . . . . . . . . 466
14.7.6 Excited States at T= 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
14.7.7 Excited States at T ≠ 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470

Contents xv



14.8 Strong-Coupling Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
14.8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
14.8.2 Upper Limit of the Critical Temperature, Tc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472

14.9 High-Temperature Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
14.9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473
14.9.2 Properties of Novel Superconductors (Cuprates) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
14.9.3 Brief Review of s-, p-, and d-wave Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 474
14.9.4 Experimental Confirmation of d-wave Pairing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
14.9.5 Search for a Theoretical Mechanism of High Tc Superconductors . . . . . . . . . . . . . 481
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485

CHAPTER 15 Heavy Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
15.1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 488
15.2 Kondo-Lattice, Mixed-Valence, and Heavy Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . 490

15.2.1 Periodic Anderson and Kondo-Lattice Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 490
15.2.2 Mixed-Valence Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 492
15.2.3 Slave Boson Method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
15.2.4 Cluster Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 494

15.3 Mean-Field Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
15.3.1 The Local Impurity Self-Consistent Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 498
15.3.2 Application of LISA to Periodic Anderson Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
15.3.3 RKKY Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500
15.3.4 Extended Dynamical Mean-field Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

15.4 Fermi-Liquid Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
15.4.1 Heavy Fermi Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
15.4.2 Fractionalized Fermi Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505

15.5 Metamagnetism in Heavy Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 506
15.6 Ce- and U-Based Superconducting Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508

15.6.1 Ce-Based Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 508
15.6.2 U-Based Superconducting Compounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

15.7 Other Heavy-Fermion Superconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
15.7.1 PrOs4Sb12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
15.7.2 PuCoGa5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513
15.7.3 PuRhGa5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
15.7.4 Comparison between Cu and Pu Containing High-Tc Superconductors . . . . . . . . . 516

15.8 Theories of Heavy-Fermion Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
15.9 Kondo Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

15.9.1 Brief Review. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516
15.9.2 Theory of Kondo Insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 519
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524

xvi Contents



CHAPTER 16 Metallic Nanoclusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528

16.1.1 Nanoscience and Nanoclusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
16.1.2 Liquid Drop Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
16.1.3 Size and Surface/Volume Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
16.1.4 Geometric and Electronic Shell Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

16.2 Electronic Shell Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
16.2.1 Spherical Jellium Model (Phenomenological) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
16.2.2 Self-Consistent Spherical Jellium Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
16.2.3 Ellipsoidal Shell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
16.2.4 Nonalkali Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
16.2.5 Large Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

16.3 Geometric Shell Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
16.3.1 Close-Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
16.3.2 Wulff Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
16.3.3 Polyhedra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
16.3.4 Filling between Complete Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

16.4 Cluster Growth on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
16.4.1 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
16.4.2 Mean-Field Rate Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

16.5 Structure of Isolated Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
16.5.1 Theoretical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
16.5.2 Structure of Some Isolated Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

16.6 Magnetism in Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
16.6.1 Magnetism in Isolated Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
16.6.2 Experimental Techniques for Studying Cluster Magnetism. . . . . . . . . . . . . . . . . . . 549
16.6.3 Magnetism in Embedded Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
16.6.4 Graphite Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
16.6.5 Study of Clusters by Scanning Tunneling Microscope . . . . . . . . . . . . . . . . . . . . . . . 555
16.6.6 Clusters Embedded in a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

16.7 Superconducting State of Nanoclusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
16.7.1 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
16.7.2 Thermodynamic Green’s Function Formalism for Nanoclusters . . . . . . . . . . . . . . . 559
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

CHAPTER 17 Complex Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
17.1 Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

17.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
17.1.2 Phase Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
17.1.3 Van Hove Pair Correlation Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569
17.1.4 Correlation Function for Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570

Contents xvii



17.2 Superfluid 4He. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
17.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
17.2.2 Phase Transition in 4He. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 570
17.2.3 Two-Fluid Model for Liquid 4He. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571
17.2.4 Theory of Superfluidity in Liquid 4He. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 571

17.3 Liquid 3He. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
17.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
17.3.2 Possibility of Superfluidity in Liquid 3He. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
17.3.3 Fermi Liquid Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
17.3.4 Experimental Results of Superfluidity in Liquid 3He. . . . . . . . . . . . . . . . . . . . . . . . . 575
17.3.5 Theoretical Model for the A and A1 Phases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
17.3.6 Theoretical Model for the B Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

17.4 Liquid Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
17.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
17.4.2 Three Classes of Liquid Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
17.4.3 The Order Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
17.4.4 Curvature Strains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
17.4.5 Optical Properties of Cholesteric Liquid Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

17.5 Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
17.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
17.5.2 Penrose Tiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
17.5.3 Discovery of Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
17.5.4 Quasiperiodic Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
17.5.5 Phonon and Phason Degrees of Freedom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
17.5.6 Dislocation in the Penrose Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
17.5.7 Icosahedral Quasicrystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589

17.6 Amorphous Solids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
17.6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
17.6.2 Energy Bands in One-Dimensional Aperiodic Potentials . . . . . . . . . . . . . . . . . . . . . 591
17.6.3 Density of States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
17.6.4 Amorphous Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

CHAPTER 18 Novel Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 599
18.1 Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600

18.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 600
18.1.2 Graphene Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 601
18.1.3 Tight-Binding Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 602
18.1.4 Dirac Fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606
18.1.5 Comprehensive View of Graphene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608

xviii Contents



18.2 Fullerenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
18.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
18.2.2 Discovery of C60 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609

18.3 Fullerenes and Tubules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
18.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
18.3.2 Carbon Nanotubeles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
18.3.3 Three Types of Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614
18.3.4 Symmetry Properties of Carbon Nanotubes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 616
18.3.5 Band Structure of a Fullerene Nanotube. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

18.4 Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
18.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 617
18.4.2 Saturated and Conjugated Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 618
18.4.3 Transparent Metallic Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621
18.4.4 Electronic Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 621

18.5 Solitons in Conducting Polymers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
18.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 622
18.5.2 Electronic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
18.5.3 Tight-Binding Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
18.5.4 Soliton Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624
18.5.5 Solitons, Polarons, and Polaron Excitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626
18.6.6 Polarons and Bipolarons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

18.6 Photoinduced Electron Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
Problems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

APPENDIX A Elements of Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
A.1 Symmetry and Its Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633

A.1.1 Symmetry of Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
A.1.2 Definition of a Group . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 633
A.1.3 Symmetry Operations in Crystal Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

A.2 Space Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
A.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634
A.2.2 Space Group Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 634

A.3 Point Group Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
A.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
A.3.2 Description of Point Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 636
A.3.3 The Cubic Group Oh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 638

APPENDIX B Mossbauer Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
B.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 641
B.2 Recoilless Fraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 642
B.3 Average Transferred Energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 643

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644

Contents xix



APPENDIX C Introduction to Renormalization Group Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
C.1 Critical Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 645
C.2 Theory for Scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646
C.3 Renormalization Group Approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

xx Contents



Preface

This textbook is designed for a one-year (two semesters) graduate course on condensed matter
physics for students in physics, materials science, solid state chemistry, and electrical engineering. It
can also be used as a one-semester course for advanced undergraduate majors in physics, materials
science, chemistry, and electrical engineering, and another one-semester course for graduate students
in these areas. The book assumes a working knowledge of quantum mechanics, statistical mechanics,
electricity and magnetism, and Green’s function formalism (for the second-semester curriculum). The
book is written as a two-semester graduate-level textbook, but it can also be used as a reference book
by faculty and other researchers actively engaged in research in condensed matter physics. With judi-
cious choice of topics, the book can be divided into two parts: “Fundamental Concepts” designed to
be taught in the first semester, and “Research Applications” to be taught in the second semester.
Obviously, the first part can be taught to advanced undergraduate majors as an introductory course.

The later chapters are self-contained. Each research topic has a brief introduction, a review, and a
summary of basic foundations for advanced research. This is done with the belief that the students will
develop the skills and will be sufficiently prepared to develop an interest in one of the vast areas of the
topics covered under the umbrella of “condensed matter physics.” In fact, this wide diversity of topics,
the research on which has been increasing exponentially during the past decade, makes it nearly impos-
sible to write a two-semester textbook for graduate students. Probably that is the reason for a dearth of
graduate-level textbooks in condensed matter physics. This has led to an increasingly difficult task for
the instructor because he or she has to prepare notes from a variety of textbooks, reference books, and
review articles, especially to teach in the second-semester graduate level.

There has been slow but steady growth in the area of solid state physics after it was recognized
as a separate branch of physics around 1940, probably after the publication of the book The Modern
Theory of Solids by Seitz. The main reason for this growth is solid state physics is essentially the
applied branch of physics with a variety of technological applications and has attracted students
from other disciplines. The slow but steady growth accelerated in the 1960s because of extensive
research funding due to the space program, and eventually solid state physics became the major
branch of physics attracting the maximum number of faculty and students. The American Physical
Society officially changed the name of its largest group from “Solid State Physics” to “Condensed
Matter Physics,” thereby including liquids and other soft materials. This change in 1978 has led to
explosive growth in condensed matter physics during the past 30 years, and the material for supple-
menting the available textbooks has risen exponentially. In addition, research in various areas has
accelerated rapidly, fueled by grants and a need for fast development in computer memory and
storage as well as other applications of nanoscience and nanotechnology. The subject, which has now
become multidisciplinary, includes materials science, solid state chemistry, and electrical engineering.

Recently, I wrote a book called Heavy-Fermion Systems, which is a part of the book series
“Handbook of Metal Physics,” of which I am the series editor. A large number of distinguished
physicists and chemists contributed to the book series and I have learned much while editing their
work. These are advanced research‒level books, but it became obvious that there is a need for a one-
year (two-semester) graduate-level textbook in condensed matter physics that includes material on
some of the new topics covered in this book series as well as in many other advanced research‒level
books and research reviews in prestigious journals. A graduate student should have the choice to
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select a topic for research after being taught in the classroom in order to acquire enough background
on the topic. I have endeavored to do just that in this textbook, which has been limited to 18 chapters
and 3 appendices. The project has taken several years, much longer than I had originally planned.
I have learned a lot during this period, including the fact that the boundaries between the various
disciplines in physics, chemistry, electrical engineering, and materials science are getting blurred.

The book has three objectives:

1. To present a coherent, clear, and intelligible picture of simple models of crystalline solids in the
first few chapters. The properties of real solids, which are more complicated, are dealt with in
later chapters. The more advanced topics are dealt with in the later part of each chapter (after
the first few introductory chapters). Each chapter includes a collection of problems in order to
enable students to have a grasp of the topics taught in the chapter. The problems at the end of
each chapter are designed to make the students derive some of the formulas of analytical
development with no intrinsic interest. The objective is to keep the book within a reasonable
length, but more importantly, with the belief that the mathematical steps are better understood if
they are derived by the students with the aid of hints and suggestions. In the second part of the
book (Research Applications), some of the problems at the end of the chapter are extensions of
the advanced topics covered in the chapter. In this part, some other problems are designed to
make the applications of the topics more clear. It is up to the instructor to choose and assign the
problems, and some instructors have their own list of problems. However, students should at
least read all the problems even if they do not have any motivation or intention to solve them.

2. To present a comprehensive account of the modern topics in condensed matter physics by
including introductory accounts of the areas where intense research is going on at present. To be
able to do so, I have included chapters on Spintronics (Chapter 11), Heavy Fermions (Chapter 15),
Metallic Nanoclusters (Chapter 16), and Novel Materials (Chapter 18). In addition, I have
included sections on ZnO (Section 9.9), graphene (Section 10.7), graphene-based electronics
(Section 10.8), quantum hall effect (Section 12.5), fractional quantum hall effect (Section 12.6),
high-temperature superconductivity (Section 14.9), liquid 3He (Section 17.3), and quasicrystals
(Section 17.5). Most of these topics are normally not included in standard textbooks in condensed
matter physics. In fact, condensed matter physics is rapidly growing as an interdisciplinary subject
because of its application in nanoscience and other areas of fast-growing science and technology.
The objective of this book is to present the fundamental concepts as well as the methods for
advanced research in this area.

3. To keep the size of the book within a reasonable length so that it can be taught as a two-
semester course, I have avoided too many diagrams as well as excluded material not usually
taught but included in most standard textbooks. I have also avoided including too many tables
that list the properties of solids because these can be easily found in books specifically designed
to provide such information. In addition, I have made a comprehensive review of many
important topics such as band-structure calculations (Chapter 5), but left the details for students
to learn if they are interested in doing research involving such topics.

I have consulted a large number of research papers and books while writing this textbook. It is not
possible to acknowledge all these books and research papers at the appropriate places as is usually
done in advanced research‒level books. I have acknowledged whenever I have reprinted a figure with
the permission of the author/publisher from a research paper published in a research journal or a
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book. I have also acknowledged at appropriate places whenever I have used any material published in
research journals. There is a list of references at the end of each chapter where I have acknowledged
the books and research papers I have used as primary sources of reference while writing this textbook.
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1.1 CRYSTAL LATTICES
A crystal lattice (Bravais lattice) is defined as an infinite array of discrete points that appear exactly the
same from whichever of the points the array is viewed. If one starts from some point, all other points
can be reached from it by the basic translations known as the lattice sites. For a three-dimensional
lattice, these are defined by the set

R = n1a1 + n2a2 + n3a3, (1.1)

where R is the lattice translation vector and a1, a2, and a3 are three fundamental translation vectors that
are not in the same plane. They are also known as primitive vectors that generate the lattice. Here, n1,
n2, and n3 are integers that can be zero, positive, or negative. In fact, a lattice is a mathematical concept
used to identify crystal structures. Theoretically, a lattice spans the entire space.

It may be noted from Figure 1.1 that there is an infinite number of nonequivalent choices of
primitive vectors and consequently primitive cells for any Bravais lattice (in two dimensions).

FIGURE 1.1

Possible choices of primitive cells for a two-dimensional square Bravais lattice.

2 CHAPTER 1 Basic Properties of Crystals



1.1.1 Primitive Cell
The parallelepiped defined by the primitive axes a1, a2, and a3 is called a primitive lattice cell. The
volume of a primitive cell is a1 . ða2 × a3Þ, and it has a density of one lattice point per unit cell. There
are a variety of ways in which a primitive cell with the symmetry of the Bravais lattice can be chosen.

1.1.2 Unit Cell
A unit cell is defined as a cell that would define all space under the action of suitable crystal
translation operators. Thus, a primitive cell is a minimum-volume unit cell. The difference between
a primitive cell and a unit cell is shown in Figure 1.2. As we will see later, it is sometimes more
convenient (especially in the case of cubic lattices) to define three-dimensional lattices in terms of
unit cells rather than primitive cells.

1.1.3 Wigner–Seitz Cell
The Wigner–Seitz cell is obtained by drawing lines to connect a lattice point to all the neighboring
lattice points and then by drawing new lines or planes at the midpoint and normal to these lines.
The Wigner–Seitz cell is the smallest volume enclosed in this way. Figure 1.3 illustrates a Wigner–
Seitz cell for a two-dimensional Bravais lattice. The Wigner–Seitz cell about a lattice point is the
region of space that is closer to that point than to any other lattice point (except for points on the
common surface of two or more Wigner–Seitz cells).

1.1.4 Lattice Point Group
A lattice point group is defined as the collection of the symmetry operations that leave the lattice
invariant when applied about a lattice point. They include one-, two-, three-, four-, and six-fold
rotations that correspond to rotations by 2π, π, 2π/3, π/2, and π/3 radians as well as integral multi-
ples of these rotations. These rotation axes are denoted as symbols 1, 2, 3, 4, and 6. A lattice point
group also includes mirror reflections m about a lattice point. The inversion operation consists of a
rotation of π and a reflection in a plane normal to the rotation axis such that r is replaced by –r.

Primitive
cell

Unit cell
(with a basis)

FIGURE 1.2

Difference between a primitive cell and a unit cell for
a rectangular lattice.

FIGURE 1.3

Wigner–Seitz primitive cell for a two-dimensional
lattice.
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1.2 BRAVAIS LATTICES IN TWO AND THREE DIMENSIONS
It can be shown that there are 5 distinct Bravais lattice types in two dimensions and 14 distinct
Bravais lattices in three dimensions. These 14 Bravais lattices in three dimensions can be grouped
into seven types of conventional unit cells. They are known as cubic (3), tetragonal (2), orthorhom-
bic (4), monoclinic (2), triclinic (1), trigonal (1), and hexagonal (1). Later, we will discuss some of
these Bravais lattices, an understanding of which is necessary in the study of commonly used solids.
The three cubic Bravais lattices are simple cubic (sc), body-centered cubic (bcc), and face-centered
cubic (fcc) cells. These are shown in Figure 1.4. They all have cubic point groups, but their space
groups are not equivalent.

1.2.1 Simple Cubic (sc) Lattice
The simple cubic lattice (Figure 1.4a) is generated by the primitive lattice vectors ax̂, aŷ, and aẑ,
where a is a side of the cube (known as the lattice constant) and x̂, ŷ, and ẑ are the three
orthonormal vectors. It may be easily seen that the entire cubic lattice can be obtained by using the
lattice translation vectors R, as defined in Eq. (1.1), to connect any lattice point to another lattice
point. In fact, the simple cubic (sc) lattice is the simplest three-dimensional Bravais lattice.

It may be noted that although there are eight lattice points at the corners of each cubic primitive
cell, each lattice point is shared by eight such primitive cells. Considering that eight lattice points
are shared by eight primitive cells, on the average, each primitive cell has one lattice point. How-
ever, not one of the lattice points belongs uniquely to any simple cubic primitive cell.

The Wigner–Seitz cell of a simple cubic Bravais lattice is also a simple cubic cell. However, the
primitive cell is closer to its own lattice point except for points on the nearest-neighbor surface of
two or more Wigner–Seitz cells. Therefore, each lattice point has its own Wigner–Seitz cell. When
a Wigner–Seitz cell is translated by all the lattice vectors, it will fill the lattice without overlapping.
In that sense, the Wigner–Seitz cell is extremely convenient to describe a primitive cell around each
lattice point.

Only one known element, the alpha phase of polonium, crystallizes in the simple cubic form.

(a) (b)  (c)

FIGURE 1.4

Unit cells of the three cubic lattices: (a) simple cubic lattice (sc), (b) body-centered cubic lattice (bcc), and
(c) face-centered cubic lattice (fcc).

4 CHAPTER 1 Basic Properties of Crystals



1.2.2 Lattice Constants
The lattice constants are the numbers that specify the size of a unit cell. For example, the lattice
constant for cubic crystals is a, the side of the cube. The maximum number of lattice constants for
a unit cell can be three. These are, in general, on the order of a few angstroms and are experimen-
tally determined by crystallographers using X-rays. There are a variety of reference texts in which
the lattice constants of different crystal structures have been noted.

1.2.3 Coordination Numbers
The number of nearest neighbors of each lattice point in a Bravais lattice is the same because of its
periodic nature and is known as the coordination number. The coordination number is a property of
the lattice. For example, the coordination number of a square or rectangular lattice (in two dimen-
sions) is 4, whereas the coordination number of a simple cubic lattice is 6.

1.2.4 Body-Centered Cubic (bcc) Lattice
The body-centered cubic (bcc) lattice (Figure 1.4b) can be obtained by adding a second lattice point at
the center of each cubic cell of a simple cubic lattice. Thus, the unit cell of each bcc lattice can be
considered as two interpenetrating simple cubic primitive lattices. In fact, there are two alternate ways
of considering a bcc lattice, either with a simple cubic lattice formed from the corner points with a lat-
tice point at the cube center, or with the simple cubic lattice formed from the lattice points at the center
and the corner points located at the center of the new cubic lattice. In either case, each one of the
eight lattice points at the corner of a cubic cell is shared by eight adjacent cubic cells, while the lattice
point at the center of the cubic cell exclusively belongs to that cell. Therefore, the bcc lattice can be
considered as a unit cubic cell with two lattice points per cell. The number of nearest neighbors of each
lattice point is 8. Alternately, one can state that the coordination number is 8.

However, the primitive cell of a bcc lattice can also be easily obtained. In fact, there are a vari-
ety of ways in which the primitive vectors of the bcc lattice can be described. The most symmetric
set of primitive vectors is given as follows:

a1 =
a
2
ðŷ + ẑ − x̂Þ, a2 =

a
2
ðẑ + x̂ − ŷÞ, a3 = a

2
ðx̂ + y− ẑÞ, (1.2)

where a is the lattice constant (the side of the unit cubic cell), and x̂, ŷ, and ẑ are orthonormal vec-
tors. It is important to note that a1, a2, and a3 are not orthogonal vectors. The parallelepiped drawn
with these three vectors (shown in Figure 1.5) is the primitive cell of the bcc lattice. The eight cor-
ners of this primitive cell have eight lattice points, each shared by eight primitive cells.

It can be shown that the volume of the primitive Bravais cell is (Problem 1.1)

V = a1 . ða2 × a3Þ = a3

2
: (1.3)

Because the volume of the unit cubic cell is a3, and each unit cell has two lattice points, the primi-
tive cell of the bcc lattice is half of the volume of the unit cell. However, not one of the lattice points
uniquely belongs to any primitive cell shown in Figure 1.5. The lattice constants of bcc lattices at low
temperatures are shown in Table 1.1. To be able to specify the primitive cell around each lattice point,
one has to draw the Wigner–Seitz cell of the bcc lattice.
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It can be easily shown that the Wigner–Seitz cell of a body-centered cubic Bravais lattice is a
truncated octahedron (see Figure 1.6). The octahedron has four square faces and four hexagonal
faces. The square faces bisect the lines joining the central point of a cubic cell to the central points
of the six neighboring cubic cells. The hexagonal faces bisect the lines joining the central point of a

a2

a1

a3

ẑ

x̂

ŷ

FIGURE 1.5

Symmetric set of primitive vectors for the bcc Bravais
lattice.

FIGURE 1.6

Wigner–Seitz cell of a bcc Bravais lattice.

Table 1.1 Lattice Constants of bcc Lattices at Low Temperatures

Element Lattice Constant (A∘)

Barium 5.02
Chromium 2.88 (Cr also has fcc and hcp phases)
Cesium 6.05
Europium 4.61
Iron 2.87 (Fe also has fcc phase)
Potassium 5.23
Lithium 3.50
Molybdenum 3.15 (Mo also has fcc phase)
Sodium 4.29
Niobidium 3.30
Rubidium 5.59
Tantalum 3.31
Thallium 3.88 (T1 also has fcc and hcp phases)
Uranium 3.47
Vanadium 3.02
Tungsten 3.16

Source: R. W. G. Wyckoff, Crystal Structures, vol. 1 (J. Wiley, 1963).
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cubic cell to the eight corner points of the same cubic cell. The lattice point at the center of the bcc
lattice is also at the center of this octahedron. Any point in the space within the octahedron (except
for points on the common surface at two or more Wigner–Seitz cells) is closer to this central lattice
point than any other central lattice point.

1.2.5 Face-Centered Cubic (fcc) Lattice
The face-centered cubic (fcc) Bravais lattice (Figure 1.4c) can be constructed from a simple cubic
lattice (Figure 1.4a) by adding a lattice point in the center of each square face. Thus, there are
eight lattice points, one each at the corner of the cubic unit cell, and six more lattice points, one
each at the center of each square face. Each lattice point at the corner is shared by eight cubic
cells, and each lattice point at the square face is shared by two cubic cells. Thus, the fcc lattice can
be considered as a unit cubic cell with four lattice points per unit cubic cell. However, not one
of the lattice points exclusively belongs to any
unit cell. Each lattice point has 12 nearest
neighbors. Therefore, the coordination number
of a fcc lattice is 12.

Alternately, one can obtain the primitive Bra-
vais cell for the fcc lattice. There are a variety
of ways in which these primitive vectors can be
obtained. The most symmetric set of primitive
lattice vectors of a fcc lattice is

a1 =
a
2
ðŷ + ẑÞ, a2 =

a
2
ðẑ + x̂Þ, a3 = a

2
ðx̂ + ŷÞ:

(1.4)

Here, a is the side of the cubic unit cell (the lattice
constant), x̂, ŷ, and ẑ are orthonormal vectors, but
a1, a2, and a3 are not orthogonal vectors. These
vectors have been drawn in Figure 1.7. The lattice
constants of fcc lattices at low temperatures are
shown in Table 1.2.

The volume of the primitive Bravais cell is
given by (Problem 1.2)

V = a1 . ða2 × a3Þ = a3

4
: (1.5)

Because the volume of the unit cubic cell is a3,
and each unit cell has four lattice points, it is
appropriate that the volume of the primitive cell
of a fcc lattice is a3/4: However, not one of the
lattice points of the fcc Bravais lattice uniquely
belongs to a primitive cell. The Wigner–Seitz
cell for a fcc Bravais lattice is shown in
Figure 1.8.

a2

a1

a3

ẑ

x̂

ŷ

FIGURE 1.7

Symmetric set of primitive vectors for the fcc Bravais
lattice.

FIGURE 1.8

Wigner–Seitz cell for the fcc Bravais lattice.
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As shown in Figure 1.8, the Wigner–Seitz cell of a fcc Bravais lattice is a “rhombic dodecahe-
dron.” The lattice points are at the center of the cube as well as at the center of the 12 edges. The
Wigner–Seitz cell has 12 congruent faces, each of which is perpendicular to the line joining the
center of an edge to the central point. Any point in the “rhombic dodecahedron” (except at the com-
mon surface of two or more Wigner–Seitz cells) is closer to this central point than any other central
point of an adjacent Wigner–Seitz cell.

Table 1.2 Lattice Constants of fcc Lattices at Low Temperatures

Element Lattice Constant (A∘)

Actinium 5.31
Silver 4.09
Aluminum 4.05
Americium 4.89
Argon 5.26
Gold 4.08
Calcium 5.58
Cerium 5.16 (Ce also has two hcp structures)
Cobalt 3.55 (Co also has two hcp structures)
Chromium 3.68 (Cr also has a bcc and an hcp structure)
Copper 3.61
Iron 3.59 (Fe also has a bcc structure)
Iridium 3.84
Krypton 5.72
Lanthanum 5.30 (La also has two hcp structures)
Molybdenum 4.16 (Mo also has a bcc structure)
Neon 4.43
Nickel 3.52 (Ni also has two hcp structures)
Lead 4.95
Palladium 3.89
Praseodymium 5.16 (Pr also has two hcp structures)
Platinum 3.92
Rhodium 3.80
Scandium 4.54 (Sc also has two hcp structures)
Strontium 6.08
Thorium 5.08
Thallium 4.84 (Th also has two hcp structures and a bcc structure)
Xenon 6.20
Ytterbium 5.49

Source: R. W. G. Wyckoff, Crystal Structures, vol. 1 (J. Wiley, 1963).
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1.2.6 Other Bravais Lattices
There are 7 crystal systems and 14 Bravais lattices in three dimensions. We have already discussed
the 3 cubic Bravais lattices. We will discuss the primitive cells of the other 11 Bravais lattices. We
note that sometimes it is more convenient as well as conventional to use a larger unit cell that
involves atoms in the end, fcc, or bcc positions. In such cases, the advantage is that one can use
orthogonal axes.

(a) Tetragonal Systems
There are two tetragonal systems. If a cube is stretched to make four of the sides into rectangles, an
object with the symmetry of the tetragonal group is obtained. The solid is symmetric under reflec-
tions about planes that bisect it although the three-fold symmetry and the 90° rotation symmetry
about two of the axes are lost. If a simple cubic lattice is stretched, a simple tetragonal lattice,
shown in Figure 1.9a, is obtained. It has the sides a = b≠ c and the angles α = β = γ. If either a fcc
lattice or a bcc lattice is stretched, a centered tetragonal lattice shown in Figure 1.9b is obtained. It
also has the sides a = b≠ c and the angles α = β = γ and, in addition to the above, a body-centered
lattice point.

(b) Orthorhombic Systems
If the top and bottom squares of the tetragonal solid are deformed into rectangles, the 90° rotational
symmetry is eliminated. One obtains a solid with orthorhombic symmetry. There are four
orthorhombic systems. When a simple tetragonal lattice (Figure 1.9a) is deformed along one of its
axes, a simple orthorhombic lattice, as shown in Figure 1.10a, is obtained. When one stretches a
simple tetragonal lattice along face diagonals, the base-centered orthorhombic lattice shown in
Figure 10b is obtained. When a centered tetragonal lattice (Figure 1.9b) is deformed, a body-
centered orthogonal lattice (Figure 1.10c) is obtained. When one stretches the centered tetragonal
lattice along the face diagonals, the face-centered orthorhombic lattice (Figure 1.10d) is obtained.
All these Bravais lattices shown in Figure 1.10 have lattice constants a≠ b≠ c and α = β = γ = 90°:

a

γ

(a) (b)

b

c

α
β

FIGURE 1.9

The two tetragonal Bravais lattices: (a) simple and (b) centered.
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(c) Rhombohedral or Trigonal Systems
If a cube is stretched across a body diagonal, one obtains a solid with rhombohedral or trigonal
symmetry. Stretching any of the three cubic Bravais lattices produces the same Bravais lattice
known as the rhombohedral lattice or the trigonal lattice. The rhombohedral system is shown
in Figure 1.11a. In the rhombohedral system, the lattice constants are a = b = c and the angles are
α = β = γ ≠ 90°:

(d) Hexagonal Systems
A solid can be formed with a hexagon at the base and perpendicular walls such that it has hexagonal
symmetry. This Bravais lattice is called the hexagonal lattice. In the hexagonal system, shown in
Figure 1.11b, the lattice constants are a = b≠ c and the angles are α = β = 90°, γ = 120°:

(e) Monoclinic and Triclinic Systems
A solid with monoclinic symmetry can be generated by squeezing a tetragonal solid across a diag-
onal in a manner such that the 90° angles on the top and bottom faces are eliminated. However,

(b) (c) (d)

a

(a)

b

c

γ
α

β

FIGURE 1.10

The Bravais lattices for the four orthorhombic systems.

(a) (b)

b

cα
β a

γ

α
β

b

a

c

γ

FIGURE 1.11

The Bravais lattices for the rhombohedral or trigonal systems and the hexagonal systems.

10 CHAPTER 1 Basic Properties of Crystals



the sides are built out of rectangles. The simple monoclinic lattice shown in Figure 1.12a is
obtained by distorting either the simple orthorhombic lattice or the base-centered orthorhombic lat-
tice. The centered monoclinic lattice shown in Figure 1.12b is obtained from the distortion of
either the face-centered orthorhombic lattice or the body-centered orthorhombic lattice. For the
two monoclinic systems, the lattice constants are a≠ b≠ c and the angles are α = γ = 90°, β≠ 90°:
The triclinic system, shown in Figure 1.12c, is obtained by pulling the top of a monoclinic solid
sideways relative to the bottom. Thus, all the faces become diamonds, and the only remaining
symmetry is inversion symmetry. For the triclinic system, the lattice constants are a≠ b≠ c and the
angles are α, β, γ ≠ 90°.

1.3 LATTICE PLANES AND MILLER INDICES
A lattice plane is defined to be a plane that has at least three noncollinear Bravais lattice points. In
fact, such a plane would contain an infinite number of two-dimensional Bravais lattice points.
A three-dimensional Bravais lattice is represented as a family of parallel equally spaced lattice
planes. Such lattice planes can be constructed in a lattice in a variety of ways. Figures 1.13a and b
represent two ways of representing the same simple cubic Bravais lattice as a family of lattice
planes.

The Miller indices are used to label a crystal plane. They are obtained by using the following
procedure. All the Bravais lattice points lie on a chosen assembly of equally spaced parallel
lattice planes (whether cubic or otherwise). Certain planes of the assembly (sometimes all of
them) will always intersect the coordinate axes at the lattice points. Therefore, every plane in this
chosen set of parallel planes would intercept the coordinate axes that bear a definite rational
ratio to one another. To define the Miller indices, one adopts the following procedure. One

(a) (b) (c)

c

a

b

α

β

γ

a

c

a
α

β

γ

b 

FIGURE 1.12

The Bravais lattices for the monoclinic and triclinic systems.
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of the lattice points is chosen as the origin, and the coordinate axes are chosen such that they
are not coplanar. In some cases, such as the cubic lattices, the coordinate axes are chosen as
orthogonal and parallel to the sides of the cubic unit cell. This property of the Bravais lattice
was used to define the Miller indices by crystallographers and was later used for the proper defi-
nition of reciprocal lattice vectors. The Miller indices are obtained by using the following
prescription:

1. Determine the intercepts on the axes a1, a2, a3 in the units of lattice constants. Here, a1, a2, a3
need not be primitive vectors. For example, determine a1

a ,
a2
b ,

a3
c , where a, b, c are the lattice

constants of the three-dimensional lattice (note that a = b = c for a cubic lattice). These
intercepts have rational ratios although they are not, in general, integers.

2. Take the reciprocal of each number, i.e., a
a1
, ba2 ,

c
a3
:

3. Then reduce these numbers to the three smallest integers h, k, l that have the same ratio. The
integers h, k, l are called the Miller indices.

4. The parentheses ðhklÞ denote a single crystal plane or a set of parallel planes.
5. If a plane cuts an axis on the negative side of the origin, the negative index is indicated by

placing a minus sign above the index ðhklÞ. If a plane is parallel to a particular axis, because
the intercept with the axis occurs at infinity, the corresponding Miller index is zero
(reciprocal of infinity). Thus, the cube faces of a cubic crystal are (100), (010), (001), (100),
(010), and (001).

6. Planes equivalent by symmetry are denoted by curly brackets fhklg. Thus, the set of cube faces
of a cubic crystal described previously can also be described as f100g:

7. A direction in a lattice is denoted by square brackets ½hkl�. In cubic crystals, the direction ½hkl�
is always perpendicular to a plane ðhklÞ having the same directions. However, this is not
true for other crystals. Figure 1.14 shows the lattice planes and their Miller indices in a simple
cubic lattice.

(a) (b)

FIGURE 1.13

Lattice planes in a simple cubic lattice. The shaded regions in (a) and (b) are two of the infinite ways in
which a family of lattice planes can be represented in the same cubic lattice.
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1.4 BRAVAIS LATTICES AND CRYSTAL STRUCTURES
1.4.1 Crystal Structure
A crystal structure is obtained when an identical basis of atoms is attached to each lattice point. We
will give a simple example of two atoms A and B (of different types) to illustrate a crystal structure.

Figure 1.15 shows an example of a two-dimensional crystal structure with two types of atoms A
and B. Figure 1.15a shows a two-dimensional rectangular lattice. Figure 1.15b shows a basis of two
different types of atoms, A and B. It has to be emphasized that the basis is the definition of the same
physical unit of atoms or ions (ranging from 1 for some elements to nearly 100 for some complex
proteins) that is located symmetrically at each point of the Bravais lattice. Thus, a basis can be trans-
lated through all the vectors of a Bravais lattice, and another identical basis with the same location
around another lattice point would be reached. The crystal structure is defined (Figure 1.15c) as a lat-
tice with a basis. In fact, this symmetry of the crystals makes it possible to study their physical prop-
erties. We note that the lattice points in the rectangular lattice can be symmetrically shifted in the
crystal structure as long as the basis of atoms is grouped symmetrically around each lattice point.

1.4.2 Lattice with a Basis
We also note that there is a dichotomy in the usage of the words “lattice with a basis.” In addition to
describing a crystal structure, in which case the basis is the description of identical atoms or ions
based symmetrically around each lattice point, this expression is also used to describe a Bravais lattice
as a lattice with a basis. As examples of the most commonly used lattices, the bcc Bravais lattice can
be described as a simple cubic lattice (the unit cell) with a two-point basis

0, a
2
ðx̂ + ŷ + ẑÞ, (1.6)

and the fcc lattice can be described as a four-point basis

0, a
2
ðx̂ + ŷÞ, a

2
ðŷ + ẑÞ, a

2
ðẑ + x̂Þ: (1.7)

(110)

a1 a1
a1

a2 a2 a2

a3 a3 a3

(010) (111)

FIGURE 1.14

Lattice planes and their Miller indices in a simple cubic lattice.
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1.4.3 Packing Fraction
The packing fraction of a crystal structure is defined as the fraction of space occupied by the atoms
or ions considered as contacting hard spheres. For example, a bcc crystal has a packing fraction of
0.68, and a fcc crystal has a packing fraction of 0.74.

1.5 CRYSTAL DEFECTS AND SURFACE EFFECTS
1.5.1 Crystal Defects
It has to be noted at this point that no crystal, either grown naturally or in the laboratory, is perfect.
There are a certain number of impurities, varying in range depending on the laboratory conditions dur-
ing crystal growth, that are invariably present. The average number of impurities in reasonably pure
crystal is 1 in 10,000. There are also lattice defects in the crystal in the sense that an atom is found not
at the designated lattice point, but either it is missing or found at an interstitial. This is called a lattice
defect, and such defects are also in the range of 1 in 10,000. The crystal impurities and lattice defects,
together known as crystal defects, do play a significant role in certain physical properties of the crystal.

1.5.2 Surface Effects
There is another significant difference between a lattice and a crystal structure even if there are only
single atoms or ions (called monatomic lattice) at each lattice point in the crystal structure. As defined
earlier, a lattice is a mathematical concept that extends to infinity in all dimensions, whereas every

A B

(a)

(b)

(c)

FIGURE 1.15

(a) A two-dimensional rectangular lattice; (b) basis of two atoms, A and B; (c) Crystal structure
(two dimensions): lattice + basis.
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crystal has finite dimensions. In general, a crystal has a huge number of atoms (around 1023). This
difference between the infinite lattice and the finite lattice structure is not significant inside the crystal,
and as we will discuss later, one gets around the finite size of the crystal by using periodic boundary
conditions. Therefore, the concept of a Bravais lattice can be extended to a crystal. However, this
concept breaks down when one approaches the surface of the crystal because the periodicity of the
lattice, which is the cornerstone of most of the basic theoretical concepts of solid state physics, is no
more valid. Therefore, the physical properties at or near the surface of a crystal are very different. The
study of these surface properties, constrained by the nonperiodicity in a third dimension perpendicular
to the surface, requires application of different techniques and is by itself a vast and fascinating field.

1.6 SOME SIMPLE CRYSTAL STRUCTURES
1.6.1 Sodium Chloride Structure
The sodium chloride structure is shown in Figure 1.16. There are equal numbers of sodium and
chlorine ions placed at alternate points of a simple cubic lattice. Each ion has six of the other kind
of ions as its nearest neighbor. Thus, the coordination number is 6. The crystal structure can be
described as a Bravais fcc lattice with a basis. The basis consists of one sodium ion at 0 and one
chlorine ion at the center of the cubic unit cell; i.e., at ða/2Þðx̂ + ŷ + ẑÞ.

The compounds that have the sodium chloride structure include AgBr, AgCl, AgF, BaO, BaS,
BaSe, BaTe, CaO, CaS, CaSe, CaTe, CsF, KBr, KCl, KF, KI, LiBr, LiCl, LiF, LiH, LiI, MgO, MgS,
MgSe, MnO, NaBr, NaCl, NaF, NaI, RbBr, PbS, RbCl, RbF, RbI, SrO, SrS, SrSe, SrTe, and UO.

1.6.2 Cesium Chloride Structure
The cesium chloride structure is shown in Figure 1.17. There is one molecule per unit cubic cell
with the ions in the body-centered positions; i.e., Cs+: 000 and Cl−: 1

2
1
2
1
2. Thus, the cesium chloride

FIGURE 1.16

The sodium chloride structure.

FIGURE 1.17

CsCl structure.
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structure can be described as a simple cubic lattice with a basis. The cesium ion is at the origin 0,
and the chlorine ion is at ða/2Þðx̂ + ŷ + ẑÞ: Because each ion is at the center of a cube of ions of
the other type of ions, the coordination number is 8.

The compounds that have the cesium chloride structure include AlNi, BeCu, CsBr, CsCl, CsI,
LiHg, NH4Cl, RbCl, TlBr, TlCl, and TlI.

1.6.3 Diamond Structure
The diamond structure is shown in Figure 1.18. The diamond cubic structure (Ref. 2a) consists of
two interpenetrating fcc Bravais lattices displaced from each other by one-quarter of a body diago-
nal. Alternately, it can be considered as a fcc lattice with basis at 0 and at ða/4Þðx̂ + ŷ + ẑÞ: The
diamond structure is a result of covalent bonding. The covalent bond between two atoms is a very
strong bond between two electrons, one from each atom, with directional properties. The spins of
the two electrons are antiparallel, and the electrons forming the bond tend to be localized in the
region between the two atoms. Because the C, Ge, and Si atoms each lack four electrons to form
filled shells, these elements can have attractive interaction due to charge overlap, a type of interac-
tion not found between atoms with filled shells because of the Pauli exclusion principle and the
consequent repulsive interaction. There are eight atoms in a unit cube, and each atom has 4 nearest
neighbors and 12 next nearest neighbors in the diamond lattice. Hence, the diamond lattice, which
is not a Bravais lattice, is relatively empty. The 4 nearest neighbors of each atom form the vertices
of a regular tetrahedron, and the covalent bonding between the neighboring atoms in the diamond
structure is also known as tetrahedral bonding. The maximum proportion of the volume that is
available to be filled by hard spheres is 0.34. The elements that crystallize in the diamond structure
are C (diamond), Si, Ge, and α-Sn (grey). The coordination number of the diamond lattice is 4, and
the packing fraction is 0.34.

FIGURE 1.18

The diamond cubic structure.
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1.6.4 Zincblende Structure
The zincblende (or cubic zinc sulfide) structure, shown in Figure 1.19, is obtained from the dia-
mond structure (Figure 1.18) when Zn ions are placed on one fcc lattice and S ions are placed on
the other fcc lattice. Thus, each ion has four of the opposite type as nearest neighbors.

Some crystals with zincblende structure are AgI, AlAs, AlP, AlSb, BeS, BeSe, BeTe, CdS,
CdTe, CuBr, CuCl, CuF, CuI, GaAs, GaP, GaSb, HgS, HgSe, HgTe, InAs, InP, InSb, MnS(red),
MnSe, SiC, ZnS, ZnSe, and ZnTe.

1.6.5 Hexagonal Close-Packed (hcp) Structure
The hexagonal close-packed (hcp) structure is not a Bravais lattice, but a large number of elements
crystallize in this form. If we assume atoms to be hard spheres, close-packed planes with hexagonal
symmetry (see Figure 1.20) can be formed.

If one starts with the atom in position A, there are two other kinds of spaces between the atoms, B
or C. If the second plane is placed on the B positions, a third nesting layer can be placed either over site
A or site C. The stacking ABABAB… yields the hcp structure while the stacking ABCABC… gives
the fcc structure (see Problems 1.8 and 1.11). Both types of stacking have the same density of packing,
and the packing fraction is 0.74.

The unit cell of the hcp structure is the hexagonal primitive cell, and the basis contains two
elements of the same type. The ideal c/a ratio for hcp structures is

ffiffi
8
3

p
= 1:633. Figures 1.21 and

1.22 represent two alternate ways of representing the hcp structure.
In Figure 1.21, the unit cell of the hcp structure is shown. The unit cell of the hcp structure is the

hexagonal primitive cell, and the basis contains two atoms. One atom of the basis is at the origin (000),
and the other atom is at ð23 1

3
1
2Þ, which means at r = 2/3a + 1/3b + 1/2c. The c/a ratio of hexagonal

FIGURE 1.19

Zincblende structure.

A

C

B

FIGURE 1.20

The three sites A, B, and C in a close-packed plane of
atomic spheres (the [111] plane of a fcc structure or
the basal plane of a hcp structure).
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close-packing of spheres is 1.633. However, several crystals, of which the c/a ratio is quite different,
such as zinc with a c/a ratio of 1.85, are also called hcp structures. The lattice constants of elements
with hcp structure are shown in Table 1.3.

The coordination number is the same for both fcc and hcp structures. Therefore, at appropriate
temperatures, many metals transform easily between fcc and hcp structures. This is called martinestic
transformation. However, the alternate way to describe the basic unit of hcp structure is a trigonal cell
containing two atoms, which is shown in Figure 1.22.

The basic unit of the unit cell of the hcp structure described in Figure 1.22 is the trigonal cell
containing two identical atoms at (000) and ð13 1

3
1
2Þ. We note that the origins and the lattice vectors are

chosen differently in Figures 1.21 and 1.22. The choice of any one of the two alternate methods of
representing the same hcp crystal structure depends on convenience.

c→

a→
b
→

FIGURE 1.21

The hexagonal close-packed (hcp) structure.

FIGURE 1.22

The basic unit of hcp structure as a trigonal cell with two
identical atoms as the basis at (000) and ð13 1

3
1
2Þ. (Note the

differences in origin between Figures 1.21 and 1.22.)

Table 1.3 Lattice Constants of Elements with hcp Structure

Element a(A∘) c(A∘)

Beryllium 2.29 3.58
Cadmium 2.98 5.62
Cerium 3.65 5.96
Chromium 2.72 4.43
Cobalt 2.51 4.07
Dysprosium 3.59 5.65
Erbium 3.55 5.59
Gadolinium 3.56 5.80
Hafnium 3.20 5.06
Helium (2 K and 26 atm) 3.57 5.83

(Continued )
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1.7 BRAGG DIFFRACTION
W. L. Bragg considered a crystal as made up of a set of parallel lattice planes of ions spaced equal
distances d apart, as shown in Figure 1.23.

If the incident waves are reflected specularly, the reflected rays (also known as diffracted rays)
would interfere constructively if the path difference is

2d sin θ = nλ , (1.8)

where θ is the angle of incidence and n is an integer, also known as the order of the corresponding
reflection. This is the famous Bragg law of X-ray diffraction, (Ref. 2a) although the same law is
valid for other types of waves (such as electron waves) as long as there is specular reflection from
the ions in the crystal lattice. The Bragg law considers the periodicity of the lattice but does not
include the basis of ions or atoms at each lattice point. In fact, it is the composition of the basis that
determines the intensity of diffraction for various orders of n. In addition, it is pertinent to note that
the crystal planes can be arranged in an infinite number of ways. Even for the same incident ray,
both the direction and intensity of the reflected (note that we are using diffraction and reflection inter-
changeably) rays would depend on the orientation of the crystal planes.

One immediate consequence of the Bragg law (Eq. 1.8) is that Bragg reflection can occur only
for wavelengths λ≤ 2d: Originally, Bragg diffraction was used by crystallographers to study the

Table 1.3 Lattice Constants of Elements with hcp Structure—cont’d

Element a(A∘) c(A∘)

Holmium 3.58 5.62
Hydrogen (molecule) 3.75 6.49
Lanthanum 3.75 6.07
Lutetium 3.50 5.55
Magnesium 3.21 5.21
Neodymium 3.66 5.90
Nickel 2.65 4.33
Osmium 2.74 4.32
Praseodymium 3.67 5.92
Rhenium 2.76 4.46
Ruthenium 2.70 4.28
Scandium 3.31 5.27
Terbium 3.60 5.69
Titanium 2.95 4.69
Thallium 3.46 5.53
Thulium 3.54 5.55
Yttrium 3.65 5.73
Zinc 2.66 4.95
Zirconium 3.23 5.15

Source: R. W. G. Wyckoff, Crystal Structures, vol. 1 (J. Wiley, 1963).
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crystal structure of solids. Later, after the discovery of diffraction of electrons from a periodic crystal
by Davisson and Germer, Bragg diffraction became important in understanding the theory of
crystalline solids.

1.8 LAUE METHOD
Von Laue considered the X-ray diffraction from a crystal by considering it as composed of identical
atoms or ions (basis) placed at the lattice sites R of a Bravais lattice. Each ion or atom at these sites
would reradiate the incident radiation in all directions (Laue did not make any assumptions about
specular reflections). However, sharp peaks would be observed only at appropriate wavelengths
and directions when the scattered radiations from the ions or atoms (basis) placed at sites R would
interfere constructively.

We consider two ions, separated by the vec-
tor d (see Figure 1.24).

If n̂ is the direction of the incident radiation
of wavelength λ, the incident wave vector k =
2π n̂/λ. If the path difference between the radia-
tion scattered by each of the two ions is mλ,
where m is an integer, the scattered radiation
(assuming elastic scattering) would be observed
in the direction n̂′ with the same wavelength λ
and wave vector k′ = 2πn̂′/λ. This leads to con-
structive interference, the condition for which is
(Figure 1.24)

d . ðn̂ − n̂′Þ = mλ: (1.9)

k k

k ′

k ′

θ
θ ′

d

n
∧

’

n
∧

d cos θ ′ = −d ⋅n ′
∧

d cos θ = d ⋅n∧
→

→

FIGURE 1.24

Path difference of X-rays scattered by two points
separated by d.

d sin θd sin θ

θθ

θ θ d

FIGURE 1.23

Bragg reflection from a family of lattice planes.
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Multiplying Eq. (1.9) by 2π/λ and using the definitions of k and k′, we can write Eq. (1.9) in the
alternate form

d . ðk−k′Þ = 2πm: (1.10)

If we consider all the ions at each site of the Bravais lattice, the condition of constructive interfer-
ence of all the scattered radiations is obtained from a generalization of Eq. (1.10), which can be
written in the form

R . ðk− k′Þ = 2πm, (1.11)

where R is a direct lattice vector of the Bravais lattice. If we write
K = k−k′ = k′− k, (1.12)

where K is the set of wave vectors that satisfy the condition of constructive interference of all the
scattered radiations (Eq. 1.11), i.e.,

K .R = 2πm: (1.13)

In Section 1.9, we will study the properties of the reciprocal lattice constructed from the set of
wave vectors K by first constructing them using the basic properties of the direct lattice vectors R.

1.9 RECIPROCAL LATTICE
1.9.1 Definition
If R is a set of points that constitute a Bravais lattice as defined in Eq. (1.1),

R = n1a1 + n2a2 + n3a3,

there would exist a particular set of wave vectors K that would yield plane waves with the periodi-
city of the lattice. The analytic definition of the set of vectors K would be

eiK
.ðr+RÞ = eiK

.r, (1.14)

for any vector r and all direct lattice vectors R in the Bravais lattice. Eq. (1.14) can be written in
the alternate form

eiK
.R = 1: (1.15)

The set of wave vectors K that satisfy Eq. (1.14) for any direct lattice vector R that generates a
Bravais lattice is defined as the reciprocal lattice of that Bravais lattice. It is obvious that each
Bravais lattice has its own reciprocal lattice.

It can be shown that the reciprocal lattice can be generated from the three primitive vectors
b1, b2, and b3, where b1, b2, b3 are defined by

b1 = 2π
a2 × a3

a1 . ða2 × a3Þ ,

b2 = 2π
a3 × a1

a1 . ða2 × a3Þ ,

b3 = 2π
a1 × a2

a1 . ða2 × a3Þ :

(1.16)
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It is easy to show from Eq. (1.16) that (Problem 1.13)

ai .bj = 2πδij, (1.17)

where δij is the Kronecker delta function, defined by δij = 0 for i≠ j and δij = 1 for i = j .
We also note from Eqs. (1.16) and (1.17) that the vectors b1,b2, and b3, are in the reciprocal

space and are not in the same plane because the primitive lattice vectors a1, a2, and a3 are not
coplanar. Therefore, any vector k in the reciprocal space can be written as

k = k1b1 + k2b2 + k3b3: (1.18)

From Eqs. (1.1), (1.16), and (1.18), we obtain

k .R = 2πðk1n1 + k2n2 + k3n3Þ: (1.19)

For Eq. (1.15) to hold true for any K,

K .R = 2πm, (1.20)

where m is an integer. Because n1, n2, and n3 are integers, and we obtain from Eqs. (1.19) and
(1.20) that

m = k1n1 + k2n2 + k3n3, (1.21)

whenever k = K. Eq. (1.21) must hold good for any choice of the integers ni. It follows that
k1, k2, and k3 are also integers whenever k = K. Thus, we can write m in the alternate form

m = m1 +m2 +m3, (1.22)

where each mi is an integer. If we write m1 = hn1,m2 = kn2, and m3 = ln 3, where h, k, l are inte-
gers, the reciprocal lattice vectors can be expressed as

K = hb1 + kb2 + lb3, (1.23)

Later, we will identify h, k, l as the Miller indices introduced earlier. As mentioned earlier, any
Bravais lattice has its own reciprocal lattice. It has sometimes been compared to each person having
his or her own shadow.

1.9.2 Properties of the Reciprocal Lattice
We can enumerate some of the properties of the reciprocal lattice from the previous definitions.

a. Each vector of the reciprocal lattice is normal to a set of lattice planes of the direct lattice.
Proof:
We have obtained from Eq. (1.20), K .R = 2πm, where m is an integer. Therefore, the projec-
tion of vector R on the direction of K has the length d,

d = 2πm
jK j : (1.24)

However, there is an infinite number of points in the direct lattice with the same property. To
show this, let us consider a lattice point R′ represented by the integers

n′1 = n1 − pl; n′2 = n2 − pl; n′3 = n1 + pðh+ kÞ, (1.25)
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where p is an arbitrary integer; n1, n2, and n3 are the set of integers that represent a lattice point
R, and h, k, and l are the integers that define a reciprocal lattice vector. It can be easily shown that

K .R′ = K .R = 2πm: (1.26)

Therefore, R′ has the same projection on K as R and is on the plane normal to K, at a distance d
from the origin. Thus, there is an infinite number of lattice points on this plane if it has at least
one lattice point.

b. jK j is inversely proportional to the spacing of the lattice planes normal to K, if the components
of K have no common factor.
Proof:
We have shown in Eq. (1.24) that d = 2πm

jK j : If (h, k, l), the components of K have no common
factor, then a lattice vector R′′ with components ðn′′1, n′′2, n′′3Þ can always be found such that

K .R′′ = 2πðm+ 1Þ: (1.27)

Here,

m+ 1 = hn′′1 + kn′′2 + ln′′3: (1.28)

Thus, the lattice plane containing R′′ is at a distance

d′′ =
2πðm+ 1Þ

jK j (1.29)

from the origin. Comparing Eqs. (1.24) and (1.29), we note that the lattice plane containing R′′
is spaced 2π/ jK j from the lattice plane containing R. The simplest way of identifying the
planes of a direct lattice is by their normals, which are the vectors of the reciprocal lattice. The
planes that are most densely populated with lattice sites are usually the most prominent planes
in a direct lattice. These are also the most widely separated because the density of direct lattice
sites is constant. Therefore, the most prominent planes are those with the smallest reciprocal lat-
tice vectors.

c. The Miller indices h, k, l, which identify the direct lattice planes, are also the integers that
identify the reciprocal lattice vectors normal to those planes.
Proof:
Consider a lattice plane with normal K such that K .R = 2πm (Eq. 1.20) is satisfied by all
lattice points identified by R in that plane. If a lattice point has n2 = n3 = 0, from Eq. (1.21),
we obtain

n1 = m/h: (1.30)

The intercept of this plane along the a1 axis has the length

d1 = n1a1 =
m
h

� �
a1: (1.31)
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One can similarly obtain

d2 = n2a2 =
m
k

� �
a2, (1.32)

and

d3 = n3a3 =
m
l

� �
a3: (1.33)

Thus, the intercepts of this plane among the axes, measured in the units of the corresponding
basis vectors, are inversely proportional to h, k, l. These integers are precisely the definition of
the Miller indices (after removal of common factors) of the plane.

d. The volume of a unit cell of the reciprocal lattice is inversely proportional to the volume of the
unit cell of a direct lattice.
Proof:
The primitive vectors of the reciprocal lattice are b1, b2, and b3. The volume of a unit cell of
the reciprocal lattice is

b1 . ðb2 × b3Þ = 2πða2 × a3Þ . ðb2 × b3Þ
a1 . ða2 × a3Þ , (1.34)

which can be simplified as

b1 . ðb2 × b3Þ = −2πb2 . ða2 × a3Þ× b3
a1 . ða2 × a3Þ : (1.35)

By using the vector identity ðB×CÞ×A = −BðA .CÞ+CðA .BÞ, we obtain

ða2 × a3Þ× b3 = −a2ðb3 . a3Þ+ a3ðb3 . a2Þ: (1.36)

From Eqs. (1.17) and (1.36), we obtain

ða2 × a3Þ× b3 = −2πa2: (1.37)

From Eqs. (1.17), (1.35), and (1.37), we obtain

b1 . ðb2 × b3Þ= ð2πÞ3
a1 . ða2 × a3Þ : (1.38)

Because the volume of the primitive cell in the direct lattice is

v = a1 . ða2 × a3Þ, (1.39)

we obtain from Eqs. (1.32) and (1.33),

b1 . ðb2 × b3Þ= ð2πÞ3
v

: (1.40)
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e. The reciprocal lattice of a simple cubic Bravais lattice with side a is a simple cubic lattice with
cubic primitive cell of side 2π/a:
Proof:
For a simple cubic (sc) lattice, the primitive lattice vectors are

a1 = ax̂, a2 = aŷ, a3 = aẑ: (1.41)

From Eqs. (1.11) and (1.35), we obtain the reciprocal lattice vectors of the sc lattice,

b1 =
2π
a
x̂, b2 =

2π
a
ŷ, b3 =

2π
a
ẑ: (1.42)

f. The direct lattice is the reciprocal of its own reciprocal lattice.
Proof:
This can be easily shown by inspection of Eq. (1.40) or (1.42).

g. The reciprocal lattice of a bcc Bravais lattice with conventional unit cell of side a is a fcc lattice
with conventional unit cell of side 4π/a.
Proof:
We have seen in Eq. (1.2) that for a bcc lattice, the symmetric set of primitive vectors is

a1 =
a
2
ðŷ + ẑ − x̂Þ; a2 =

a
2
ðẑ + x̂ − ŷÞ; a3 =

a
2
ðx̂ + ŷ − ẑÞ:

From Eqs. (1.11), the reciprocal lattice vectors are

b1 =
4π
a

1
2
ðŷ + ẑÞ; b2 =

4π
a

1
2
ðẑ + x̂Þ; b3 =

4π
a

1
2
ðx̂ + ŷÞ: (1.43)

This has the form of the fcc primitive vectors (Eq. 1.3), provided the side of the cubic cell is
taken to be 4π/a.

h. One can similarly show (Problem 1.14) that the reciprocal lattice of the fcc Bravais lattice with
conventional unit cell of side a is a bcc lattice with conventional unit cell of side 4π/a.

i. The unit cell of the reciprocal lattice need not be a parallelepiped.

1.9.3 Alternative Formulation of the Laue Condition
We have derived the Laue condition (Eq. 1.12) for constructive interference of the incident
radiation reradiated by the ions or atoms in all directions as K = k′− k, where K is a reciprocal
lattice vector. Because the incident and scattered radiations have the same wavelengths λ = λ′ for
elastic scattering, it follows that

jk j = jk′ j = k: (1.44)

From Eqs. (1.12) and (1.44), we obtain

k′ = jk−K j = k: (1.45)
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By squaring Eq. (1.45), we obtain

k2 = k2 +K2 − 2k .K, (1.46)

which can be written in the alternate form

k . K̂ = 1/2K: (1.47)

Eq. (1.47) implies that the incident wave vector k would satisfy the Laue condition only if the tip
of k is on a plane that is a perpendicular bisector of the line joining the origin to K. This is shown
in Figure 1.25, and such planes in k space are known as Bragg planes.

In Figure 1.26, the Laue condition is shown in an alternate way such that its equivalence to
Bragg refection can be demonstrated.

In fact, it can be easily shown that the Bragg and Laue formulations of X-ray diffraction from
a crystal are equivalent. We write K = nK0, where n is an integer and K0 is the shortest reciprocal
lattice vector parallel to K. Further, Eq. (1.24) can be written in the alternate form

K = 2πn
d

: (1.48)

We can easily show from Figure 1.26,

K = 2k sin θ: (1.49)

From Eqs. (1.48) and (1.49), we obtain

k sin θ = nπ
d
: (1.50)

O

k   ′

1
2 K

K
k
→

→→

→

→

→

1
2 K

FIGURE 1.25

The Laue condition. A typical Bragg plane is shown in the diagram.
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Using the expression k = 2π/λ, we can write Eq. (1.50) as

2d sin θ = nλ, (1.51)

which is precisely Eq. (1.8), the Bragg condition. We have also shown that the order n of the Bragg
reflection is n = jK j / jK0 j:

1.10 BRILLOUIN ZONES
1.10.1 Definition
The Brillouin zone is a very important concept in solid state physics; it plays a major role in the
theoretical understanding of the elementary ideas of electronic energy bands. The first Brillouin
zone is defined as the Wigner–Seitz primitive cell of the reciprocal lattice. Thus, it is the set of
points in the reciprocal space that is closer to K = 0 than to any other reciprocal lattice point. We
have shown in Figure 1.21 that the Bragg planes bisect the lines joining 0 (the origin) to the reci-
procal lattice points. Thus, we can also define the first Brillouin zone as the set of points that can
be reached from 0 without crossing any Bragg planes. Here, the points common to the surface of
two or more zones have not been considered.

The second Brillouin zone is the set of points that can be reached from the first Brillouin zone
by crossing only one plane. Similarly, the nth Brillouin zone can be defined as the set of points that
can be reached by crossing n – 1 Bragg planes. We will first describe Brillouin zones of one- and
two-dimensional (square) lattices to explain the fundamental methods of obtaining the Brillouin
zones before describing the Brillouin zones of some important lattices.

k
→

k
→

′

−k
→

→ → →
K = k ′ − k

FIGURE 1.26

Because K = k′−k and jk j = jk′ j , k and k′ have the same angle θ with the plane perpendicular to K:
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1.10.2 One-Dimensional Lattice
Consider a one-dimensional (linear) lattice of lattice constant a, which is taken in the x̂ direction.
By definition, the direct lattice vector is R = n1 a x̂, where n1 is an integer. The reciprocal lattice
vectors for this linear lattice are

K = ð2π/aÞhx̂, (1.52)

where h is an integer. Thus, the reciprocal lattice is also a linear lattice of side b = 2π/a. As
described earlier, the Bragg planes (points in one dimension also known as zone boundaries) bisect
the lines joining a reciprocal lattice point with its neighbors. The first three Brillouin zones of the
linear lattice are shown in Figure 1.27.

As we can see from Eq. (1.52), the shortest reciprocal lattice vector jK0 j = 2π/a. If the origin 0
is chosen at the center, the first Bragg plane (zone boundary) is at –π/a and π/a. Similarly, the
second Bragg plane is at –2π/a and 2π/a, and the third Bragg plane is at –3π/a and 3π/a. Thus, the
first Brilloun zone (shown by horizontal lines) extends from –π/a to π/a, the second Brillouin zone
(shown by lines \\\\\\\) is between –2π/a and –π/a as well as between π/a and 2π/a. Similarly, the third
Brillouin zone (shown by lines ////////) is between –3π/a and –2π/a as well as between 2π/a and 3π/a.
These are consistent with the definition of the Brillouin zones; i.e., a point in the first zone does not
cross any Bragg plane (point in one dimension), a point in the second zone crosses only one Bragg
plane (zone boundary), and a point in the third Brillouin zone crosses two Bragg planes (zone
boundaries).

1.10.3 Two-Dimensional Square Lattice
The direct lattice vectors of a two-dimensional square Bravais lattice are

R = n1ax̂ + n2aŷ, (1.53)

3 3
2 2

1

−3π /a −2π /a −π /a π /a 2π /a 3π /aO

kz

FIGURE 1.27

The Brillouin zones of the linear lattice.
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where n1 and n2 are integers and a is the lattice constant. The reciprocal lattice vectors are

K = 2π
a
ðhx̂ + kŷÞ, (1.54)

where h and k are integers. Thus, the reciprocal lattice is also a square lattice of side b = 2π/a. The
Brillouin zones are constructed according to the method outlined earlier. In Figure 1.28, all the
Bragg lines (in two dimensions) that are in a square of side 4π/a centered on the origin are shown.
The Bragg lines divide the square into regions belonging to different zones.

1.10.4 bcc Lattice
We have shown in Eq. (1.43) that the primitive translational vectors of the reciprocal lattice of a
bcc lattice are given by

b1 = ð2π/aÞðŷ + ẑÞ; b2 = ð2π/aÞðẑ + x̂Þ; b3 = ð2π/aÞðx̂ + ŷÞ:

The reciprocal lattice vectors are

K = hb1 + kb2 + lb3
= ð2π/aÞ½ðk+ lÞx̂ + ðh+ lÞŷ + ðh+ kÞẑ� . (1.55)
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FIGURE 1.28

The Brillouin zones for a two-dimensional square lattice of side 4π/a [[4π/α]].
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From Eq. (1.55), we note that the shortest nonzero K′s are the 12 vectors

ð2π/aÞð±x̂ ± ŷÞ; ð2π/aÞð±ŷ ± ẑÞ; ð2π/aÞð±ẑ ± x̂Þ: (1.56)

The first Brillouin zone is the primitive cell formed from the planes normal to the 12 vectors
(the Bragg planes) of Eq. (1.56). Thus, the 12 vectors from the origin to the center of each face of
the first Brillouin zone are

ðπ/aÞð±x̂ ± ŷÞ; ðπ/aÞð±ŷ ± ẑÞ; ðπ/aÞð±ẑ ± x̂Þ: (1.57)

The first Brillouin zone for the bcc lattice is shown in Figure 1.29. This regular 12-faced solid is
a rhombic dodecahedron. The important symmetry points are marked by conventional symbols. By
convention, Γ is denoted as the center of a zone.

1.10.5 fcc Lattice
The primitive translation vectors b1,b2,b3 of the reciprocal lattice of the fcc lattice are (Problem 1.14)

b1 = ð2π/aÞðŷ + ẑ − x̂Þ,
b2 = ð2π/aÞðẑ + x̂ − ŷÞ,
b3 = ð2π/aÞðx̂ + ŷ − ẑÞ .

(1.58)

Thus, the reciprocal lattice vectors of the fcc lattice are

K = hb1 + kb2 + lb3
= ð2π/aÞ½ð−h+ k+ lÞx̂ + ðh− k+ lÞŷ + ðh+ k− lÞẑ� . (1.59)
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kx

ky
Γ

FIGURE 1.29

The first Brillouin zone for the bcc lattice.
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While the shortest nonzero K′s are the eight vectors

ð2π/aÞð±x̂ ± ŷ ± ẑÞ, (1.60)

the corners of the octahedron formed by the eight planes normal to these vectors at their midpoints
are truncated by the planes that are the perpendicular bisectors of the six reciprocal lattice vectors

±ð4π/aÞx̂; ±ð4π/aÞŷ; ±ð4π/aÞẑ: (1.61)

The first Brillouin zone of the fcc lattice is the truncated octahedron shown in Figure 1.30. The
conventional symbols of the important symmetry points are also shown in the figure.

1.11 DIFFRACTION BY A CRYSTAL LATTICE WITH A BASIS
The analysis of diffraction of the incident radiation by a crystal lattice with a basis and, consequently,
the intensity of radiation in a given Bragg peak is more complicated than a monoatomic crystal
because we have to consider the scattering of the radiation from each ion or atom of the basis at each
lattice point. A crystal lattice with a basis can have two or more ions or atoms, either of the same
type or of different types. In general, each lattice point in a primitive cell would have a basis of atoms
or ions associated with it, and the crystal structure consists of a repetitive unit of this basis.

1.11.1 Theory
We consider n scatterers at positions r1, r2, :::, rn, in each primitive cell with the lattice point considered
as the origin of rj. It is important to note that in an ideal crystal, each lattice point has an identical basis
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FIGURE 1.30

The first Brillouin zone for the fcc lattice.
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around it so that the scatterers are located at the same relative position in each cell. We have already
noted that a Bragg peak is associated with a change in the wave vector K = k′− k and the phase differ-
ence between two rays scattered from ri and rj would be K . ðri − rjÞ. The amplitudes of the rays scat-
tered at r1, :::, rn would be in the ratios eiK

.r1, :::, eiK
.rn . Thus, the amplitude of the scattered ray from

the primitive cell, which is the sum of the scattered rays from the n identical scatterers of the primitive
cell, will be equal to

S = ∑
R
∑
j
fje

−iðR+rjÞ.Δk: (1.62)

The amplitude of the scattered rays (Eq. 1.62) can be expressed as

S = ∑
R
e−iR

.ΔkSK , (1.63)

where SK is the structure factor obtained by the Bragg condition Δk = K,

SK = ∑
n

j=1
fj e

iK.rj : (1.64)

Here, fj is the atomic scattering factor or form factor that is a measure of the scattering power of the jth
atom or ion in the basis.

1.11.2 Geometrical Structure Factor
We will first consider the basis as consisting of n identical atoms or ions around each lattice point.
This is equivalent to stating that each atomic form factor fj has the same value fj� f . Then we can
write Eq. (1.64) in the form

SK = f ∑
n

j=1
eiK

.rj � f SK: (1.65)

SK is known as the geometrical structure factor. Because SK is proportional to the amplitude, jSK j2
is proportional to the intensity of the Bragg peak and indicates the extent to which the waves scat-
tered from the ions or atoms in the basis within the primitive cell interfere to reduce it.

Next, we will discuss the structure factor of a few important lattices.

1.11.3 Application to bcc Lattice
If we consider the bcc lattice as a simple cubic lattice of side a with identical atoms or ions at
r1 = 0 and at r2 = ða/2Þðx̂ + ŷ + ẑÞ, the structure factor (Eq. 1.65) can be expressed as

SK = ð1+ eiK
.½1/2aðx̂+ŷ+ẑÞ�Þ: (1.66)

Further, for a simple cubic lattice,

K = 2π
a
ðhx̂ + kŷ + lẑÞ: (1.67)
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From Eqs. (1.66) and (1.67), we obtain

SK = ð1+ eiπðh+k+lÞÞ
= 1+ ð−1Þh+k+l (1.68)

=
0, h+ k+ l odd
2, h+ k+ l even

� �
: (1.69)

From Eq. (1.69), we note that whenever h+ k+ l is odd, there is no Bragg diffraction (reflection).
Because in this derivation, the bcc lattice has been considered as a simple cubic lattice with a basis,
this implies that the odd reciprocal lattice vectors h+ k+ l of the reciprocal simple cubic lattice do
not exist. Therefore, the actual reciprocal lattice is a fcc lattice, which could have been obtained
directly if we had considered the bcc lattice as the primitive lattice.

1.11.4 Application to fcc Lattice
If we consider a fcc lattice as a simple cubic lattice of side a and basis at

r1 = 0, r2 =
a
2
ðŷ + ẑÞ, r3 = a

2
ðẑ + x̂Þ, r4 = a

2
ðx̂ + ŷÞ,

the structure factor (Eq. 1.65) can be expressed as

SK = 1+ eiK
.a/2ðŷ+ẑÞ + eiK

.a/2ðẑ+x̂Þ + eiK
.a/2ðx̂+ŷÞ: (1.70)

From Eqs. (1.67) and (1.70), we obtain

SK = 1+ eiπðk+lÞ + eiπðh+lÞ + eiπðh+kÞ: (1.71)

Eq. (1.71) can be written in the alternate form

SK = 1+ ð−1Þk+l + ð−1Þh+l + ð−1Þh+k: (1.72)

From Eq. (1.72), we note that SK = 4, if each value of the integers h, k, l is either even or odd. How-
ever, SK = 0, if either only one of the three integers h, k, l is even and the other two are odd, or one
of the three integers is odd and the other two are even. Thus, there can be no Bragg reflection if the
indices h, k, l are partly odd and partly even. In contrast, there is Bragg reflection if each of the indices
h, k, l is either even or odd. This is true for a reciprocal bcc lattice. Hence, the reciprocal lattice of a
fcc lattice is a bcc lattice, which we stated earlier, and has been assigned as a problem.

1.11.5 The Atomic Scattering Factor or Form Factor
In Eq. (1.64), we defined fj as the atomic scattering factor or form factor, which was a component
of the geometrical structure factor. However, in subsequent discussions, we considered that all the
atoms or ions in a basis are identical.

Thus, each fj = f and f are factored out of the summation. We wrote the geometrical structure
factor as SK = f SK, where SK is the structure factor.
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However, if the atoms or the ions in a basis are not identical, the atomic form factor fj at the
site dj in the basis is

fjðKÞ = − 1
e

Z
dr eiK

.rρjðrÞ: (1.73)

Here, ρjðrÞ is the electronic charge density of the ion of type j placed at r = 0. It is evident from
Eqs. (1.64) and (1.73) that the geometrical structure factor would no longer vanish.

PROBLEMS
1.1. Show that the volume of the primitive Bravais cell of a bcc lattice is a3/2, where a is the side

of the unit cube.

1.2. Show that the volume of the primitive Bravais cell of a fcc lattice is a3/4, where a is the side
of the unit cube.

1.3. A plane in a lattice with primitive vectors a1, a2, and a3 has intercepts at 3a1, 2a2, and –2a3.
Calculate the Miller indices of the plane. Label the direction perpendicular to this plane.

1.4. Draw a sketch of the ð102Þ plane in a simple cubic lattice.

1.5. Prove that in a cubic crystal, a direction [hkl] is perpendicular to the plane (hkl) having the
same indices.

1.6. Show that the actual volume occupied by the spheres in the simple cubic structure (assuming
that they are contacting hard spheres) is 52.4% of the total volume.

1.7. Show that the actual volume occupied by the spheres in the bcc structure (packing fraction:
assuming that they are contacting hard spheres) is 0.68.

1.8. Show that the actual volume occupied by the spheres in the fcc structure (packing fraction:
assuming that they are contacting hard spheres) is 0.74.

1.9. Show that the angle between any two of the lines (bonds) joining a site of the diamond lattice
to its four nearest neighbors is cos−1 ð−1/3Þ:

1.10. Show that the ideal c/a ratio of the hexagonal close-packed structure is
ffiffiffiffiffiffiffi
8/3

p
.

1.11. Show that the packing fraction of the hexagonal close-packed structure is 0.74.

1.12. Sodium transforms from bcc to hcp at about 23 K, which is also known as the “martenistic”
transformation. The lattice constant in the cubic phase is a = 4.23 A∘. Determine the lattice
constant a of the hexagonal phase. Assume that the c/a ratio in the hexagonal phase is
indistinguishable.

1.13. Show that if ai are the three direct lattice primitive vectors and bj are the three primitive
vectors of the reciprocal lattice (as defined in Eq. 1.16), then

ai . bj = 2πδij,

where δij is the Kronecker delta function.
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1.14. Show that the primitive translation vectors b1,b2,b3 of the reciprocal lattice of the fcc lattice
are b1 = ð2π/aÞðŷ + ẑ − x̂Þ,b2 = ð2π/aÞðẑ + x̂ − ŷÞ,b3 = ð2π/aÞðx̂ + ŷ − ẑÞ, and prove that the
reciprocal lattice of a fcc lattice of side a is a bcc lattice of side 4π/a.

1.15. Show that for a monatomic diamond lattice, the structure factor is

SK = 1+ ei½2πðh+k+lÞ�

=

( 2, h+ k+ l is twice an even number,
1±i, h+ k+ l is odd,
0, h+ k+ l is twice an odd number:

9=
; :

Interpret these conditions geometrically.

1.16. a. Show that the reciprocal lattice of the sodium chloride structure is bcc and a reciprocal
lattice vector can be written as

K = 4π
a
ðn1 x̂ + n2ŷ + n3ẑÞ,

where a is the side of the cube and all the coefficients ni of a of a reciprocal lattice vector
are integers or integer+1/2.

b. If the atomic form factors of the two types of ions are f1 and f2, show that the geometrical
structure factor SK = f1 + f2 if each ni in a set is an integer and SK = f1 − f2 if each ni in
a set is an integer+1/2.
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2.1 LATTICE DYNAMICS
2.1.1 Theory
In a crystalline solid, at finite temperatures, the ions or the atoms are not stationary but vibrate around
an equilibrium position. In 1907, Einstein proposed a theory of the heat capacity of a solid based on
Planck’s quantum hypothesis. He assumed that each atom of the solid vibrates around its equilibrium
position with a frequency νE , known as the Einstein frequency. Each atom vibrates like a simple
harmonic oscillator that is in the potential well of the force field of its neighbors. The atoms have the
same frequency νE and vibrate independent of the other atoms. Thus, a mole of solid with N atoms is
assumed to have 3N independent harmonic oscillators. The excitation spectrum of the crystalline
solid is composed of levels that are spaced at a distance ħνE from each other.
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The basic assumption of the Einstein model was that the atoms vibrate independent of each
other, which could be justified only if the temperature is very high. However, at normal tempera-
tures this assumption breaks down, because if two or more atoms move in unison, the restoring
forces between them, which tend to restore each of them to their equilibrium position, would be
reduced. In such a scenario, the required energy to excite a quantum would be reduced. In fact, the
correlation between the motion of the adjacent atoms would play a significant role in solving the
problem of lattice vibrations.

We consider the ground state of the lattice with a basis as the state at zero temperature, where
each ion or atom of mass Mn is located at the equilibrium position dn, which is a vector connecting
the local origin of the cell with a basis to the atom or ion of mass Mn. We assume that if the lattice
has only one atom per unit cell, the atom is located at the lattice point and dn = 0: At a finite tem-
perature, the displacement of the nth atom or the ion in the ith unit cell (the local origin of which is
located at the direct lattice vector Ri, and we have assumed that the origin of the lattice is one of
the lattice points) from its equilibrium position at dn is the vector uni. The definition of the vector
uni is schematically shown in Figure 2.1. We note that uni can also be written as

uni = r−Ri − dn, (2.1)

where r is the instantaneous position of the atom or ion of mass Mn located in the unit cell of
which the local origin is at Ri:

The kinetic energy of the crystalline lattice can be written as

T = ∑
ni

1
2
Mn j _uni j2: (2.2)

The potential energy of the crystal depends on the structure of the cell as well as the interatomic
forces. However, we assume that at any given instant, the function VðuniÞ describes the potential
energy of the crystal in terms of the instantaneous positions of all atoms, i.e., in terms of their
actual displacements from the equilibrium positions. In addition, it is assumed that the perfect lattice
is a configuration of stable equilibrium. The study of phonons is based on the assumption that the
deviation uni of the ions or atoms from their equilibrium position Ri + dn is so small that one can
make a Taylor expansion in powers of the variables uni: Thus, we can write

V = V0 +∑
niα

∂V
∂uαni

� �
0
uαni +

1
2
∑
nn′

∑
ii′
∑
αβ

∂2V
∂uαni∂u

β
n′i′

" #
0

uαniu
β
n′i′ +…, (2.3)

O
Mn

r→

→

→

Ri

dn
→

uni

FIGURE 2.1

Definition of uni for a lattice with a basis.
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where uαni are the Cartesian components of uni and α and β are Cartesian indices running over the
basis vectors of three-dimensional space.

The first term V0 is essentially the cohesive energy of the crystal, but for the present purpose it
is a constant term that can be neglected without affecting the calculation. Because the lowest energy
state is a minimum as a function of the locations of the ions or atoms, the linear term in Eq. (2.3)
must vanish near equilibrium. The first important term in Eq. (2.3) is the quadratic term in
Eq. (2.3). This is known as the harmonic approximation. If one considers the higher-order terms for
study of certain properties of the crystal, those are known anharmonic terms. However, in the
present discussion, we shall restrict ourselves to the harmonic approximation.

We follow the Lagrangian procedure in classical mechanics to solve Eqs. (2.2) and (2.3). If we
define the Lagrangian function (Symon, 1971, p. 366)

L = T −V , (2.4)

the Lagrangian equations are

d
dt

∂L
∂ _q k

� �
− ∂L
∂qk

= 0, k = 1,…, 3N: (2.5)

From Eqs. (2.2), (2.3), and (2.5), we obtain (Problem 2.1)

Mn €uαni = − ∑
n′i′β

∂2V
∂uαni∂u

β
n′i′

" #
0

uβn′i′ : (2.6)

We define a Cartesian tensor Φ such that its components are obtained by the relation

Φαβ
ní;n′i′≡

∂2V
∂uαni∂u

β
n′i′

" #
0

: (2.7)

From Eqs. (2.6) and (2.7), we obtain the vector equation

Mn €uni = −∑
n′i′

Φni;n′i′ . un′i′: (2.8)

Eq. (2.8) can be interpreted as the force acting on the nth atom in the ith cell (the cell of which the
local origin is at a distance Ri from the origin of the lattice, where Ri is a direct lattice vector) due to
the displacement un′i′ of the atom on the n′th site of the i′th cell. In fact, much of the theory of
phonons can be developed without considering how to calculate Φni;n′i′. However, Φni;n′i′ cannot
depend on the absolute position of Ri andRi′ in the crystalline lattice. Thus, the tensor Φ has to be a
function of their relative position Ri andRi′: If we write

Ri′−Ri = Rl, (2.9)

the Cartesian tensor can be expressed in the alternate form

Φni,n′i′ = Φnn′ðRlÞ: (2.10)
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From Eqs. (2.8) and (2.10), we obtain

Mn€uni = −∑
n′l

Φnn′ðRlÞ .un′,i+l: (2.11)

Here, un,i+l denotes the instantaneous displacement of the nth atom in the i + lth cell. We note
that because the summation over the direct lattice vector Rl spans the entire lattice, Eq. (2.11) is
translationally invariant. For example, if we change the label Rl toRl′, we obtain

Mn€uni = −∑
n′l′

Φnn′ðRl′Þ . un′,i+l′, (2.12)

which yields the same set of equations as Eq. (2.11). We also note another property of the tensor
Φ is that the energy of the crystal cannot change if all the ions (or atoms) are displaced by a single
vector, i.e.,

∑
l′
Φnn′ðRl′Þ = 0: (2.13)

Because Eq. (2.11) must satisfy Bloch’s theorem, if the set of functions of the time that describes
the value of uniðtÞ for each value of Ri has been found, then according to the Bloch condition, there
would be a wave vector q such that

uniðtÞ = eiq
.Riun,0ðtÞ, (2.14)

where un,0ðtÞ is the displacement of the nth atom in the cell that has been chosen as the origin for the
direct lattice vectors Ri: It is obvious from Eq. (2.14) that the atom or ion located at every site dn
(measured from the local origin of the unit cell, as shown in Figure 2.1) moves with the same ampli-
tude and direction. However, the phase would vary for each cell. From Eqs. (2.11) and (2.14), we
obtain

Mn€un,0e
iq .Ri = −∑

n′l
Φnn′ðRlÞ .un′,0eiq .Rl eiq

.Ri : (2.15)

In Eq. (2.15), we cancel the eiq
.Ri from both sides, and because the origin 0 is arbitrary, we

consider a solution with a definite value of q by writing

un,0 = Un,q, (2.16)

and obtain

Mn €Un,q = −∑
n′

�
∑
l
Φnn′ðRlÞeiq .Rl

�
. €Un′,q: (2.17)

We define the Fourier transform of the force tensor Φ as

Φnn′ðqÞ≡∑
l
Φnn′ðRlÞeiq .Rl , (2.18)

40 CHAPTER 2 Phonons and Lattice Vibrations



and rewrite Eq. (2.17) as

Mn
€Un,q = −∑

n′
Φnn′ðqÞ .Un′,q, (2.19)

Eq. (2.19) is a set of 3m equations (assuming that there are m atoms per unit cell and there are
three component equations—due to the three Cartesian components of the vectors—for each of the m
values of n) in contrast to Eq. (2.8), which had a set of 3mN equations. This enormous simplification
was possible because of the translational invariance.

Using the classical theory of vibrations,

Uα
n,qðtÞ = Uα

n,qe
iωt , (2.20)

we obtain from Eqs. (2.19) and (2.20),

∑
n′β
½Φαβ

nn′ðqÞ−ω2Mnδnn′δαβ�Uα
n′,q = 0: (2.21)

Eq. (2.21) is an eigenvalue equation with 3m solutions that are solved by finding the roots of the
equation in ω2 when the determinant of the matrix [ ] is equal to zero. In a sense, we are solving 3m
normal modes of vibration of m atoms in a unit cell that are assumed to interact via the force tensor
Φnn′ðqÞ: This force tensor, Φnn′ðqÞ, which is different for each value of q, is a sum of interactions of
all n-type atoms (those atoms located at site n in each unit cell) with all the atoms on site n′, and
includes the effect of their relative phases.

2.1.2 Normal Modes of a One-Dimensional Monoatomic Lattice
We consider a set of ions of mass M (we have been using ions and atoms interchangeably for the
lattice vibrations) located at the lattice points separated by a distance a. The one-dimensional
Bravais lattice vectors are Ri = nia: In this one-dimensional chain of lattice, one atom (or ion) of
the same type is located at the lattice point. If the lattice constant is a, we define L=Na such that

periodic boundary conditions are applied to the
linear chain. This boundary condition requires
that the atoms located at s and at s+N vibrate
with the same amplitude and phase. The linear
chain is shown in Figure 2.2.

The linear boundary condition is best il-
lustrated if we construct an endless circular
chain of lattice points. This endless circular
chain is illustrated in Figure 2.3. We note that
although this illustration is possible for a one-
dimensional lattice, such periodic boundary
conditions have to be imagined for a three-
dimensional lattice.

L = Na
N cells

sa (s + N )a

FIGURE 2.2

A linear chain of lattice points with periodic
boundary conditions.
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Figure 2.4 shows a linear chain of atoms of identical point mass m in a linear lattice of lattice
constant a. The atoms are located at the lattice points. The atom (or ion) of which the equilibrium
position is sa is displaced from equilibrium by an amount us, as shown in Figure 2.4.

For simplicity, we consider only nearest-neighbor interactions between the atoms (ions). The
potential energy V in Eq. (2.3) is of the form

Vharm = 1
2
K∑

s
½uðsaÞ− uð½s+ 1�aÞ�2, (2.22)

where K is the interaction energy of two ions (popularly known as the spring constant) −Φi,i+1. Φii

is determined by the condition set in Eq. (2.13). The equations of motion are obtained from
Eq. (2.22) as

M€uðsaÞ = −∂Vharm

∂uðsaÞ = −K½ðuðsaÞ− 2uð½s− 1�aÞ− uð½ðs+ 1�aÞ�: (2.23)

The solution of Eq. (2.23) is of the type

uðsa, tÞ = Aeiðqsa−ωtÞ: (2.24)

Using the periodic boundary condition (Figure 2.3),

eiqNa = 1, (2.25)

we obtain the expression for q,

q = s
N

2π
a
, (2.26)

a

s

us us+p

s + 1 s + p

FIGURE 2.4

A linear chain of identical atoms, each located at a
lattice point.

s
s + N

FIGURE 2.3

An endless circular chain of lattice points.
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where s is an integer and a is the lattice constant of the one-dimensional lattice. The q values lie
between − π

a and π
a : Substituting Eq. (2.24) in Eq. (2.23), we obtain

Mω2 = 2Kð1− cos qaÞ = 4K sin2ðqa/2Þ, (2.27)

which leads to the solution

ωðqÞ = 2

ffiffiffiffiffiffi
K
M

r
sin

� qa
2

�
, (2.28)

where we have taken only the positive root of Eq. (2.27) because ω is an even function of q. We
plotted ω as a function of q in Figure 2.5. We note that there is a maximum vibrational frequency

ω = 2
ffiffiffiffi
K
M

q
and the behavior is periodic with period 2π/a. In fact, all possible vibrations are given by

values of q in the range

− π
a
< q≤ π

a
, (2.29)

which is the Brillouin zone (we will discuss the Brillouin zone in detail in Chapter 4 by using the
nearly free electron model in a periodic lattice potential) for a linear lattice.

One can also count the number of modes in the following way. From Eq. (2.26), we obtain an
expression for the density of modes in one-dimensional q space as

Na
2π

= L
2π

, (2.30)

where L is the length of the sample. We also note that when qa≪ 1,

dω
dq

= ω
q

=

ffiffiffiffiffi
K
M

r
a = constant: (2.31)

2π /a
−2π /a

2π /a

ω

ωmax

0

FIGURE 2.5

The vibrational frequencies of a linear chain of identical point masses.
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Thus, the group velocity is equal to the phase velocity, and this proportionality of frequency to the
wave number is also the property of the ordinary elastic waves in a continuum. This is also
the velocity of sound waves and is known as the acoustic mode. However, at large values of q, the
velocity of the wave is not constant. In fact, when q = π/a = 2π/λ, i.e., when the wavelength
λ = 2a, ωq bends over to a horizontal tangent (see Figure 2.5). This shows the property of
dispersion.

2.1.3 Normal Modes of a One-Dimensional Chain with a Basis
We consider a one-dimensional Bravais lattice of lattice constant a with two ions or atoms of
masses M1 and M2 per unit cell. This is shown in Figure 2.6. The basic assumption is that each ion
interacts only with the nearest neighbors, which are at a distance a/2 from each other, and
M1 >M2: Thus, the lattice constant of the linear chain is a.

If Κ is the force constant, from Eq. (2.21) we obtain

Vharm = K
2
∑
s
½u1ðsaÞ− u2ðsaÞ�2 + K

2
∑
s
½u2ðsaÞ− u1½s+ 1�a�2, (2.32)

where u1ðsaÞ is the displacement of the ion that oscillates about the site sa and u2ðsaÞ is the displace-
ment of the ion that oscillates around sa+ d: The equations of motion are

M1 €u1ðsaÞ = − ∂Vharm

∂u1ðsaÞ = −K½2u1ðsaÞ− u2ðsaÞ− u2ð½s− 1�aÞ�,

M2 €u2ðsaÞ = − ∂Vharm

∂u2ðsaÞ = −K½2u2ðsaÞ− u1ðsaÞ− u1ð½s+ 1�aÞ�:
(2.33)

The solutions of Eq. (2.33) are of the type

u1ðsa, tÞ = ∈1e
iðqsa−ωtÞ

and

u2ðsa, tÞ = ∈2e
iðqsa−ωtÞ: (2.34)

Substituting Eq. (2.34) in Eq. (2.33), we obtain

−ω2M1∈1eiðqsa−ωtÞ = Kð∈2 − 2∈1 +∈2e−iqaÞ eiðqsa−ωtÞ
and

−ω2M2∈2 eiðqsa−ωtÞ = Kð∈1eiqa − 2∈2 +∈1Þ eiðqsa−ωtÞ:
(2.35)

We cancel the eiðqsa−ωtÞ term from both sides
and solve the determinantal equation

2K −M1ω2

−Kð1+ eiqaÞ
−Kð1+ e−iqaÞ
2K −M2ω2

				 = 0:

				 (2.36)

M1 M2

a

FIGURE 2.6

Diatomic linear chain of masses M1 and M2.

44 CHAPTER 2 Phonons and Lattice Vibrations



There are two roots of the solution of Eq. (2.36), which yields (Problem 2.4)

ω2
± = K 1

M1
+ 1

M2

� �
±K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M1

+ 1
M2

� �2
−
4 sin2ðqa/2Þ

M1M2

" #vuut : (2.37)

The two solutions of Eq. (2.37) are the two branches of the phonon dispersion relation. For
small q, the two roots of Eq. (2.37) are

ω− =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K
2ðM1 +M2Þ

r
qa (2.38)

and

ω+ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2KðM1 +M2Þ

M1M2

s
: (2.39)

We also note from Eq. (2.37) that if qa = ±π (the Brillouin zone boundary), the expressions for
ω± reduce to

ω2
± = K 1

M1
+ 1

M2

� �
±K 1

M2
− 1
M1

� �� �
: (2.40)

Thus, we obtain

ω+ =
ffiffiffiffiffiffi
2K
M2

r
(2.41)

and

ω− =
ffiffiffiffiffiffi
2K
M1

r
: (2.42)

At the Brillouin zone boundary, q = ± π
a :

We also note that because M1 >M2,ω+>ω−.
Another interesting point to note is that from Eq.
(2.34), u1 and u2 are periodic with q = ±2π/a.
Therefore, the dispersion relation repeats itself for
each Brillouin zone. From the previous discus-
sions, we obtain the following results.

The vibrational frequency of a diatomic
linear chain of mass M1 and M2 is shown in
Figure 2.7.

The first branch, ω−, which tends to become
zero at q = 0, is known as the acoustic mode.

−π /a π /a

ω+

ω−

O

Ac
ou

sti
c

Optical

q

FIGURE 2.7

Optical and acoustic phonon branches of a diatomic
linear chain.
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It is in fact the analogue of a long-wavelength vibration of the linear chain, conceived as an
elastic continuum. The normal value of the velocity of sound is reproduced in this case just as in
the case of a monoatomic lattice. In the acoustic mode, the atoms vibrate in unison, whereas in
the optical mode, the atoms in the unit cell vibrate out of phase. Essentially, the two sublattices
of the two types of atoms move rigidly in opposition to one another. This can also be stated in
the alternate form that the diatomic molecules vibrate as if they are independent of the neighbors.
If these crystals are ionic crystals, the two types of atoms are of opposite electric charge. This
yields an oscillating dipole moment that is optically active. We also note that if the masses of
the two atoms in the linear chain were equal (M1 = M2Þ, there would be no gap at the zone
boundaries.

The configuration of atoms in the acoustic and optical modes in the diatomic linear chain is
shown in Figure 2.8. In the acoustic mode, atoms within a unit cell move in concert, whereas in the
optical mode they vibrate against each other.

In the previous example, we discussed only a linear chain of atoms. Thus, we obtained disper-
sion relation for longitudinal acoustic (LA) and longitudinal optical (LO) phonons. However, if we
consider two atoms per primitive cell in a three-dimensional lattice, as in the NaCl or diamond
structure, for each polarization mode in a direction of propagation, there are two branches in the
dispersion relation ω versus q. In addition to LA and LO phonons, of which the dispersion relations
are essentially the same as shown in Figure 2.7, one obtains transverse acoustical (TA) and trans-
verse optical (TO) phonons. Figure 2.9 shows the TA and TO modes for a diatomic linear lattice at
the same wavelength.

The optical modes of oscillation of individual ions in both transverse and longitudinal modes are
shown in Figure 2.10.

Optical

Acoustic

Space

Ti
m

e

FIGURE 2.8

Configuration of atoms in acoustic and optical modes in the diatomic linear chain.
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Anion
CationBasis:

FIGURE 2.10

The direction of displacement of individual ions in (a) transverse optical (TO) and (b) longitudinal optical (LO)
modes of oscillation.
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FIGURE 2.9

Transverse optical and acoustical waves for the same wavelength in a diatomic linear lattice.
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2.2 LATTICE SPECIFIC HEAT
2.2.1 Theory
The thermal excitation of the lattice contributes to the specific heat of solids. To calculate the lattice
specific heat, one has to use quantum mechanical operators instead of the classical coordinates uni
and their momenta. In the earlier formulation of the theory of lattice vibrations, we obtained a set
of equations of motion that are those of an assembly of independent simple harmonic oscillators.
However, in a quantum mechanical treatment, the excitations are of the Bose–Einstein type. We
introduced the term phonons to describe the normal modes of the crystal in the same manner the
term photons was introduced to describe the quantum theory of electromagnetic field. In that theory,
a normal mode of the radiation field in a cavity is given by ðn+ 1

2Þħω, where ω is the angular fre-
quency of the mode. The photons are the quanta of radiation field that describes classical light.
Similarly, the phonons are the quanta of the ions’ displacement field that describes classical sound.
The nomenclature of normal modes and phonons are equivalent although the latter is much more
convenient.

If we want to specify the energy levels of an N-ion harmonic crystal that can be regarded as 3N
independent oscillators, the contribution to the energy εqs of a particular normal mode with angular
frequency ωsðqÞ can have the discrete set of values

εqs =
�
nqs +

1
2

�
ħωsðqÞ, (2.43)

where there are nqs phonons of type s with wave vector q present in the crystal. We note that an
equivalent classical description would be that the normal mode of branch s with wave vector q is in
its nqsth excited state. We note that the total energy E is the sum of the energies of the individual
normal modes,

E = ∑
qs

nqs +
1
2

� �
ħωsðqÞ: (2.44)

When we consider an assembly of independent simple harmonic oscillators, the excitations must
be bosons. From the theory of Bose–Einstein statistics, nqs, the mean number of bosons with energy
ħωsðqÞ in thermal equilibrium at temperature T, when the chemical potential μ is taken to be zero
(μ = 0 because the total number of phonons in thermal equilibrium is determined by the temperature
and hence is not an independent variable), is given by

nqs =
1

eβħωsðqÞ−1
, (2.45)

where

β = 1/kBT: (2.46)

The quanta in the qth mode will contribute an energy

εqs = nqs +
1
2

� �
ħωsðqÞ, (2.47)
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which includes the zero-point energy. From Eqs. (2.45) and (2.47), the average total energy of the
system (neglecting the zero-point energy) is

ε = ∑
qs

ħωsðqÞ
eβħωsðqÞ−1

: (2.48)

Here, the summation is over all polarizations s and different modes q. Thus, the specific heat is
given by

CV = 1
V

∂ε
∂T

= 1
V

∑
qs

∂
∂T

ħωsðqÞ
eβħωsðqÞ−1

, (2.49)

where V is the volume of the crystal. We will now evaluate the specific heat in the high-temperature
and intermediate-temperature. We will evaluate low-temperature limits in Problem 2.5.

1. In the high-temperature limit, kBT /ħ is large compared with all the phonon frequencies. Thus, if

we write x = ħω
kBT

≪ 1,

1
ex−1

≈ 1
x

1− x
2
+ x2

12
+…

� �
: (2.50)

From Eqs. (2.49) and (2.50), we obtain

CV ≃ 3N
V

, (2.51)

which is the classical law of Dulong and Petit. The higher-order terms in Eq. (2.50) yield the
quantum corrections to the classical Dulong and Petit law.

2. In intermediate-temperature limits, both the Debye and Einstein models of specific heat are
obtained by making different approximations. We note that in a large crystal, we can replace the
sum in Eq. (2.49) by an integration over the wave vectors q that satisfy the Born–von Karman
boundary conditions. Thus, Eq. (2.49) can be expressed as

CV = ∂
∂T

∑
s

Z
dq

ð2πÞ3
ħωsðqÞ

eβħωsðqÞ −1
, (2.52)

where the integral is over the first Brillouin zone. We can retrieve both the Debye and the
Einstein models of specific heat of solids from Eq. (2.52), although they were originally derived
under very different assumptions.

2.2.2 The Debye Model of Specific Heat
The Debye model of specific heat can be obtained by making two basic assumptions. First, all
branches of the vibration spectrum are replaced with three branches of the acoustic mode such that
the linear dispersion

ωðqÞ = sq, (2.53)
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where s is the velocity of sound. Second, the integral over the first Brillouin zone is replaced by an
integral over a sphere of the same volume and radius qD in reciprocal space. It is assumed that the
sphere contains exactly N allowed wave vectors just as in the case of the first Brillouin zone. Thus,
the radius of the Debye sphere, qD, is such that

N = V
8π3

4
3
πq3D, (2.54)

and hence

qD = 6π2

vc

� �1/3
, (2.55)

where vc is the volume of the Wigner–Seitz cell, which can be written in the alternate form

N =
qD3

6π2
, (2.56)

where n is the density of ions. From Eqs. (2.53) through (2.55), we obtain

CV = ∂
∂T

3ħc
2π2

ZqD
0

q2dq

eβħsq−1
: (2.57)

We define a Debye frequency

ωD = qDs (2.58)

and a Debye temperature

ΘD = ħωD/kB: (2.59)

If we write

x = ħsq/kBT , (2.60)

Eq. (2.57) can be written as

CV = 9NkB
T
ΘD

� �3 ZΘD/T

0

x4exdx

ðx− 1Þ2
: (2.61)

where N is the number of cells in the crystal. At low temperatures, the upper limit of the integral
ΘD/T tends to infinity, in which case the integral

Z∞
0

x4exdx

ðx− 1Þ2
= 4π4

5
: (2.62)
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Thus, we obtain from Eqs. (2.61) and (2.62),

CV ≈ 12π4

5
NkB

T
ΘD

� �3

, (2.63)

which is the Debye’s T3— law of lattice specific heats: The Debye law of specific heat is shown
schematically in Figure 2.11.

The Debye’s theory of specific heat works very well for solids. However, the Debye temperature,
ΘD, is often interpolated from the observed specific heat, thereby allowing it to depend on the
temperature T. In fact, from Eqs. (2.58) and (2.59), ΘD is related to the velocity of sound, s, by the
relation,

ΘD =
ħqDs
kB

, (2.64)

and therefore should be calculated directly for a solid. In any case, ΘD for most solids is listed in
tables.

It is interesting to note that at temperatures well above ΘD, the integrand form in Eq. (2.61) can be
replaced by its form for small x and one obtains Dulong and Petit’s law. Therefore, the Debye
temperature, ΘD, is a measure of the temperature separating the low-temperature region where quan-
tum statistics is used from the high-temperature region where classical mechanics can be used.

However, Debye’s theory of specific heat has its limitations. In most cases, the sharp cutoff
frequency ωD = kBΘD

ħ is not justified. In general, there is a spread with several peaks that correspond
to the modes of different polarization, which have different velocities. In addition, there is a peak at
high frequencies due to the strong dispersion near the zone boundary. The contrast between the
Debye spectrum and an actual lattice spectrum is shown in Figure 2.12.
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FIGURE 2.11

Specific heat in the Debye approximation.
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2.2.3 The Einstein Model of Specific Heat
As we noted earlier, in a lattice with a basis, there are both acoustic modes and optical modes. The
three acoustic modes can be easily treated by the Debye model. The optical modes can be treated
by the Einstein model in which each mode has the same frequency, ωE , which is independent of q.
Therefore, from Eq. (2.45), we obtain that each optical branch will contribute to the thermal energy
density in the Einstein approximation,

ε = NħωE

eβħωE−1
, (2.65)

and if there are p such branches,

Coptical
V = 1

V
∂E
∂T

= pNkB
ðβħωEÞ2 eβħωE

ðeβħωE−1Þ2
: (2.66)

We can also define an Einstein temperature ΘE by

ΘE = ħωE

kB
: (2.67)

It should be noted that Einstein was the first to
derive the theory of specific heat of solids by
using quantum statistics instead of classical statis-
tics. From Eq. (2.66), we note that when T ≫ΘE ,
βħωE ≡ ΘE

T is very small and we can write

Coptical
V = pNkB, (2.68)

so that each optical mode contributes kB/V , as
required by Dulong and Petit’s law. However,
when T ≪ΘE , βħωE is very large so that the
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FIGURE 2.12

(a) Debye spectrum; (b) actual lattice spectrum.
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contribution to CV drops exponentially. Thus, it is very difficult to excite the optical modes at low
temperatures.

A comparison of Debye’s and Einstein’s expressions for specific heat as a function of T
Θ is

shown in Figure 2.13.

2.3 SECOND QUANTIZATION
2.3.1 Occupation Number Representation
The behavior of systems with a very large number of particles is studied in statistical physics.
Suppose we have a system of N noninteracting particles that are found in states with wave functions
φ1,φ2,…,φN which form a complete orthonormal set. For noninteracting particles, the wave
function φi corresponds to one of the plane wave states

φk = eik
. r: (2.69)

They obey the orthonormality condition,

Z
drφ�

i ðrÞφjðrÞ = δi,j, (2.70)

as well as

∑
i
φ�
i ðrÞφjðr′Þ = δðr− r′Þ: (2.71)

The system can evidently be described by specifying the number of particles in states φ1,φ2,…,φN :
The complete wave function can be specified by using a new representation. We represent the basis
function in the many-body wave function as

jn1, n2, n3,…, nk …>, (2.72)

with nk as the number of particles in state φk: The total number of particles

∑ni = N: (2.73)

For Fermions (electrons, protons, neutrons, and He3 atoms), which obey Fermi–Dirac statistics,
the restriction is that

ni = 0, or 1: (2.74)

For bosons (photons, phonons, and He4 atoms), which obey Bose–Einstein statistics, there is no
restriction for ni. For photons and phonons,

∑
i
ni = NðTÞ, (2.75)
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where N(T) depends on the temperature T. Further,

N = 0 at T = 0

and

N ≠ 0 at T ≠ 0: (2.76)

2.3.2 Creation and Annihilation Operators
(a) Bosons
We will first consider the creation and annihilation operators for bosons. We define the operators
ak and a

†
k by

ak jn1, n2,…, nk,…> =
ffiffiffiffiffi
nk

p jn1, n2,…, nk − 1,…> (2.77)

and

a†k jn1 . n2,…, nk,…> =
ffiffiffiffiffiffiffiffiffiffiffiffi
nk + 1

p
jn1, n2,…, nk + 1,…>: (2.78)

Here, ak is the annihilation operator because it decreases

nk!nk − 1, (2.79)

and a†k is the creation operator because it increases

nk!nk + 1: (2.80)

The vacuum state is defined as

j0, 0,…,0 ,…>, (2.81)

whereas the other occupation numbers remain unchanged. From Eqs. (2.77) and (2.78), we obtain

a†kak jn1, n2,…, nk,…> =
ffiffiffiffiffi
nk

p
a†k jn1, n2,…, nk − 1,…>

= nk jn1, n2,…, nk ,…>:
(2.82)

From Eq. (2.82), we obtain that a†kak ⇒ nk is the number operator in state k. Similarly, we obtain

aka
†
k jn1, n2,…, nk,…> =

ffiffiffiffiffiffiffiffiffiffiffiffi
nk + 1

p
ak jn1, n2,…, nk + 1,…>

= ðnk + 1Þ jn1, n2,…, nk ,…>:
(2.83)
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Subtracting Eq. (2.82) from Eq. (2.83), we obtain

ðaka†k − a†kakÞ jn1, n2,…, nk ,…> = jn1, n2,…, nk ,…>: (2.84)

Eq. (2.84) implies that

aka
†
k − a†kak = 1, (2.85)

which can be written in the alternate form

½ak , a†k �− = 1, (2.86)

where ½A,B�− is the commutator

½A,B�− = AB−BA: (2.87)

If k≠ k′,

a†k′ak jn1, n2,…, nk′,…, nk,…> =
ffiffiffiffiffi
nk

p
a†k′ jn1, n2,…, nk′,…, nk−1,…>

=
ffiffiffiffiffi
nk

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk′ + 1

p jn1, n2,…, nk′+1,…, nk−1…>:
(2.88)

aka
†
k′ jn1, n2,…, nk′,…, nk ,…> = ak

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk′ + 1

p jn1, n2,…, nk′+1,…, nk …>

=
ffiffiffiffiffi
nk

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
nk′ + 1

p jn1 . n2,…, nk′+1,…, nk …>: (2.89)

Subtracting Eq. (2.89) from Eq. (2.88), we obtain

ða†k′ak − aka
†
k′Þjn1, n2,…, nk′+1,…, nk ,…> = 0: (2.90)

From Eqs. (2.86) and (2.90), we obtain the commutation relation between the creation and
annihilation operators of bosons,

½ak , a†k′�− = δk,k′, (2.91)

where δk,k′ is the Kronecker delta function, i.e.,

δk,k′ = 1 if k = k′, and δk,k′ = 0 if k≠ k′: (2.92)

Similarly, we can obtain the other commutation relations for bosons,

½ak , ak′�− = 0,
and

½a†k , a†k′�− = 0:
(2.93)
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Eqs. (2.91) and (2.93) are the three commutation relations for bosons. The total number of bosons
like He4 atoms,

∑
k
<nk> = N, (2.94)

where <nk> is the thermally average occupation number representation in state k at temperature T
or, equivalently, the number of particles in state k at temperature T. According to the Bose–Einstein
distribution function,

<nk> = 1
eβðεk−μÞ − 1

, (2.95)

where

εk = ħ2k2/2m, (2.96)

and μ = chemical potential. For He4 atoms, μ≠ 0 at high temperatures. However, for photons and
phonons,

εk = sk and μ≡ 0: (2.97)

In Eq. (2.97),

s = c = speed of light for photons,

and

s = speed of sound for phonons:

(b) Fermions
The creation and destruction operators for Fermions obey very different commutation relations
because the total number of particles in a level ni can be 0 or 1.

The basis function in the many-body representation is

jn1, n2,…, ni,…>, (2.98)

with the constraint, ni = 0, or ni = 1: The Fermion operators ai and a†i are defined as

ai jn1, n2,…, ni,…> =
ffiffiffiffi
ni

p ð−1Þmjn1, n2,…, ni − 1,…>, (2.99)

where

m = ∑
j<i

nj (2.100)

and

a†i jn1, n2,…, ni,…> =
ffiffiffiffiffiffiffiffiffiffiffi
1− ni

p
ð−1Þmjn1, n2,…, ni + 1,…>: (2.101)
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Here, the function ð−1Þm comes from the requirement that the wave function is antisymmetric
for Fermions. From Eqs. (2.99) and (2.101), we obtain

a†i ai jn1, n2,…, ni,…> =
ffiffiffiffi
ni

p ð−1Þma†i jn1, n2,…, ni − 1,…>
=

ffiffiffiffi
ni

p ffiffiffiffiffiffiffiffiffiffiffi
2− ni

p ð−1Þ2mjn1, n2,…, ni…>:
(2.102)

Similarly,

aia
†
i jn1, n2,…, ni…> =

ffiffiffiffiffiffiffiffiffiffiffi
1− ni

p ð−1Þmaijn1, n2,…, ni + 1,…>
=

ffiffiffiffiffiffiffiffiffiffiffi
1− ni

p ffiffiffiffiffiffiffiffiffiffiffi
1+ ni

p ð−1Þ2mjn1, n2,…, ni,…>:
(2.103)

If ni = 0, we obtain from Eqs. (2.102) and (2.103),

ða†i ai + aia
†
i Þ jn1, n2,…, ni,…> = jn1, n2,…, ni,…>: (2.104)

Similarly, if ni = 1, we obtain from Eqs. (2.102) and (2.103),

ða†i ai + aia
†
i Þ jn1, n2,…, ni,…> = jn1, n2,…, ni,…>: (2.105)

From Eqs. (2.104) and (2.105), we obtain

a†i ai + aia
†
i = 1, (2.106)

which can be written in the alternate form

½ai, a†i �+ =1: (2.107)

In general, we can show that

½ai, a j
j �+ = 0, i≠ j,

and

½ai, aj�+ = ½a†i , a†j �+ = 0:

(2.108)

From Eqs. (2.107) and (2.108), the commutation relations for Fermions can be written as

½ai, a†j �+ = δij,

and

½ai, aj�+ = ½a†i, a†j �+ = 0:

(2.109)

We also obtain from Eq. (2.102),

a†i ai =
ffiffiffiffi
ni

p ffiffiffiffiffiffiffiffiffiffiffi
2− ni

p
= ni, (2.110)
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because if

ni = 0, ni = 0
and if

ni = 1, ni = 1:
(2.111)

Thus, a†i ai = ni = ni is the number operator for state i. From the Fermi–Dirac distribution
function, we obtain the expression for the average number of particles in state k at temperature T,

<a†kak> = <nk> = 1
eβðεk−μÞ + 1

: (2.112)

2.3.3 Field Operators and the Hamiltonian
Here, we introduce the operators of a field of particles:

ψðξÞ = ∑
i
φiðξÞ ai (2.113)

and

ψ†ðξÞ = ∑
i
φi

�ðξÞa†i : (2.114)

Here, ai and a†i are the second quantization operators, and φiðξÞ is the particle in the state i. If
ai and a†i are operators for bosons,

ψðξÞψ†ðξ′Þ−ψ†ðξ′ÞψðξÞ = ∑
i,j
φiðξÞφ�

j ðξ′Þ½aia†j − a†j ai�: (2.115)

From Eqs. (2.91) and (2.115), we obtain

ψðξÞψ†ðξ′Þ−ψ†ðξ′ÞψðξÞ = ∑
i
φiðξÞφ�

i ðξÞ: (2.116)

We note that because φiðξÞ⇒φ1ðξÞ,φ2ðξÞ,φ3ðξÞ,…, forms a complete orthonormal set, it satisfies

∑
i
φiðξÞφ�

i ðξÞ = δðξ− ξ′Þ: (2.117)

From Eqs. (2.116) and (2.117), we obtain

½ψðξÞ,ψ†ðξ′Þ�− = δðξ− ξ′Þ (2.118)

By using a similar procedure, we can easily derive

½ψðξÞ,ψðξ′Þ�− = ½ψ†ðξÞ,ψ†ðξ′Þ�− = 0: (2.119)

If ai and a
†
i are Fermion operators, we can derive, by using a similar procedure,

½ψðξÞ,ψ†ðξ′Þ�+ = δðξ− ξ′Þ, (2.120)
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and

½ψðξÞ,ψðξ′Þ�+ = ½ψ†ðξÞ,ψ†ðξ′Þ�+ = 0: (2.121)

We will now consider the Hamiltonian that describes a system of interacting particles (for
example, the electrons in a solid):

H = ∑
i

1
2m

pi
2 +∑

i
VðriÞ+ 1

2
∑
i≠ j

V ð2Þðri − rjÞ: (2.122)

Here, pj = −iħ∇j = −iħ ∂
∂rj is the momentum operator for the jth particle, VðriÞ is the periodic poten-

tial, and V ð2Þðri − rjÞ is the interaction energy between the ith particle and the jth particle. We will

denote pi2/2m and VðriÞ as single-particle operators and V ð2Þðri − rjÞ as two-particle operators.
The Hamiltonian in Eq. (2.122) can be expressed in terms of the second quantization operators

H = ∑
α

Z
− ħ2

2m
ψ†
αðrÞ∇2ψαðrÞ+VðrÞψ†

αðrÞψαðrÞ
� �

dr

+ 1
2
∑
αβ

ZZ
ψ†
αðrÞψ†

βðr′ÞV ð2Þðr−r′Þψβðr′ÞψαðrÞ dr dr′: (2.123)

In Eq. (2.123), we have written

ψðξÞ = ψαðrÞ,

where α is the spin index and r is the coordinate.
The expression for the Hamiltonian given by Eq. (2.123) is equivalent to the corresponding

expression in Eq. (2.122). We also note that the total number of particles

N = <N> = ∑
k
nk = ∑

k

1
eβðεk−μÞ + 1

: (2.124)

The chemical potential μ is determined by the condition that when

T = 0, μ = εF = the Fermi energy: (2.125)

We consider a system of free particles moving in space. The single-particle wave function can
be written as

φkðrÞ = 1ffiffiffiffi
V

p eik
. r: (2.126)

This leads to the free-particle Schrodinger equation,

−ħ2
2m

∇2φkðrÞ = εkφkðrÞ = ħ2k2

2m
φkðrÞ: (2.127)
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Here, k is the momentum of the particle, and its kinetic energy is ħ2k2
2m : For different k values, we

have different states. Thus, the field operators become

ψðrÞ = 1ffiffiffiffi
V

p ∑
k
ak e

ik . r (2.128)

and

ψ†ðrÞ = 1ffiffiffiffi
V

p ∑ a†k e
−ik . r: (2.129)

In Eqs. (2.128) and (2.129), the spin indices are neglected for the present. Substituting Eqs. (2.128)
and (2.129) in Eq. (2.123), and letting V = 1, we obtain

H = ∑
k

ħ2k2

2m
a†kak +∑

kq
VðqÞ a†k+qak + 1

2
∑
kpq

V ð2ÞðqÞ a†k−q a†p+qap aq: (2.130)

We note that if VðqÞ = V ð2ÞðqÞ = 0, the Hamiltonian is diagonalized and Eq. (2.130) reduces to

H = ∑
k
εk a

†
k ak = ∑

k
εknk: (2.131)

Eq. (2.131) reduces to the previous result

a†kak = nk: (2.132)

If we define V(q) as the Fourier transform of V(r),

VðqÞ =
Z

VðrÞeiq . r dr, (2.133)

and the interaction V(q) a†k+q ak can be repre-
sented by Figure 2.14.

Similarly, we define the Fourier transform of
V ð2ÞðrÞ as

V ð2ÞðqÞ =
Z

V ð2ÞðrÞ eiq . r dr: (2.134)

For example, if

V ð2ÞðrÞ = e2

r
, (2.135)

V ð2ÞðqÞ = 4πe2

q2
: (2.136)

The interaction V ð2ÞðqÞ a†k+q a
†
p−q ap ak can be

represented by Figure 2.15.

q

kk+q
→ → →

→

FIGURE 2.14

VðqÞ a†k+qak.

k
→

p→

p−q
→ →

q→

k+q→ →

FIGURE 2.15

V ð2ÞðqÞ a†k+qa†p−qapak.
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2.4 QUANTIZATION OF LATTICE WAVES
2.4.1 Formulation
We consider a cubic lattice of lattice constant a. We assume that at each lattice site, we have atoms
with mass M vibrating around this site. The Hamiltonian that describes this system of atoms is

H = ∑
i

p2i
2M

+ ∑
i≠ j

1
2
Vðdi −djÞ, (2.137)

where Vðdi − djÞ is the interaction potential energy between atoms at the sites di and dj: Here,
di = Ri +ui and dj = Rj + uj, where ui and uj are the displacements of the atoms from the lattice
sites located at Ri and Rj: Figure 2.16 shows these displacements, for convenience, on the surface
of a cubic lattice.

For small ui and ujðui and uj≪ aÞ, we have

∑
i≠ j

Vðdi − djÞ� ∑
i≠ j

VðRi −RjÞ + ∑
i≠ j

ui .
∂2V

∂Ri∂Rj

.uj: (2.138)

The first term on the right side of Eq. (2.138) is a constant term and can be ignored. If we define
the tensor

$
G ≡ ∂2V

∂Ri∂Rj
, (2.139)

Eq. (2.138) can be written in the alternate form

∑
i≠ j

Vðdi − djÞ = ∑
i≠ j

1
2
ui .

$
G .uj: (2.140)

0 a

a

ui
→

uj
→

di
→

Ri
→

Rj
→

dj
→

FIGURE 2.16

Definitions of di and ui in a cubic lattice of lattice constant a.
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Thus, the Hamiltonian can be written as

H = ∑
i

P2
i

2M
+ ∑

i≠ j

1
2
ui .

$
G . uj = T +V : (2.141)

In Eq. (2.141),

Pi = M _u i : (2.142)

From Lagrange’s equation of motion,

L = T –V (2.143)

and

d
dt

∂L
∂ _ul

− ∂L
∂ul

= 0, (2.144)

we obtain from Eq. (2.141),

M€ul = −∑
l′

$
Gll′ . _ul′: (2.145)

We make a Fourier transformation,

ul = ∑
q
Uq e

iq . l, (2.146)

and obtain from Eqs. (2.145) and (2.146),

M∑
q

€Ul e
iq . l = −∑

l′

$
Gll′ . ∑

q
Uqe

iq . l′, (2.147)

which can be written in the alternate form

∑
q

h
M €Uq e

iq . l +∑
l′

$
Gll′ .Uqe

iq . l′
i
= 0: (2.148)

Eq. (2.148) implies

M €Uq+∑
l′

$
Gll′ .Uqe

iq . ðl′−lÞ = 0: (2.149)

If we write

UqðtÞ = Uqe
iωqt , (2.150)

Eq. (2.149) can be written as

Mω2
q∈̂q = ∑

l′

$
Gll′ . ∈̂q e

iq . ðl−l′Þ: (2.151)
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Here,

∈̂q =
Uq

jUq j = unit vector alongUq

= polarization vector:
(2.152)

∈̂q could be along λ = x, y, z directions. Thus,

∈̂qλ⇒ωqλ: (2.153)

Thus, Eq. (2.151) can be written in the alternate form

Mω2
qλ∈̂qλ = ∑

l′

$
Gll′ . ∈̂qλe

iq . ðl−l′Þ =
$
GðqÞ . ∈̂qλ: (2.154)

From Eqs. (2.141) and (2.154), we can write the Hamiltonian in the alternate form

H = ∑
l

P2
l

2m
+ 1

2
∑
l≠ l′

ul .
$
Gll′ .ul′: (2.155)

We can express

Pl =

ffiffiffiffiffi
M
N

r
∑
kλ
∈̂kλ Pkλ e

−ik . l, (2.156)

where

∈̂kx ⊥ ∈̂ky ⊥ ∈̂kz:

We also write

ul = ∑
k
Uke

ik . l: (2.157)

Here,

Uk =
1ffiffiffiffiffiffiffiffi
MN

p ∈̂kλ Qkλ, (2.158)

where N is the number of lattice sites (or atoms). From Eqs. (2.157) and (2.158), we obtain

ul =
1ffiffiffiffiffiffiffiffi
MN

p ∑
k
∈̂kλ Qkλ e

ik . l: (2.159)

From Eq. (2.156), we obtain

∑
l

P2
l

2M
= 1

2N
∑

kλ,k′λ′,
∈̂k′λ′ . ∈̂kλ Pk′λ′ Pkλ∑

l
e−ðk+k′Þ . l: (2.160)

Using the relation

∑
l
e−iðk+k′Þ . l = N δk,−k′, (2.161)
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we can write Eq. (2.160) in the alternate form

∑
l

P2
l

2M
= 1

2
∑
k,λ,λ′

∈̂−kλ′ . ∈̂kλ P−kλ′ Pkλ: (2.162)

Because

ωkλ = ω−kλ, (2.163)

∈̂kλ′ = ∈̂−kλ′: (2.164)

Further,

∈̂kλ′ . ∈̂kλ = δλλ′, (2.165)

and we can substitute

P−kλ = P†
kλ:

Substituting Eq. (2.164) in Eq. (2.162), we obtain

∑
l

P2
l

2M
= 1

2
∑
kλ
P†
kλ Pkλ: (2.166)

We now consider the term

1
2
∑
ll′
ul .

$
Gll′ .ul′ =

1
2MN

∑
kλ,κ′λ′,ll′

∈̂kλ Qkλ .
$
Gll′ . ∈̂k′λ′Qk′λ′e

ik . l+ik′ . l′: (2.167)

We can write

eik
. l+ik′ . l′ = eik′

. ðl′−lÞ eiðk+k′Þ . l: (2.168)

Eq. (2.154) can be written in the alternate form (by changing q to k’, and λ to λ′)

Mω2
k′λ′ ∈̂k′λ′ = ∑

l′
Gll′ . ∈̂k′λ′ e

ik′ . ðl′−lÞ: (2.169)

Further,

∑
l
eiðk+k′Þ . l = Nδk,−k′: (2.170)

From Eqs. (2.167) through (2.170), we obtain

1
2
∑
ll′
ul .

$
Gll′ . ul′ =

1
2

∑
kλ,k′λ′

∈̂kλ . ∈̂k′λ′QkλQk′λ′δk,−k′ω
2
k′λ′, (2.171)

= 1
2

∑
k,λ,λ′

∈̂kλ . ∈̂−kλ′QkλQ−kλ′ω
2
−kλ′: (2.172)
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We use the identities

∈̂−kλ′ = ∈̂kλ′
∈̂kλ . ∈̂kλ′ = δλλ′

ω−kλ = ωkλ,
(2.173)

in Eq. (2.172), and obtain

1
2
∑
ll′
ul .

$
Gll′ .ul′ =

1
2
∑
kλ
ω2
kλ QkλQ−kλ =

1
2
∑
kλ
ω2
kλ Q

†
kλQkλ: (2.174)

From Eqs. (2.155), (2.166), and (2.174), we obtain

H = 1
2
∑
kλ
P†
kλ Pkλ +

1
2
∑
kλ
ω2
kλ Q

†
kλ Qkλ: (2.175)

In Eq. (2.175), we have expressed the Hamiltonian in normal coordinates Pkλ and Qkλ:

2.4.2 Quantization of Lattice Waves
The quantization of lattice waves starts from the fundamental ideas of quantum mechanics. If
we define

½A,B� = AB−BA, (2.176)

Pl = ðPx
l ,P

y
l ,P

z
l Þ, (2.177)

and

ul = ðuxl , uyl , uzl Þ, (2.178)

we have the commutation relations

½Pα
l , u

β
l′� = ħ

i
δll′δαβ, α, β = x, y, z (2.179)

½Pα
l ,P

β
l′� = ½uαl , uβl′� = 0: (2.180)

Introducing the creation and annihilation operators, a†kλ and akλ, and substituting

Pkλ =
ħωkλ

2

� �1
2
iða†kλ − a−kλÞ (2.181)

and

Qkλ =
ħ

2ωkλ

� �1
2 ðakλ + a†−kλÞ, (2.182)
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and using the commutation relations from Problem 2.9, we obtain

½akλ, a†k′λ′� = δkk′δλλ′ : (2.183)

and

½akλ, ak′λ′� = ½a†kλ, a†k′λ′� = 0: (2.184)

These operators satisfy the commutation relations for bosons. Substituting Eqs. (2.181) and
(2.182) in Eq. (2.175), we obtain (Problem 2.10)

H = ∑
kλ
ħωkλ a†kλ akλ +

1
2

� �
: (2.185)

We denote a†kλakλ = nkλ, as the occupation number operator for phonons with energy ħωkλ: Here,
ωkλ is the vibrational frequency in the state k and polarization λ. The term 1

2∑
kλ
ħωkλ in H is the

zero-point vibrational energy. The other definitions are

jnk> = the state with nk phonons,

a†kak jnk> = jnk>,
ak jnk> =

ffiffiffiffiffi
nk

p jnk−1>,
a†k jnk> =

ffiffiffiffiffiffiffiffiffiffiffiffi
nk + 1

p jnk + 1>,

ak j0> = 0, no phonons to destroy:

(2.186)

PROBLEMS
2.1. Derive Eq. (2.6) from Eqs. (2.2), (2.3), and (2.5).

2.2. Derive Eq. (2.21) from Eq. (2.20).

2.3. Derive Eq. (2.28) from Eq. (2.27).

2.4. Derive Eq. (2.37) from Eq. (2.36).

2.5. The general expression for specific heat of solids is given in Eq. (2.52):

Cv =
∂
∂T

∑
s

Z
dq

ð2πÞ3
ħωsðqÞ

eβħωsðqÞ−1
, (1)

where the integration is over the first Brillouin zone. Show that at very low temperatures, where
the optical modes can be neglected, the three acoustic branches can be written as ω = ωsðqÞ =
csðq̂Þq (csðq̂Þ are the long-wavelength phase velocities of the acoustic mode), and the k-space
integration over the first Brillouin zone can be replaced by an integration over all space,

Cv =
∂
∂T

∑
s

Z
dq

ð2πÞ3
ħcsðq̂Þq

eβħcsðq̂Þq−1
: (2)

66 CHAPTER 2 Phonons and Lattice Vibrations



In spherical coordinates, dq = q2dq dΩ: By writing z≡ βħcsðq̂Þq, show that Eq. (2) can be
written as

Cv =
∂
∂T

ðkBTÞ4
ðħsÞ3

3
2π2

Z∞
0

z3dz
ez − 1

, (3)

where 1
s3 is the average of the third power of the long-wavelength phase velocities,

1
s3

= 1
3
∑
s

dΩ
4π

1

csðq̂Þ3
: (4)

Using the result of the integral,

Z∞
0

x3dx
ex−1

= π4

15
, (5)

show from Eqs. (3) and (5) that at very low temperatures,

Cv =
2π2

5
kB

1
βħc

� �3

: (6)

2.6. The lattice specific heat is of the form Eq. (2.52) or Eq. (1) in Problem 2.5,

Cv =
∂
∂T

∑
s

Z
dq

ð2πÞ3
FðωsðqÞÞ: (1)

Show that Eq. (1) can be written in the alternate form

Cv =
∂
∂T

Z
DðωÞFðωÞdω, (2)

where DðωÞ is the density of normal modes per unit volume, i.e., the phonon density of
levels. Hence, DðωÞdω is the total number of modes between ω and ω+ dω in the crystal
divided by its volume. Show that

DðωÞ = ∑
s

Z
dq

ð2πÞ3
δðω−ωsðqÞÞ: (3)

It can also be shown that

DðωÞ = ∑
s

Z
dΩ
ð2πÞ3

1
j∇ωsðqÞ j , (4)

where the integral is over the surface of the first Brillouin zone on which ωsðqÞ≡ω:
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2.7. In the Debye approximation, all the wave vectors of the normal modes lie within a sphere of
radius qD, and in all three branches of the spectrum the linear dispersion relation ω = cq:
Show by using Eq. (3) of Problem 2.6 that the density of normal modes, DðωÞ, is given by

DðωÞ = 3
2π2

ω2

s3


 �
, ω = ωD = qDcs ðqÞ,

= 0, ω>ωD:

2.8. Derive Eq. (2.145) from Eqs. (2.141), (2.143), and (2.144).

2.9. Using the expressions

Pl =

ffiffiffiffiffi
M
N

r
∑
kλ
∈̂kλ Pkλ e

−k . l (1)

and

Ql =
1ffiffiffiffiffiffiffiffi
MN

p ∑
kλ
∈̂kλ Qkλ e

ik . l, (2)

show that

½Pkλ,Qk′λ′� = ħ
i
δkk′ δλλ′, (3)

and

½Pkλ,Pk′λ′� = ½Qkλ,Qk′λ′�≡ 0: (4)

2.10. Substituting Eqs. (2.181) and (2.182) in Eq. (2.175), show that

H = ∑
kλ
ħωkλ a†kλ akλ +

1
2

� �
: (1)
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3.1 THE CLASSICAL (DRUDE) MODEL OF A METAL
Around 1900, Drude developed the theory of electrical and thermal conductivity of metals by
considering a metal as a classical gas of electrons, the properties of which were governed by Maxwell–
Boltzmann statistics. According to his model, the electrons were wandering around in a metal with a
background of immobile but heavy positive charges. A sketch of his model is shown in Figure 3.1.

Drude had no idea as to the nature or origin of these positive charges, although he recognized
that in order to be electrically neutral, a metal would have to have an equal number of positive and
negative charges. Later, these heavy positive immobile charges were identified as the ions (consti-
tuted of the nucleus and the surrounding core electrons) of the neutrally charged atom stripped of
its valence electron(s). The conduction electrons in a metal were the valence electrons stripped from
their parent atoms because of the strong attractive interaction between the valence electron(s) of an
atom and the positively charged ions surrounding it. In what follows, we will treat these positive
charges as the ions described previously, although this concept was introduced by Bohr in his
model of the atom long after Drude formulated a theory of metals. This concept of a sea of valence
electrons moving around in a background of static positively charged ions and holding them
together like a glue was in a sense an extension of the model of a hydrogen molecule in which the
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two valence electrons were stripped from their
parent atoms and moving around the positively
charged protons, thereby forming a strong bond.

An example of formation of bands in a
sodium atom is shown Figure 3.2. Figure 3.2a
shows a system of two sodium atoms. The two
3s electrons occupy a lower energy level than
the isolated atoms.

Figure 3.2b shows the energy levels of the
outer 3s electrons in a pair of sodium atoms as
a function of the separation between the two
atoms. This figure shows how the energy level
widens with smaller distance.

When there are N sodium atoms, where N is
a very large number, these energy levels form
bands. In Figure 3.2c, we show the 1s, 2s, 2p,

and 3s energy bands of sodium. However, the bands become wider for electrons that are less tightly
bound to the parent nucleus. We note the significant difference between the 1s and the 3s bands.

Drude introduced the concept of electron density n = N/V , where V is the volume of the metal
and N is the number of atoms per mole (the Avogadro’s number). He also introduced the electron
density rs, which is defined as the radius of a sphere of which the volume is equal to the available
volume for each conduction electron. According to his model,

1
n =

4πr3s
3

= V
N
, (3.1)
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FIGURE 3.1

Drude model of scattering of electrons in a metal.
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FIGURE 3.2a

A system of two sodium atoms.
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FIGURE 3.2b

The energy levels of two 3s electrons of sodium
atoms as function of separation.
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from which it follows that

rs =
3

4πn

� �1/3
: (3.2)

Drude applied the kinetic theory of gas to
these conduction electrons even though their elec-
tron densities are approximately a thousand times
greater than those of a classical gas at normal pres-
sure and temperature. He introduced several inter-
esting approximations (in his kinetic theory
model) to develop theories of both electrical and
thermal conductivity of metals. First, the electron
gas was assumed to be free and independent in
the sense that there was no electron–electron or
electron–ion interactions. An electron moved in a
straight line (as per Newton’s law) in the absence
of an external electric field. Second, when an
external field is applied, the electron continues to
move in a straight line between collisions with the
ions (the collisions with other electrons were
neglected in his theory). The velocity of an elec-

tron would change immediately after a collision, which was assumed to be an instantaneous event.
Third, the time between two collisions was the same value τ (often known as the relaxation time) for
each electron. Fourth, immediately after each collision, an electron’s velocity was not related to the
velocity with which it was traveling before the collision. The new speed of the electron depended on
the temperature at the time of collision, and the direction of the new velocity was randomly directed. In
a sense, the electron achieved thermal equilibrium with its surroundings.

The two major achievements of Drude’s model were the derivation of electrical and thermal
conductivity (see problems) in a very simplistic way. However, it had several drawbacks. Some of
these were solved by Sommerfeld, who recognized the fact the free electrons in a metal were not
classical but quantum gas, for which the application of Fermi–Dirac statistics (instead of Maxwell–
Boltzmann statistics) was appropriate.

3.2 SOMMERFELD MODEL
3.2.1 Introduction
The major failure of Drude’s theory was the prediction that the specific heat of a metal was
Cv = 3/2NkB, where N is the number of electrons in a metal and kB is the Boltzmann constant. In prac-
tice, the specific heat of a metal was more than 100 times smaller than this value at room temperature.
This anomaly was explained by Sommerfeld only after the introduction of quantum mechanics. The
Pauli exclusion principle requires that no two electrons can have identical quantum numbers, which
implies that a quantum state can be occupied by at most one electron. Sommerfeld recognized the
significance of the Pauli exclusion principle, and as a consequence, the Fermi–Dirac statistics (instead
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FIGURE 3.2c

The formation of 1s, 2s, 2p, and 3s energy bands in
sodium. Note that 1s is in the lowest energy state,
whereas 3s is in the highest energy state.
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of the classical Maxwell–Boltzmann statistics) were applicable to a system of identical electron gas (or
other fermions) in thermal equilibrium. Sommerfeld essentially adapted Drude’s model of the metal as a
free electron gas moving in a background of static positively charged ions but modified it by using the
Fermi–Dirac distribution function for the electron velocity. In the process, he was able to explain the
(apparently) anomalous low specific heat of the electron gas as well as other thermal properties.

3.2.2 Fermi Distribution Function
(a) Grand Canonical Ensemble
The Fermi distribution function is easily derived from the concept of a Grand Canonical Ensemble,
which is an ensemble of ℕ identical systems (labeled as 1, 2,…, ℕ) mutually sharing a total number
of particles ℕN and a total amount of energy ℕE. If nr, s denotes the number of systems that have,
at any time t, the number ℕr of particles and the amount of energy Εs(r, s = 0, 1, 2,…),

∑
r,s

nr,s = ℕ, (3.3)

∑
r,s

nr,s Nr = ℕN, (3.4)

∑
r,s

nr,s Es = ℕE: (3.5)

We consider this ensemble of ℕ identical systems that are characterized by a Hamiltonian operator
Η̂. At any time t, the physical states of the various systems in the ensemble are characterized by the
wave functions ψðr, tÞ. Let ψkðr, tÞ denote the normalized wave function characterizing the physical
state in which the kth state of the system of the ensemble happens to be at the time. We can write

Η̂ψkðr, tÞ = i�h _ψ kðr, tÞ: (3.6)

We introduce a complete set of orthonormal functions ϕnðrÞ≡ϕnðr1, r2,…, rNÞ and express

ψkðr, tÞ = ∑
n
aknðtÞϕnðrÞ: (3.7)

We can write

aknðtÞ =
Z

ϕn
�ðrÞψkðr, tÞ dτ, (3.8)

where dτ is the volume element of the coordinate space of the system. Thus, aknðtÞ are the probability
amplitudes for the various systems of the ensemble to be in the states ϕnðrÞ, and jaknðtÞ j2 represents
the probability that a measurement of time t finds the kth system of the ensemble to be in the
particular state ϕnðrÞ. Thus, we obtain

∑
n
jaknðtÞ j2 = 1 for all k: (3.9)

Eq. (3.9) can also be derived from Eq. (3.7) in a straightforward manner. From Eq. (3.7), we obtainZ
jψkðr, tÞ j2 dτ = ∑

n,m
ak�n ðtÞakmðtÞ

Z
ϕn

�ðrÞϕmðrÞ dτ

= ∑
n,m

ak�n ðtÞakmðtÞ δn,m = ∑
n
jaknðtÞ j2 = 1: (3.10)
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(b) Density Operator
The density operator ρ̂ðtÞ is defined by the matrix elements

ρmnðtÞ = 1
ℕ

∑
ℕ

k=1
akmðtÞak�n ðtÞ� �

: (3.11)

The diagonal element ρnnðtÞ, which is the ensemble average of the probability jaknðtÞ j2, repre-
sents the probability of a system, chosen at random from the ensemble at time t, and is found to be
in the state ϕn. From Eqs. (3.10) and (3.11), we obtain

∑
n
ρnn = 1: (3.12)

One can show that if the system is in a state of equilibrium,8

i�h _̂ρ = ½Ĥ, ρ̂� = 0, (3.13)

<Ĝ> = trðρ̂ĜÞ, (3.14)

and
trðρ̂Þ = 1, (3.15)

where <Ĝ> is the expectation value of a physical quantity G.
In the Grand Canonical Ensemble, the density operator ρ̂ operates on a Hilbert space in an inde-

finite number of particles. Therefore, the density operator commutes not only with the Hamiltonian
operator Ĥ, but also with a number operator n̂ of which the eigenvalues are 0, 1, 2. We can write8

ρ̂ = 1
Zðμ,V ,TÞ e

−βðĤ−μn̂Þ, (3.16)

where the Grand partition function Zðμ,V ,TÞ is defined as

Zðμ,V ,TÞ = ∑
r, s

e−βðEr−μNsÞ = tr
n
e−βðĤ−μn̂Þ

o
: (3.17)

The chemical potential μ is defined as

μ = ∂F
∂N

� �
T ,V ,N

, (3.18)

where F is the Helmholtz free energy defined by the relation

F = E− TS: (3.19)

Here, E is the energy, S is the entropy, T is the absolute temperature, and V is the volume.
For a free electron gas,

Ĥ = ∑
k
εðkÞc†kσckσ (3.20)

and
Ns = 0 or 1: (3.21)

Therefore,

Er = Ns εðkÞ
= 0 or εðkÞ: (3.22)
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From Eqs. (3.17) and (3.20) through (3.22), we obtain (omitting spin [σ]),

Zk = 1+ e−βðεðkÞ−μÞ (3.23)

and

ρ̂k =
1
Zk

e−βðεðkÞ−μÞc
†

kck : (3.24)

The average number in state k is

nk = trfnk ρ̂kg = ∑
nk
< nk jnk ρ̂k jnk > = <1 j ρ̂k j1>

= e−βðεðkÞ−μÞ

1+ e−βðεðkÞ−μÞ
= 1

eβðεðkÞ−μÞ + 1
= f ðεðkÞ, TÞ: (3.25)

Here, f ðεðkÞ, TÞ is the Fermi distribution, which is a function of energy and temperature. The Fermi
distribution function f ðεðkÞ, TÞ gives the probability that a state at energy εi is occupied in an ideal
electron gas in thermal equilibrium. We also note that the Fermi distribution is an eigenvalue of the
statistical operator ρ̂k:

In practice, because the electrons in an electron gas are indistinguishable and are constantly
moving around, the probability that a state is occupied by an electron is the average number of elec-
trons in the state and

∑
i
f ðεiÞ = N, (3.26)

where N is the total number of electrons in the free electron gas (note that we do not include the
core electrons of the atoms that are bound to the parent nuclei and are not free to move around). In
Eq. (3.26), εi are the energy levels. In semiconductor physics, μ is also called the Fermi level.

The Fermi energy εF is defined as the energy of the topmost filled level of the electron states at
T = 0. All the electron states having energy greater than the Fermi energy are empty (there are no
electrons in these states) at T = 0. From Eq. (3.26), we note that the alternate definition of the
Fermi energy at T= 0 is

f ðεiÞ = 1, εi ≤ εF ,
= 0, εi > εF :

(3.27)

We also note from Eq. (3.23) that

lim
T!0

f ðεiÞ = 1, εi ≤ μ,

= 0, εi > μ:
(3.28)

Comparing Eqs. (3.27) and (3.28), we note that at T = 0, εF = μ: Thus, in the limit T ! 0, when
εi = εF = μ, the Fermi–Dirac distribution function changes abruptly from 1 to 0. At higher tempera-
tures (T > 0), f ðεiÞ = 1/2 when εi = μ. The distribution of the Fermi distribution function and its
derivative at T= 0 and at finite temperature is shown in Figure 3.3.

From Figure 3.3, we note that the Fermi distribution function at a large temperature T is signifi-
cantly different from that at zero temperature. When the metal is heated from T = 0, electrons are
transferred from the region ε/μ< 1 to the region ε/μ> 1: The rest of the electrons deep inside the
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Fermi level are not affected when the electron
gas is heated. However, as the temperature
increases, there is a significant change in the
Fermi distribution function. We will discuss this
in Section 3.3. On the other hand, each electron
in a classical electron gas would gain energy
when the system is heated. This immediately
explains the anomalous results for the specific
heat of the electron gas. As we will see, this
property of the fermions is very significant in the
derivation of other physical quantities of metals.

3.2.3 Free Electron Fermi Gas
By definition, a free electron gas consists of N
independent electrons confined in a volume V.
There are positively charged static ions inside
the metal to keep it electrically neutral. For
simplicity, we will consider this volume to be a
cube of side L. An electron is completely free to

move inside this cube. There are no other interactions, either with other electrons or with the posi-
tively charged background (the lattice). Because there is no potential energy term, the Schrodinger
equation for an electron in state k can be written as

− �h2

2m
∇2ψkðrÞ = εðkÞψkðrÞ: (3.29)

Here, ψkðrÞ is the wave function and ε(k) is the energy of the electron in the state k. The normal-
ized solution of Eq. (3.29) is easily obtained, by requiring ψkðrÞ to vanish at the surface of the
cube (the particle in a box problem in quantum mechanics), as

ψkðrÞ = ð8/VÞ1/2 sin ðn1πx/LÞ sin ðn2πy/LÞ sin ðn3πz/LÞ, (3.30)

where L is the side of the cubic metal of volume V(V= L3) and n1, n2, and n3 are positive integers.
For simplicity, we have considered the metal as a cube, although we could have chosen a parallele-
piped, which would yield the same results but the derivation would have been more complicated.
However, we note that the solutions obtained in Eq. (3.30) are standing-wave solutions and the
probability density jψkðrÞ j2 of the electron in k state varies with its position in real space, thereby
yielding an unrealistic picture for free electrons. To obtain more realistic solutions for free electron
gas, we introduced the Born–von Karman (or periodic) boundary conditions. These conditions are

ψðx+L, y, zÞ = ψðx, y, zÞ,
ψðx, y+ L, zÞ = ψðx, y, zÞ,
ψðx, y, z+ LÞ = ψðx, y, zÞ:

(3.31)

These periodic boundary conditions were imposed by imagining that each face of the cube is joined
to the face opposite it. When an electron meets the surface of the metal, instead of being reflected

T = 0

f °(ε)

εF ε

−∂ f °/∂ε

kT

FIGURE 3.3

Fermi distribution function and its derivative at T= 0
and at a finite temperature.
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by the surface, it emerges at an equivalent point on the opposite surface. This is obviously an
improbable situation in a three-dimensional solid, but the periodic boundary conditions yield free
electron wave functions for the free electron gas. It may be noted that these approximations hold
good as long as one is not considering the physical properties of the electrons on or close to the
surface, in which case they have to be modified. It may be further noted that it is not necessary to
consider the metal as a cube of side L; the results would still hold good for a parallelepiped.

The general solutions of Eq. (3.29) are the well-known plane waves

ψkðrÞ = 1ffiffiffiffi
V

p eik
. r: (3.32)

In general, k is a continuous variable in the reciprocal space. However, if we invoke the periodic
boundary conditions as stated in Eq. (3.31), we obtain only discrete values of k, i.e.,

eikxL = eikyL = eikzL = 1: (3.33)

Eq. (3.33) implies that kx, ky, and kz are discrete variables,

kx =
2πn1
L

, ky =
2πn2
L

, kz =
2πn3
L

: (3.34)

Here, n1, n2, and n3 are integers (zero, positive, or negative). Thus, the components of the wave
vector k are discrete in the k-space and, along with the spin components ms, are the quantum num-
bers of the problem.

We also obtain from Eqs. (3.29) and (3.32),

εðkÞ = �h2k2

2m
: (3.35)

The plane wave is also an eigenfunction of the linear momentum p,

pψkðrÞ = −i�h∇ 1ffiffiffiffi
V

p eik
. r = �hkψkðrÞ: (3.36)

Thus, the electron velocity v in the state k is
given by

v¼ �hk=m: (3.37)

We can now use Eq. (3.34) to build the
k-space. The k-space is a three-dimensional space
with an extremely large number (N) of allowed
discrete k points. Figure 3.4 illustrates the points
in a two-dimensional k-space that are separated by
2π
L in both kx and ky directions (as per Eq. 3.34).

As seen in Figure 3.4, the discrete k values
are separated by 2π/L in each dimension. In a
three-dimensional k-space, the volume per each
k-point is (2π/L)3 = 8π3/V, where the volume of
the metal V= L3. Therefore, a k-space of volume
Ω will contain ΩV/8π3 allowed values of k.

ky

kx

2π
L

FIGURE 3.4

Points in a two-dimensional k-space.
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Thus, the density of states, ρ, in the k-space
(number of allowed k-values per unit volume of
k-space) is

ρ = V /8π3: (3.38)

We note that each k state can contain exactly
two electrons (spin up or spin down) at zero
temperature as per the Fermi–Dirac distribution
function in Eq. (3.25). Thus, when we build the
filled k-space at zero temperature in three
dimensions, we are essentially filling up these
discrete k states starting with the lowest energy,
which is zero. Because the k states are densely
packed and the total number of electrons is N,
which is a huge number (~1023), the constant

energy levels of the electrons can be considered as the surface of a sphere (as per Eq. 3.33). Thus,
all the N electrons will fill a sphere of volume Ω = 4π/3 k3F , which is known as the Fermi sphere.
kF , the radius of the sphere, is known as the Fermi wave vector. The surface of the Fermi sphere
that separates the filled k states from the empty k states (at zero temperature) is known as the
Fermi surface. The energy of an electron on the Fermi surface is called the Fermi energy

εF = �h2k2F
2m , and the momentum pF = �hkF is known as the Fermi momentum. A schematic diagram

of the Fermi sphere is shown in Figure 3.5.
The volume of the Fermi sphere is Ω = 4πk3F /3 and, as shown earlier, a k-space of volume Ω

will contain ΩV/8π3 allowed values of k. Hence, the allowed values of k in the Fermi sphere are

ΩV
8π3

= V
8π3

� �
4πk3F
3

� �
=

k3FV

6π2
: (3.39)

Because there are two electrons per each k state and the total number of electrons is N, we obtain
from Eq. (3.39)

N
2

=
k3FV

6π2
: (3.40)

The electron density n≡N/V is easily obtained from Eq. (3.40),

n =
k3F
3π2

: (3.41)

3.2.4 Ground-State Energy of the Electron Gas
To make a summation over allowed values of k, we use the following procedure. If F(k) is a func-
tion of k states, we can write, using Eq. (3.38),

∑
k
FðkÞ = V

8π3
∑
k
FðkÞΔk: (3.42)

kx

kz

ky

kF

FIGURE 3.5

Schematic diagram of the Fermi sphere.

3.2 Sommerfeld Model 79



In the limit V→∞, Δk ! 0 and the summation over k on the right side, ∑
k
FðkÞΔk approaches the

integral
R
FðkÞdk. Thus, we can write Eq. (3.42) in the alternate form

lim
V!∞

∑
k
FðkÞ = V

8π3

Z
FðkÞdk: (3.43)

In general, the approximation V→∞ is fairly good because the volume of a metal is infinitely large
compared to the volume of a primitive cell.

The ground-state energy of N free electrons in a metal is calculated by adding the energies of
the k states inside the Fermi sphere and multiplying by 2 (because each k state has two electrons of
opposite spin),

E = 2∑
k
εðkÞ: (3.44)

From Eqs. (3.35) and (3.44),

E = 2 ∑
k≤ kF

�h2k2

2m
: (3.45)

From Eqs. (3.43) and (3.45),

E = V
4π3

Z
k≤ kF

dk �h2k2

2m
: (3.46)

Because dk = 4πk2dk, Eq. (3.46) can be easily integrated, and we obtain

E =
V�h2k5F
10π2m

: (3.47)

Here, E is the total energy of the electron gas. To find the energy per electron, E/N, we obtain
from Eqs. (3.40) and (3.47),

E
N

=
3�h2k2F
10m

, (3.48)

which can be written in the alternate form

E
N

= 3
5
εF : (3.49)

The average energy of an electron at zero temperature, derived in Eq. (3.49), differs significantly
from the energy of a classical ideal gas, which is zero at T = 0. This significant difference is due to
the fact that the electrons obey the Pauli exclusion principle, and therefore, the Fermi–Dirac distri-
bution function has to be applied to the electron gas instead of the Maxwell–Boltzmann distribution
function, which is applicable for a classical ideal gas.

We now define the Fermi temperature using the relation

εF = kBTF : (3.50)
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From Eqs. (3.49) and (3.50), we obtain

TF = 5E
3NkB

: (3.51)

The Fermi temperature TF is of the order of 104 K for simple metals (see Problem 3.7), an
incredibly large value for the temperature of the electrons on the Fermi surface. We note that for
a classical ideal gas, the temperature T = 0 irrespective of the location of the gas molecule.

The wavelength of an electron at the Fermi surface is given by

λF = 2π
kF

: (3.52)

3.2.5 Density of Electron States
Because the k states are discrete variables, normally one makes a summation over all the k states.
In Eq. (3.43), we approximated the summation of a function F(k) over all the k states as an integra-
tion over the k states. An alternate way to consider the summation over all the k states is to con-
sider the same summation as integration over the energy levels. Such integrations over the energy
levels are done by using the concept of the density of electron states.

As an example, we consider the summation ∑
k
FðεðkÞÞ, where FðεðkÞÞ is a function of the

energy of the electrons in the filled k states. We can write Eq. (3.43) in the alternate form

1
V
∑
k
FðεðkÞÞ = 1

4π3

Z
dkFðεðkÞÞ: (3.53)

We note that because each k state has two electrons with the same energy, we have multiplied the
right side of Eq. (3.43) by a factor of 2. Because εðkÞ = �h2k2/2m, we can write

dk = 4πk2dk: (3.54)

From Eqs. (3.53) and (3.54), we obtain

1
4π3

Z
dkFðεðkÞÞ =

Z∞
0

k2dk
π2

FðεðkÞÞ

=
Z−∞
∞

dεgðεÞFðεÞ: (3.55)

Here,

gðεÞ = m
π2�h2

ffiffiffiffiffiffiffiffiffiffiffiffi
2mε
h2

,

r
ε> 0

= 0, ε ≤ 0:

(3.56)
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Thus, the density of electron states g(ε)dε is
defined as the number of one-electron levels per
unit volume of the metal in the energy range ε
and ε + dε. From Eqs. (3.41) and (3.56), we can
rewrite g(ε) in the alternate form

gðεÞ = 3n
2

�
ε
ε3F

�1/2
, ε> 0

= 0, ε≤ 0:

(3.57)

The number of single electron states N is
equal to the area under the density of states
curve gðεÞ up to the Fermi energy. The plot of
gðεÞ versus ε is shown in Figure 3.6.

However, the density of states for a typical
metal, which is plotted in Figure 3.7, is different
from the curve shown in Figure 3.6.

3.3 FERMI ENERGY AND THE
CHEMICAL POTENTIAL

We will derive an expression between the che-
mical potential μ and the Fermi energy εF at a
reasonably low temperature (we note that μ = εF
at T= 0).

The electron density n = N/V can be written
in the form

n = 1
4π3

Z
dk f ðεðkÞÞ: (3.58)
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The density of occupied states (c) obtained from the
Fermi–Dirac distribution (a) and the density of states (b).
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From Eqs. (3.55) and (3.58), we obtain

n =
Z∞
−∞

gðεÞf ðεÞdε: (3.59)

Using the Sommerfeld expansion (Problem 3.8) and retaining terms of the order T2, we obtain

n =
Z∞
−∞

gðεÞdε+ π2

6
ðkBTÞ2g′ðεFÞ: (3.60)

From Eqs. (3.57) and (3.60), we obtain

n =
Zμ
0

gðεÞdε+ π2

6
ðkBTÞ2g′ðεFÞ: (3.61)

Eq. (3.61) can be written in the alternate form

n =
ZεF
0

gðεÞdε+
Zμ
εF

gðεÞdε+ π2

6
ðkBT2Þg′ðεFÞ: (3.62)

We note that at zero temperature, the electron density n can also be expressed as

n =
ZεF
0

gðεÞdε: (3.63)

In addition, at low temperatures, gðεÞ≈ gðεFÞ in the small energy range of εF to μ and the integra-
tion of gðεÞ in this range can be approximated asZμ

εF

gðεÞdε≈ ðμ− εFÞgðεFÞ: (3.64)

From Eqs. (3.62) through (3.64), we obtain

ðμ− εFÞgðεFÞ+ π2

6
ðkBTÞ2g′ðεFÞ = 0: (3.65)

From Eq. (3.65), the chemical potential μ can be expressed as

μ = εF −
π2

6
ðkBTÞ2 g′ðεFÞgðεFÞ

: (3.66)

From Eqs. (3.64) and (3.66), we obtain

μ = εF 1− π2

12
kBT
εF

� �2" #
: (3.67)

Eq. (3.67) expresses the chemical potential μ in terms of the Fermi energy εF (up to the order of T2).
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The variation of the Fermi–Dirac distribution function for various values of kBT is shown in
Figure 3.9. The Fermi function differs slightly from a step function around the chemical potential μ.
It differs significantly from 0 or 1 in the region in which the width is kBT : For ε� μ, it is hard to
distinguish the Fermi function from the classical Boltzmann distribution function e−βε:

3.4 SPECIFIC HEAT OF THE ELECTRON GAS
At a finite temperature T, the k states will be filled by 2 f ðεðkÞÞ electrons, where f ðεðkÞÞ is the
Fermi–Dirac distribution function, which determines the probability that a k state is occupied by an
electron. The factor 2 is multiplied because each k state can have two electrons of opposite spin as
prescribed by the Pauli exclusion principle. Thus, the total internal energy of the electrons at tem-
perature T is given by

EelðTÞ = 2∑
k
εðkÞf ðεðkÞÞ: (3.68)

The electronic specific heat of the metal is given by

Cel =
1
V

∂Eel

∂T

� �
N
: (3.69)

By converting the summation over k states to integration and following the procedure outlined in
Eq. (3.53), we can rewrite Eq. (3.68) as

Eel

V
= 1

4π3

Z
dk εðkÞf ðkÞ: (3.70)

From Eqs. (3.55) and (3.70), we obtain

Eel

V
=

Z∞
−∞

εgðεÞdε: (3.71)
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FIGURE 3.9

Variation of the Fermi–Dirac distribution function with temperature.
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By using the Sommerfeld expansion (Problem 3.8), we obtain from Eq. (3.71)

Eel

V
=
Zμ
−∞

εgðεÞdε+ π2

6
ðkBTÞ2 d

dε
ðεgðεÞÞ j ε=μ + higher order terms in T : (3.72)

We note from Eq. (3.57) that the density of one-electron levels gðεÞ = 0 for ε≤ 0. Using this condi-
tion, we rewrite Eq. (3.72) as

Eel

V
=
ZεF
0

εgðεÞdε+
Zμ
εF

εgðεÞdε+ π2

6
ðkBTÞ2½gðμÞ+ μg′ðμÞ�+ higher order terms in T: (3.73)

From Eqs. (3.67), which specifies the relation between μ and εF , retaining the second-order terms
in T, we obtain

Zμ
εF

εgðεÞdε≈ εFðμ− εFÞgðεFÞ: (3.74)

Substituting Eq. (3.74) in Eq. (3.73) and consistently retaining terms only up to the second order in
T gðμÞ≈ gðεFÞ and μ≈ εF in Eq: ð3:73Þ, we obtain

Eel

V
=
ZεF
0

εgðεÞdε+ π2

6
ðkBTÞ2gðεFÞ+ εF ðμ− εFÞgðεFÞ+ π2

6
ðkBTÞ2g′ðεFÞ

	 

: (3.75)

From Eqs. (3.65) and (3.75),

Eel

V
=
ZεF
0

εgðεÞdε+ π2

6
ðkBTÞ2gðεFÞ: (3.76)

From Eqs. (3.69) and (3.76), noting that the first term on the right side of Eq. (3.76) is independent
of temperature for constant N, we obtain an expression for the electronic specific heat for a free
electron gas in the metal,

Cel =
π2

3
kB

2TgðεFÞ: (3.77)

From Eqs. (3.57) and (3.77),

Cel =
nπ2k2BT

2εF
: (3.78)

We note the result for the electronic specific heat obtained by using Fermi–Dirac statistics is
significantly different and approximately 100 times smaller than Drude’s result for a classical
electron gas (Cv = 3/2 nkB) obtained by using Maxwell–Boltzmann statistics. The major difference
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is that while each electron in a classical gas gains an energy 3/2 kBT when heated to a temperature
T, only the electrons in a range kBT near the Fermi level are excited to the higher energy states,
whereas the rest of the electrons inside the Fermi surface are unaffected.

3.5 DC ELECTRICAL CONDUCTIVITY
We have shown in Eq. (3.36) that

p = �hk: (3.79)

Using Newton’s second law, we can see the force F on the electron with momentum p is

F =
dp
dt

= �h dk
dt

: (3.80)

In an external electric field E, the force on each electron of charge –e is

F = −eE: (3.81)

From Eqs. (3.80) and (3.81), we obtain

�h dk
dt

= −eE: (3.82)

If the electric field E is applied to the metal at time t = 0, after a time τ, the center of the Fermi
sphere (within which all the electrons are located at T = 0), which was at the origin of the k space,
would shift by

Δk = − eEτ
m

: (3.83)

The displacement of the Fermi sphere due to an applied electric field is shown in Figure 3.10.
Because the change of momentum of each

electron is

Δp = �hΔk = mΔv, (3.84)

and the electric current density of n electrons
per unit volume is

j = −neΔv, (3.85)

we obtain from Eqs. (3.83) through (3.85)

j = ne2τ
m

E: (3.86)

The electrical conductivity σ is defined by (note
that conductivity is a tensor, but we are treating
it here as a scalar quantity)

j = σE: (3.87)

ExΔk

FIGURE 3.10

Displacement of the Fermi sphere in an applied
electric field.
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From Eqs. (3.86) and (3.87), we obtain

σ = ne2τ
m

: (3.88)

Eq. (3.88) for the electrical conductivity σ, derived by considering the displacement of the Fermi
sphere in an electric field, is identical to the expression derived by using Drude’s theory of metals
(Problem 3.1), in which electrons were treated as a classical electron gas. However, one significant
difference is that although the relaxation time defined by Drude was the average collision time
between the electrons and the static positively charged ions while in the present model, the colli-
sions of the electrons with impurities, lattice imperfections, and phonons can be included. The two
results appear identical because of the approximation of a relaxation time τ in both models.

The following are the major drawbacks of the theory of DC electrical conductivity. First, it may
be noted that in this derivation, the average relaxation time τ was not properly defined, although it
was implicitly borrowed from the concept of the relaxation time defined by Drude. Second, because
the origin of the collision time was left unanswered, the temperature dependence of the DC conduc-
tivity in metals could be explained only by introducing a temperature dependence in the relaxation
time τ. Third, the current density j is not parallel to the electric field E in some metals, and the DC
conductivity depends on the orientation of the metal with respect to E.

3.6 THE HALL EFFECT
Here, we consider a conductor in the shape of a rod that has a rectangular cross-section, which is
placed under a magnetic field B in the z direction. There is a longitudinal electric field Ex. The elec-
tric and magnetic fields are so adjusted that the current cannot flow out of the rod in the y direction
ðjy =0Þ. This configuration is shown in Figure 3.11.

The equation of motion of the displacement δk, a Fermi sphere of particles acted on a force F,
is given by

F = �h d
dt

+ 1
τ

� �
δk, (3.89)

where τ is the relaxation time. The Lorentz force
on carrier of charge q (which can be positive or
negative) in an electric field E and a magnetic
field B is

F = q E+ 1
c
V×B

� �
: (3.90)

Here, we note that q = −e for electrons, but the
Hall effect is equally applicable for determining
the sign of other carriers in a solid.

If �h δk = mδV, Eq. (3.90) can be written as

m d
dt

+ 1
τ

� �
δV = qðE+ 1

c
δV×BÞ: (3.91)

B

Ex
υx

υy

EH

jy

jx

FIGURE 3.11

The geometry of the Hall effect.

3.6 The Hall Effect 87



Here, δV is the average of V over the Fermi sphere. In the steady state, the acceleration dδV
dt = 0:

We can write Eq. (3.91) in the steady state (writing V for δV for convenience),

V =
qτ
m
ðE+V × BÞ: (3.92)

Because the static electric field E lies in the xy plane and B is along the z axis (Figure 3.7), we can
write the components of Eq. (3.92) as

Vx =
qτ
m

Ex −ωcτVy, (3.93)

and

Vy =
qτ
m
Ey +ωcτVx: (3.94)

Here,

ωc ≡
−qB
mc

(3.95)

is the cyclotron frequency, usually defined for free electrons (in which case q = −e). By solving
Eqs. (3.93) and (3.94), we obtain

Vx =
qτ/m

1+ ðωcτÞ2
ðEx−ωcτEyÞ, (3.96)

and

Vy =
qτ/m

1+ ðωcτÞ2
ðEy +ωcτExÞ: (3.97)

The conductivity is

σ0 =
nq2τ
m

, (3.98)

and the components of charge current density from Eqs. (3.96) through (3.98),

jx = nqVx =
σ0

1+ ðωcτÞ2
ðEx −ωcτEyÞ, (3.99)

jy = nqVy =
σ0

1+ ðωcτÞ2
ðEy +ωcτExÞ, (3.100)

and because the z-component of the current is not affected by the magnetic field,

jz = nqVz = σ0Ez: (3.101)

In the Hall effect, the external fields are E = Ex and Bz = B: There is a drift of the charges in the y
direction due to the magnetic field B. However, no current can flow in this direction because of lack
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of circuit continuity. Instead, the charges pile up on the surface of the sample, thereby setting up an
electric field Ey: This field, which nullifies the Lorentz force, is known as the “Hall field.”

The Hall field is obtained by setting

jy = nqvy = 0: (3.102)

From Eqs. (3.100) and (3.102), we obtain

σ0
1+ωc

2τ2
ðωcτEx +EyÞ = 0, (3.103)

which yields

Ey = EH = −ωcτEx =
qB
m

τEx: (3.104)

From Eqs. (3.99) and (3.104), we obtain

jx =
σ0

1+ωc
2τ2

ðEx +ωc
2τ2ExÞ = σ0Ex: (3.105)

The Hall coefficient RH is defined as

RH = EH

jxB
=

qτ
σ0m

= 1
nq

: (3.106)

The Hall resistance is defined as

ℜH =
Vy

Ix
: (3.107)

The sign of the Hall coefficient is determined by the charge carrier q, and for metals, these are the elec-
trons of which the charge is −e: Later, we will see the impact of the Hall effect in determining the sign
of the charge carriers in semiconductors as well as study the importance of the quantum Hall effect.

3.7 FAILURES OF THE FREE ELECTRON MODEL
The failures of the free electron model can be briefly summarized as follows:

a. The temperature and the directional dependence of the DC electrical conductivity could not be
adequately explained by the Sommerfeld theory.

b. The free electron model explains the contribution of the linear term in T to the specific heat of
metals, but the magnitude of this contribution is inadequate for many metals in the sense that it
is either too large or too small. In addition, there is a cubic term (T3) that contributes to the
specific heat of metals but cannot be explained by the free electron model.

c. The major failure of the free electron model is that it does not explain the significant difference
between metals, insulators, and semiconductors. To be specific, it fails to explain why some elements
crystallize as good conductors (metals) of which the conductivity decreases with the increase of
temperature, some others crystallize as insulators that are very poor conductors, and the rest
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crystallize as semiconductors of which the conductivity is very poor at low temperatures but increases
with increase of temperature unlike that of metals. In fact, it has been commented that the difference
of electrical resistivity at room temperature between that of good conductors ð10−10 −10−6Þ ohm-cm
and of good insulators (1014−1022 ) ohm-cm is one of the widest range of any physical property ever
found in nature. In contrast, the electrical resistivity of semiconductors at room temperature is in the
range ð10−2−109Þ ohm-cm but is strongly dependent on temperature.

To understand this major classification of solids, we have to include the effect of the positively
charged stationary ions that are arranged in a periodic array. As we will show, the periodic array of
ions leads to a periodic potential that results in the band theory of solids. The band theory of solids
explains the difference between the electrical properties of metals, semiconductors, and insulators.
In addition, it distorts the spherical Fermi surface to a more complex shape, and as we have noted,
the Fermi surface determines many physical properties of the solid.

There are other significant deficiencies in the free electron model. First, it introduces the relaxa-
tion time of the electrons in an unrealistic manner in the sense that the role of the background posi-
tive ions is confined only to scatter an electron moving in an external field. Second, it ignores the
electron–electron interactions, which has significant contribution to some physical properties. Third,
the positively charged ions are not stationary but oscillate around their equilibrium position. Since
these ions are positively charged, they affect the motion of the negatively charged electrons (the
electron–phonon interaction). Fourth, the free electron model completely ignores the effects of lat-
tice defects and lattice impurities. Fifth, the free electron model ignores the surface effects because
of the periodic boundary condition invoked as a necessary condition of the model.

PROBLEMS
3.1. Show that in Drude’s model, the average electron velocity in an external electric field E is

vavg = − eEτ
m and the current density j = −nev = ne2τ

m

� �
E: Here, n is the number of electrons

per unit volume. Because j = σE, where σ is the DC electrical conductivity of the metal,
show that σ = ne2τ

m .

3.2. The basic assumption of the Drude model is that the thermal current in a metal is carried by
the conduction electrons. If we define the thermal current density jq = −κ∇T , where κ is the
thermal conductivity, it can be easily shown that κ = 1

3v
2τcv, where cv is the electronic

specific heat. By applying classical ideal gas laws to the electron gas, cv = 3
2 nkB, and

1
2mv

2 =
3
2 kBT (where kB is the Boltzmann constant), show that

κ
σ
= 3

2
kB
e

� �2
T:

This relation between the electrical and thermal conductivities of a metal is known as the
Wiedemann–Franz law.

3.3. Show that the Fermi–Dirac distribution function reduces to the Maxwell–Bolzmann
distribution function f ðεÞ = e−ðε−μÞ/kBT for very high temperatures when ε� μ: An alternate
condition to make this classical approximation is e−μ/kBT � 1.
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3.4. Derive an expression for rs (defined in Eq. 3.2) by using the classical approximation outlined
in Problem 3.3.

3.5. Show that the wave function of a free electron confined in a cubic box of side L is

ψkðrÞ = 8
L3

� �1/2
sin

n1πx
L

� �
sin

n2πy
L

� �
sin

n3πz
L

� �
:

3.6. Show from Eqs. (3.2) and (3.40) that kF = ð9π/4Þ1/3
rs

= 1:92
rs
.

3.7. Show that the Fermi temperature TF (defined in Eq. 3.50) can be written in the alternate form

TF = 58:2

ðrs/a0Þ2
× 104 K,

where a0 is the Bohr radius.

3.8. If a function FðεÞ does not vary rapidly in the energy range of the order of kBT about the
chemical potential μ, by making a Taylor series expansion of the form,

FðεÞ = ∑
∞

n=0

dn

dεn
FðεÞ j ε=μ

ðε− μÞn
n!

: (1)

Define a function

ϕðεÞ =
Zε
−∞

Fðε′Þdε′ (2)

so that

FðεÞ = dϕðεÞ
dε

: (3)

Integrating by parts, show that

Z∞
−∞

FðεÞf ðεÞdε =
Z∞
−∞

ϕðεÞ −∂f
∂ε

� �
dε, (4)

where f ðεÞ is the Fermi function. Expand ϕðεÞ in a Taylor series about ε = μ and show that

ϕðεÞ = ϕðμÞ+ ∑
∞

n=1

ðε− μÞn
n!

� �
dnϕðεÞ
dεn

� �
ε=μ

: (5)

By using the identity

Z∞
−∞

ð−∂f /∂εÞdε = 1, (6)
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and the fact that ∂f /∂ε is an even function of ε− μ (only terms with even n in Eq. 5
contribute), show that

Z∞
−∞

dεFðεÞf ðεÞ =
Z μ

−∞
FðεÞdε+ ∑

∞

n=1

Z∞
−∞

ðε− μÞ2n
ð2nÞ! −∂f

∂ε

� �
dε d2n−1

dε2n−1
FðεÞ j ε=μ: (7)

Show that the integration can also be expressed as

Z∞
−∞

FðεÞf ðεÞdε =
Zμ
−∞

FðεÞdε+ ∑
∞

n=1
ðkBTÞ2nan d2n−1

dε2n−1
FðεÞ j ε=μ, (8)

where

an =
Z∞
−∞

x2n

ð2nÞ! − d
dx

1
ðex + 1Þ

� �
dx: (9)

This is known as the Sommerfeld expansion. Here, an are dimensionless constants of the
order of unity and are related to the Riemann zeta function, ξðnÞ, as

an = 2− 1
22ðn−1Þ

� �
ξð2nÞ: (10)

The Riemann zeta function, ξðnÞ, is defined as

ξðnÞ = 1+ 1
2n

+ 1
3n

+ 1
4n

+ ::: (11)

3.9. From Eqs. (3.99) through (3.101), show that the current density can be written in the matrix form

jx
jy
jz

0
@

1
A =

σ0
ð1+ω2

cτ
2Þ

1 −ωcτ 0
ωcτ 1 0
0 0 1+ωc

2τ2

0
@

1
A Ex

Ey

Ez

0
@

1
A: (1)

The matrix on the right side of Eq. (1) gives the nine components of the magnetoconductivity
tensor. Hence, show that

σxx = σyy =
σ0

1+ωc
2τ2

, (2)

and

σxy = −σyx =
σ0ωcτ

1+ωc
2τ2

: (3)

Thus, the magnitude of the diagonal components σxx and σyy decrease monotonically as the
magnetic field B is increased, whereas the off-diagonal components σxy and σyx at first
increase and then decrease as the magnetic field is increased.
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4.1 ELECTRONS IN A WEAK PERIODIC POTENTIAL
4.1.1 Introduction
In the nearly free electron approximation, it is assumed that there are no electron–electron or
electron–phonon interactions. This means that a valence electron, stripped from its parent atom due
to the attractive interaction of the neighboring positively charged ions, does not interact either with
other electrons or with the vibrating motion of the ions at a finite temperature. However, unlike the
free electron approximation, the electron is subjected to a weak periodic potential due to the back-
ground of symmetric array of positively charged ions in the crystal lattice. We will first show that
this potential is periodic with the periodicity of a lattice vector.

As an example, we consider a two-dimensional rectangular lattice, as shown in Figure 4.1.
If OO′ = R

!
i and OE = r!, the potential energy at the electron E (charge –e) due to the positively

charged ions of the crystal lattice (one ion of charge ze is assumed to be located at each lattice site) is
given by

Vð r!Þ = ∑
i

−ze2

j r!−R
!

i j
: (4.1)

Here, we have considered the fundamental principle of electrostatics that in a spherical charge distribu-
tion, the potential at a point outside the sphere is the same as that of the potential due to the net
charge considered to be located at the center of the sphere.

If r! is translated by a lattice vector Rj
!
, Eq. (4.1) can be written in the alternate form

Vð r!+ R
!
jÞ = ∑

i

−ze2

j r!− Ri
!

+ R
!
j j
: (4.2)

One can write R
!

i − R
!

j = Rl
!
, in which case Eq. (4.2) can be written in the alternate form

Vð r!+ R
!
jÞ = ∑

l

−ze2

j r!− R
!
l j
: (4.3)

ze

O

ze

ze

E
−e

O′

r
→

Ri
→

FIGURE 4.1

Two-dimensional rectangular lattice with O as the global origin and O′ as the local origin of the unit cell within
which the electron of charge –e is located at E. The charge of each ion is ze.
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Because the summation over both R
!

i and R
!

l spans the entire lattice vectors, we obtain from
Eqs. (4.1) and (4.3)

Vð r!Þ = Vð r!+ R
!

jÞ: (4.4)

Eq. (4.4) clearly demonstrates that Vð r!Þ is a periodic potential with the periodicity of a direct
lattice vector. It may be noted that this proof was based on the simple assumption that an ion of
charge ze is located at each lattice point. However, the proof can be generalized to an identical clus-
ter of ions (a basis), located symmetrically around each lattice point.

4.1.2 Plane Wave Solutions
For simplicity, we consider a linear lattice of lattice constant a. Later, we will generalize our results
to a three-dimensional lattice. From Eq. (4.4), the periodic potential in a one-dimensional lattice can
be written as

VðxÞ = Vðx+ n aÞ, (4.5)

where n is an integer. If we express the periodic potential VðxÞ as a Fourier series

VðxÞ = ∑
q′
Vðq′Þeiq′x, (4.6)

we obtain

Vðx+ naÞ = ∑
q′
Vðq′Þeiq′ðx+naÞ: (4.7)

From Eqs. (4.5) through (4.7), it is easy to show that

∑
q′
Vðq′Þeiq′x = ∑

q′
Vðq′Þeiq′ðx+naÞ: (4.8)

Eq. (4.8) has to be valid for each value of the integer n. This is possible only if

eiq′na = 1, (4.9)

for all values of n and q′. This condition is satisfied only when q′ = 2πm/a, where m is any integer.
This is precisely the definition of a reciprocal lattice vector K in one dimension and hence q′ = K:
The periodic potential VðxÞ in Eq. (4.3) can therefore be expressed as

VðxÞ = ∑
K
VðKÞeiKx: (4.10)

The Schrodinger equation of the electron in a one-dimensional lattice is easily obtained,

− ħ2

2m
∂2
∂x2

+∑
K
VðKÞeiKx

� �
ψðxÞ = EψðxÞ, (4.11)

where E is the energy eigenvalue and ψðxÞ is the wave function of the electron. The Born–von
Karman boundary conditions imply that

ψðx+NaÞ = ψðx+LÞ = ψðxÞ: (4.12)
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ψðxÞ can also be expanded in terms of the plane waves, which are a complete set of functions,

ψðxÞ = ∑
q
aðqÞeiqx: (4.13)

From Eqs. (4.11) and (4.13), we obtain

∑
q
ε0qaðqÞeiqx +∑

K
∑
q
VðKÞaðqÞeiðq+KÞx = E∑

q
aðqÞeiqx, (4.14)

where

ε0q =
ħ2q2

2m
: (4.15)

We assume that the one-dimensional crystal has a length L. Multiplying Eq. (4.14) by e−iq′x and
integrating over x from 0 to L, we obtain

∑
q
ε0qaðqÞ

Z L

0
eiðq−q′Þxdx+∑

K
∑
q
VðKÞaðqÞ

Z L

0
eiðq−q′+KÞxdx = E∑

q
aðqÞ

Z L

0
eiðq−q′Þxdx: (4.16)

The Born–von Karman boundary conditions for a linear lattice lead to the conditions for the
plane waves that eiqx = eiqðx+LÞ and eiq′x = eiq′ðx+LÞ. These conditions imply that both q and q′ must
satisfy

q = 2πn
L

and q′ = 2πm
L

, (4.17)

where n and m are integers. The integration

I =
ZL
0

eiðq−q′Þxdx = eiðq−q′ÞL − 1
iðq− q′Þ =

½ei2πðn−mÞ − 1�L
2πiðn−mÞ = Lδn,m = Lδq,q′, (4.18)

where δq,q′ is the Kronecker delta function. Similarly, one can show that

I′ =
ZL
0

eiðq−q′+KÞxdx = Lδq,q′−K : (4.19)

Substituting the results of Eqs. (4.18) and (4.19) in (4.16), we obtain

ε′0q aðq′Þ+∑
K
VðKÞaðq′−KÞ = Eaðq′Þ, (4.20)

which can be written in the alternate form, by substituting q for q′,

ðε0q −EÞaðqÞ+∑
K
VðKÞaðq−KÞ = 0: (4.21)

Eq. (4.21) can be expressed as

aðqÞ = ∑
K

VðKÞaðq−KÞ
E− ε0q

: (4.22)

It is obvious from Eq. (4.22) that aðqÞ is small unless E≈ ε0q.
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We can also subtract an arbitrary reciprocal lattice vector K′ from q in Eq. (4.21) and rewrite it as

ðε0q−K −EÞaðq−K′Þ+∑
K
VðKÞaðq−K′−KÞ = 0: (4.23)

Eq. (4.22) connects aðqÞ with every Fourier coefficient aðq−KÞ, i.e., with the Fourier coeffi-
cients for which the wave vector differs from q by a reciprocal lattice vector K. This leads to a very
important and useful result about the form of the eigenfunctions ψ. These wave functions of an
electron in a periodic potential are called the Bloch functions.

The equivalent proof correlating aðqÞ and aðq−KÞ for a three-dimensional crystal lattice is
assigned as a homework problem (see Problem 4.4).

4.2 BLOCH FUNCTIONS AND BLOCH THEOREM
In Eq. (4.12), we considered an arbitrary wave vector that appears in the summation over q and
denoted it as k. We note from Eq. (4.21) that instead of the continuous Fourier coefficients aðqÞ,
only those of the form aðk−KÞ enter into ψkðxÞ; i.e., the allowed K′s in the wave function are of
the form k−K. Thus, we can write

ψkðxÞ = ∑
K
aðk−KÞeiðk−KÞx: (4.24)

Eq. (4.24) can be written in the alternate form

ψkðxÞ = ∑
K
aðk−KÞe−iKx

�
eikx:

�
(4.25)

If we introduce

ukðxÞ≡∑
K
aðk−KÞe−iKx, (4.26)

we obtain

ψkðxÞ = eikxukðxÞ: (4.27)

We note from Eq. (4.26) that if m is an integer,

ukðx+maÞ = ∑
K
aðk−KÞe−iKðx+maÞ = ukðxÞ (4.28)

because

e−iKma = e−2imπ = 1: (4.29)

ψkðxÞ is referred to as a Bloch function and ukðxÞ is known as the periodic part of the Bloch func-
tion because it has the periodicity of the lattice.

4.3 REDUCED, REPEATED, AND EXTENDED ZONE SCHEMES
We will now discuss the three types of zone schemes (reduced, repeated, and extended) used to describe
electrons in a crystal lattice. For simplicity, we will first discuss these schemes for free electrons in a
one-dimensional lattice to introduce the concept of the band index before we extend our discussion to
electrons in a three-dimensional lattice as well as to electrons in a periodic potential.
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4.3.1 Reduced Zone Scheme
If we consider a one-dimensional lattice, the reci-
procal lattice vectors K can also be relabeled as
gn where n is an integer (positive or negative),

gn = n 2π
a
: (4.30)

If we restrict k to the first Brillouin zone, i.e.,
if we assign a state k, any wave number in
the set

k = k′+ 2π
a
n, (4.31)

k is only defined modulo (2π/a). Thus, all the k
points in Figure 4.2 are equivalent.

One can therefore consider k′ as the represen-
tative of all these k values, with jk′j restricted to
the first Brillouin zone. Thus, it is always possi-
ble to choose the value of k such that

− π
a
< k≤ π

a
: (4.32)

This way of restricting the wave numbers to the first Brillouin zone is known as the reduced
zone scheme. In Figure 4.3, the reduced zone scheme is shown by drawing the energy-wave num-
ber relation for free electrons, ε0ðkÞ = ħ2k2/2m.

We will now describe the energy-wave number relations ε0ðkÞ = ħ2k2/2m for the repeated and
extended zone schemes.

4.3.2 Repeated Zone Scheme
It is often convenient to repeat the first Brillouin zone and the other zones reduced to the first
Brillouin zone through all of k space. Thus, in the repeated zone scheme, ε0k = ε0k+K in one

Reduced zone

k k′ k

O−2π/a 2π/a 4π/a−π/a π/a

k

g

g

FIGURE 4.2

All k points reduce to k′ in the one-dimensional reciprocal lattice.

0

AA′

C

εk

a− π a
π

k

FIGURE 4.3

Reduced zone scheme for energy-wave number
relations of free electrons in a one-dimensional lattice.
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dimension and ε0k = ε0k+K in three dimensions. All values of ε0k , ε
0
k+K , ε

0
k−K , etc. are plotted

against k, k+K, k−K, etc. in one dimension. The repeated zone scheme is useful in describing
several physical properties of the solid, specifically the connectivity of electron orbits in a mag-
netic field. The repeated zone scheme for free electrons in a one-dimensional lattice is shown
schematically in Figure 4.4.

4.3.3 Extended Zone Scheme
In the extended zone scheme, the k values extend throughout all reciprocal space, and the energy
eigenvalues, ε0k = ħ2k2/2m, are plotted against the wave number k. Thus, for free electrons, one
obtains a parabola. The extended zone scheme for free electrons in a one-dimensional lattice is
shown schematically in Figure 4.5.

4.4 BAND INDEX
A large number of eigenfunctions and eigenvalues correspond to the same wave vector k (wave
numbers k in one dimension) in the reduced zone scheme. To distinguish these eigenfunctions and
eigenvalues in the reduced zone scheme, we introduce an additional index n (called band index).
The band index has a much greater significance when one considers the eigenfunctions and eigen-
values by including the periodic potential in the Hamiltonian. The periodic potential opens up an
energy gap at the zone boundaries, and the band index plays a much greater role in the classifica-
tion of solids as metals, insulators, and semiconductors. The necessity of using a band index also
follows as a natural consequence when we discuss the effective Hamiltonian.

−3π /a 3π /a−π /a π /a0
k

εk

FIGURE 4.4

Energy-wave number relations for a one-dimensional lattice in the repeated zone scheme.

εk

−3π /a 3π /a−π /a π /a0
k

FIGURE 4.5

Energy-wave number relations in the extended zone scheme.
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4.5 EFFECTIVE HAMILTONIAN
The necessity of a band index n will be evident by constructing an effective Hamiltonian. The
Schrodinger equation can be written as

HψkðrÞ = − ħ2

2m
∇2 +VðrÞ

� �
eik

.rukðrÞ = Eke
ik.rukðrÞ: (4.33)

We can rewrite Eq. (4.33) in the form

eik
.r ħ2

2m
½−∇2 − 2ik . ∇!+ k2�ukðrÞ+VðrÞukðrÞ

� �
= eik

.rEkðrÞukðrÞ: (4.34)

Canceling eik
.r from both sides, we obtain

ħ2

2m
½−∇2 − 2ik . ∇!+ k2�+VðrÞ

� �
ukðrÞ = EkðrÞukðrÞ: (4.35)

Eq. (4.35) can be expressed as

Heff ukðrÞ = EkðrÞukðrÞ, (4.36)

where the effective Hamiltonian

Heff =
ħ2

2m
½−∇2 − 2ik .∇+ k2�+VðrÞ: (4.37)

The boundary conditions are that whenever r lies on one boundary of the unit cell and r + R is
another boundary of the unit cell, then

ukðr+RÞ = ukðrÞ (4.38)

and

n̂ðrÞ . ∇!ukðrÞ = − n̂ðr+RÞ . ∇!ukðr+RÞ, (4.39)

where n̂ðrÞ is a unit normal to the cell boundary at r.
Thus, Eq. (4.36) can be considered as a Hermitian eigenvalue problem that is restricted to a sin-

gle primitive cell of the crystal. Because the eigenvalue problem is in a fixed finite volume, there
will be an infinite family of solutions with discretely spaced eigenvalues. These are labeled with the
band index n. The importance of the band index will become apparent when we consider the effect
of the periodic potential by using perturbation theory.

If we include the band index n, Eq. (4.27) can now be rewritten as

ψnkðxÞ = eikxunkðxÞ: (4.40)

It is easy to generalize Eq. (4.27) to a three-dimensional crystal lattice (see Problem 4.4),

ψkðrÞ = eik
.rukðrÞ, (4.41)

where
ukðr+RÞ = ukðrÞ: (4.42)

For a three-dimensional lattice, in analogy with Eq. (4.31), we can write

k = k′+K, (4.43)
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where k′ is restricted to the first Brillouin zone. From Eq. (4.41) and (4.43), we obtain

ψkðr+RlÞ = eiðk′+KÞ.RlψkðrÞ
= eiK

.Rl eik′
.RlψkðrÞ

= eik′
.RlψkðrÞ:

(4.44)

From Eq. (4.44), it is evident that ψkðrÞ satisfies the Bloch’s theorem with the wave vector k′.
Thus, every state has a large number of possible wave vectors, differing from each other by the
reciprocal lattice vectors K. If we choose the value of K such that k′ lies in the first Brillouin zone
(which is the reduced zone scheme, in which we relabel k′ as k), there will be a large number of
eigenfunctions and eigenvalues corresponding to the same wave vector k.

If we introduce the band index n, which follows as a consequence of restricting the wave vector
k to the first Brillouin zone, Eq. (4.44) can be rewritten as

ψnkðrÞ = eik
.runkðrÞ (4.45)

and

unkðr+RÞ = unkðrÞ: (4.46)

Eq. (4.45) is known as the Bloch theorem; ψnkðrÞ is known as the Bloch function, and unkðrÞ is
known as the periodic part of the Bloch function. The Bloch theorem can also be proved by using
the translational symmetry of the crystal lattice.

4.6 PROOF OF BLOCH’S THEOREM FROM TRANSLATIONAL SYMMETRY
We will now prove Bloch’s theorem by using the translational symmetry of the crystal lattice.
Through use of a three-dimensional equivalence of Problem 4.1, it can be easily shown that the
translation operator T̂ðRiÞ is defined by

T̂ðRiÞf ðrÞ = f ðr+RiÞ: (4.47)

The Hamiltonian of the electron in the periodic potential can be written as

ĤðrÞ = − ħ2

2m
∇2 +VðrÞ: (4.48)

From Eqs. (4.4), (4.47), and (4.48), we obtain

T̂ðRiÞĤðrÞf ðrÞ = Ĥðr+RiÞf ðr+RiÞ = ĤðrÞf ðr+RiÞ = ĤðrÞT̂ðRiÞf ðrÞ: (4.49)

Because f ðrÞ is any arbitrary function of r, we obtain

T̂ðRiÞĤðrÞ = ĤðrÞT̂ðRiÞ: (4.50)

It is also easy to show that

T̂ðRiÞT̂ðRjÞf ðrÞ = f ðr+Ri +RjÞ = T̂ðRjÞT̂ðRiÞf ðrÞ, (4.51)

from which we have

T̂ðRiÞT̂ðRjÞ = T̂ðRjÞT̂ðRiÞ = T̂ðRi +RjÞ: (4.52)
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From Eqs. (4.49) and (4.52), we note that the Hamiltonian Ĥ and the translation operators T̂ðRiÞ
(corresponding to each Bravais lattice vector Ri) form a mutually commuting set of operators.
Therefore, according to an important theorem in quantum mechanics,5 these operators will have a
complete set of common eigenfunctions.

If ψðrÞ is one of the eigenfunctions of the Hamiltonian with eigenvalue ε,

ĤψðrÞ = εψðrÞ, (4.53)

it follows from the previous theorem that

T̂ðRiÞψðrÞ = CðRiÞψðrÞ = ψðr+RiÞ: (4.54)

Here, CðRiÞ are the eigenvalues of the translation operators T̂ðRiÞ. It also follows from Eq. (4.52)
and Eq. (4.53) that

CðRiÞCðRjÞ = CðRjÞCðRiÞ = CðRi +RjÞ: (4.55)

Because Ri andRj are Bravais lattice vectors, they can be expressed as

Ri = n1a1 + n2a2 + n3a3
and

Rj = m1a1 +m2a2 +m3a3,
(4.56)

where a1, a2, and a3 are the three primitive vectors of the Bravais lattice and n1, n2, n3, m1, m2, andm3

are appropriate integers corresponding to the lattice vectors Ri andRj: From Eqs. (4.55) and (4.56), it is
obvious that CðaiÞ must be an exponential of the form

CðaiÞ = epi , (4.57)

where pi, which could be a complex number, has to be determined. From Eqs. (4.56) and (4.57), we
obtain

CðRiÞ = Cða1Þn1Cða2Þn2Cða3Þn3 : (4.58)

From Eqs. (4.57) and (4.58), we obtain

CðRiÞ = en1p1+n2p2+n3p3 : (4.59)

We now restate the Born–von Karman boundary conditions (originally stated for a cubic crystal in
Eq. 3.11) for the wave functions of the electrons in a more general form (instead of restricting these
conditions to a cubic crystal),

ψðr+MiaiÞ = eMipiψðrÞ = ψðrÞ, i = 1, 2, 3, (4.60)

where M1, M2, andM3 are the number of primitive vectors in the directions a1, a2, and a3, respec-
tively. Obviously, the total number of primitive cells in the crystal

N = M1M2M3: (4.61)

From Eq. (4.61), we obtain

eM1p1 = eM2p2 = eM3p3 = 1: (4.62)

Eq. (4.62) yields the necessary condition that

pi =
2πimi

Mi

. i = 1, 2, 3, (4.63)
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where, m1, m2, andm3 are a set of integers. If we define the Bloch wave vectors as

k = ∑
3

i = 1

pi
2πi

bi, 0≤ mi <Mi, (4.64)

where bi, the primitive vectors of the reciprocal lattice, were defined in Eq. (1.16).
According to Eq. (4.64), the total number of k states in a Brillouin zone is M1M2M3, which is

also equal to the number of lattice points in the lattice. It is possible to have k outside the first
Brillouin zone by allowing the integers to be greater than Mi: However, the resulting k would
differ from the k within the first Brillouin zone by a reciprocal lattice vector K. Because
eik

.Ri = eiðk+KÞ.Ri , the resulting eigenfunction would be the same according to Eq. (4.45) as well as
from Eq. (4.67) (which we will prove), and because k is a label for this eigenvalue, two such k
values are physically identical. Thus, the number of physically distinct values of the Bloch wave
vector k equals the number of lattice sites of the original Bravais lattice.

We obtain from Eqs. (4.60), (4.63), and (4.64),

eiMik.ai = 1 (4.65)

and

CðRiÞ = eik
.Ri : (4.66)

We obtain from Eqs. (4.52) and (4.66), the Bloch theorem,

ψðr+RiÞ = CðRiÞψðrÞ = eik
.RiψðrÞ: (4.67)

If we identify the eigenfunctions ψðrÞ with a band index n and wave vector k (we will show the
importance and the necessity of the band index), Eq. (4.67) can be written in the more general form

ψnkðr+RiÞ = eik
.RiψnkðrÞ: (4.68)

The Bloch theorem stated in Eq. (4.68) can also be rewritten in the alternate form

ψnkðrÞ = eik
.runkðrÞ, (4.69)

where unkðrÞ is known as the periodic part of the Bloch function. In fact, from Eqs. (4.68) and
(4.69), we obtain

unkðr+RiÞ = unkðrÞ, (4.70)

from which the term periodic part is self-evident.

4.7 APPROXIMATE SOLUTION NEAR A ZONE BOUNDARY
To understand the occurrence of band gaps, we consider the results of Problem 4.4 (Eq. 10),

ðε0k−K − εÞCk−K +∑
K′

VK′−KCk−K′ = 0, (4.71)

where

ε0k−K ≡
ħ2ðk−KÞ2

2m
(4.72)
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is the free electron energy eigenvalue for an electron of wave vector k − K. We will also denote ε0k
as the free electron eigenvalue for wave vector k.

We can rewrite Eq. (4.71) as

ðε− ε0k−KÞCk−K = ∑
K′≠K

VK′−KCk−K′ (4.73)

because we have assumed that V0 = 0: Eq. (4.73) includes the terms K = 0 and K′= 0. If we use
nondegenerate perturbation theory and assume that���ε0k−K − ε0k−K′

���≫VK′−K, (4.74)

for all K′≠K and fixed k, Eq. (4.73) can be rewritten as

Ck−K = ∑
K′≠K

VK′−KCk−K′
ε− ε0k−K

: (4.75)

For another coefficient Ck−K1 corresponding to the reciprocal lattice vector K1 (where K1 satisfies
the condition of Eq. 4.74),

Ck−K1 =
VK−K1Ck−K

ε− ε0k−K1

+ ∑
K′≠K≠K1

VK′−K1
Ck−K′

ε− ε0k−K′
: (4.76)

In deriving Eq. (4.76), we have made the basic assumption that the free electron eigenvalue ε0k−K
is not nearly degenerate to any other ε0k−K′ in the set. Otherwise, the expansion of the energy in
Eq. (4.78) in second order and higher terms in V would not be valid.

From Eqs. (4.73) and (4.76), we obtain

ðε− ε0k−KÞCk−K = ∑
K′≠K

VK′−KVK−K′
ε− ε0k−K′

Ck−K + ∑
K″≠K′≠K

VK′−KVK−K′VK−K″
ðε− ε0k−K′Þðε− ε0k−K″Þ

Ck−K

+ higher-order terms inV :

(4.77)

Because the perturbed energy ε differs from the free electron energy ε0k−K by jV j2 or higher-order
terms (in the specific case of energy values that are neither degenerate nor nearly degenerate), we
retain the terms up to the second order in V, use the relation V−K = V�

K in Eq. (4.77), substitute ε
by ε0k−K in the denominator of the first term on the right, and obtain the expression for ε:

ε = ε0k−K + ∑
K′≠K

jVK′−K j2
ε0k−K − ε0k−K′

+OðV3Þ: (4.78)

Eq. (4.78) is valid as long as nondegenerate perturbation theory can be applied to the problem,
i.e., as long as ε0k−K ≠ ε0k−K′ (or sufficiently close in values so that the perturbation theory breaks
down). The simplest example is when k lies near a zone boundary, in which case the second-order
perturbation theory breaks down.

If k lies near a zone boundary (for simplicity, we assume that it lies near the boundary bisecting
the vector K), the electron undergoes a Bragg reflection by the lattice, similar to the situation as if
it would have been an external electron beam. In such a case, we will use degenerate perturbation
theory, consider only Ck andCk−K, and neglect the other coefficients.
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Eq. (4.73) can be rewritten as

ðε0k − εÞCk +VKCk−K = 0
V−KCk + ðε0k−K − εÞCk−K = 0:

(4.79)

From Eqs. (4.77) and (4.79), we obtain

ðε0k − εÞCk +VKCk−K = 0

V�
KCk + ðε0k−K − εÞCk−K = 0:

(4.80)

We have ε0k ≈ ε0k−K and jε0k − ε0k−Kj ≫V , when K≠K, 0. This is possible only when jk−Kj = jkj.
It is evident from Figure 4.6(a) that this is possible only when k lies on the Bragg plane that bisects the
line joining the origin of k space to the reciprocal lattice point K.

Eq. (4.80) can be solved from the determinant

ε0k − ε VK

V�
K ε0k−K − ε

�����
����� = 0: (4.81)

The solutions of the quadratic equation are

ε±ðkÞ= 1
2
ðε0k+ε0k−KÞ± ε0k−ε

0
k−K

2

� �2
+ jVK j2

	 
1
2
:

(4.82)

Thus, the free electron states eik
.r and

eiðk−KÞ.r with energy ε0k and ε
0
k−K are combined

into two other states ψ + andψ − with energy
ε+ ðkÞ and ε− ðkÞ:

It is easy to analyze Eq. (4.82) for points
lying on the Bragg plane because |k| = |k −K|
and ε0k = ε0k−K. This implies that k must lie on
the Brillouin zone boundary (see Figure 4.6a).
Further, at all points on the Bragg plane, one
energy level is raised by jVKj , whereas the other
energy level is lowered by jVKj: Thus, when k is
on a single Bragg plane, we can write

ε±ðkÞ = ε0k ± jVKj : (4.83)

Hence, there is an energy gap of 2 jVkj when
k = 1

2K. This is shown in Figure 4.7. This is
known as the band gap because the energy
levels are split into two bands. When k is closer
to the origin (far away from the Bragg plane),
the energy levels are practically the same as the
free electron energy levels.

(a)

(b)

K
k − K

O

k

1 K2

O

k

1 K2

k − 1 K2

FIGURE 4.6

(a) k lies in the Bragg plane determined by K if
|k|= |k− K|; (b) k− 1

2K is parallel to the Bragg plane
if k lies in the Bragg plane.
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In addition, when ε0k = ε0k−K, we obtain from
Eq. (4.82),

∂ε
∂k

= ħ2

m
k− 1

2
K

� �
: (4.84)

Eq. (4.84) implies that when k is on the
Bragg plane, the gradient of ε is parallel to
the Bragg plane (see Figure 4.6b). Therefore, the
constant-energy surfaces at the Bragg plane are
perpendicular to the plane because the gradient is
perpendicular to the surfaces on which a function
is constant.

It is easy to plot the energy bands from
Eq. (4.82) if k is parallel to K (see Figure 4.7).
When k=½K, the two bands are separated by a
band gap 2 jVk j .

It is much easier to consider the energy
bands in one dimension. In one dimension, if
we consider k at the zone boundary at ½K, we
note that (k −K)2 = k2 and ε0k = ε0k−K : Thus, in
Eqs. (4.20) and (4.23), we retain only the terms
involving aðkÞ and aðk−KÞ and write E = εðkÞ,
and we obtain

ðε0k − εðkÞÞaðkÞ+VKaðk−KÞ = 0, (4.85)

V−KaðkÞ+ ðε0k−K − εðkÞÞaðk−KÞ = 0: (4.86)

Because VK = V−K = VK � , Eqs. (4.85) and (4.86) can be solved by the determinant equation���� ε0k − εðkÞ VK

V�
K ε0k−K − εðkÞ

���� = 0, (4.87)

which can be rewritten as

εðkÞ2 − εðkÞðε0k−K + ε0kÞ+ ε0k−Kε
0
k − jVK j2 = 0: (4.88)

Thus, the two roots are

ε±ðkÞ = 1
2
ðε0k−K + ε0kÞ± 1

4 ðε0k−K − ε0kÞ2 + jVK j2
h i1

2
: (4.89)

When k=K/2 (at the zone boundary),

ε±ðK/2Þ = ε0K/2 ± jVK j : (4.90)

Substituting Eq. (4.90) in Eqs. (4.85) and (4.86), we obtain

j±VK jaðK/2Þ = −VKað−K/2Þ, (4.91)

for the two roots marked ±.

1 K2

k0

ε

2 Vk

FIGURE 4.7

Energy bands when k is parallel to K.
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The corresponding eigenstates ψ±ðrÞ are obtained from Eqs. (4.24), (4.85), and (4.86).
When k = K/2, assuming that VK is negative, aðK/2Þ = að−K/2Þ for the negative root and
aðK/2Þ = −að−K/2Þ for the positive root. Thus, we obtain

ψ–ðrÞ = aðK/2Þ½ei/2Kr + e−i/2Kr� (4.92)

and

ψ + ðrÞ = aðK/2Þ½ei/2Kr − e−i/2Kr�: (4.93)

Using the normalization conditions for the eigenstates, we obtain

ψ–ðrÞ = 1ffiffiffi
2

p ½ei/2Kr + e−i/2Kr� =
ffiffiffi
2

p
cos 1

2
Kr, (4.94)

and

ψ + ðrÞ = 1ffiffiffi
2

p ½ei/2Kr − e−i/2Kr� =
ffiffiffi
2

p
i sin 1

2
Kr: (4.95)

When k is near the zone boundary, we can define a wave vector δ, which measures the difference
of k from the zone boundary by

δ = K/2− k: (4.96)

From Eqs. (4.89) and (4.96), we obtain

ε±ðkÞ = ðħ2/2mÞ 1
4
K2 + δ2

� �
± ½4ε0K/2ðħ2δ2/2mÞ+ jVK j2�12

≅ ðħ2/2mÞ 1
4
K2 + δ2

� �
± jVK j ½1+ 2ðε0K/2/ jVK j2Þðħ2δ2/2mÞ�12:

(4.97)

From Eqs. (4.90) and (4.97), we obtain

ε±ðkÞ = ε±ðK/2Þ+ ðħ2δ2/2mÞ½1± 2ðε0K/2/ jVK j2�: (4.98)

When k � 0, or far from a zone boundary (in the extended zone scheme),

εðkÞ � ε0k � ħ2k2/2m, (4.99)

which is a free electron parabola. We will represent these results in the reduced, extended, and repeated
zone schemes described earlier for free electrons.

4.8 DIFFERENT ZONE SCHEMES
4.8.1 Reduced Zone Scheme
In the reduced zone scheme, the wave vector k always lies within the first Brillouin zone. If a wave
vector k′ lies outside the first Brillouin zone, one can always find a lattice vector K′ such that
k = k′−K′ lies within the first Brillouin zone. We show in Figure 4.8 the energy bands of a linear
lattice (with a periodic potential) in the reduced zone scheme.
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4.8.2 Extended Zone Scheme
In the extended zone scheme, the energy εðkÞ is
plotted against the wave vector k. We had seen
that for free electrons, the curve is the free elec-
tron parabola because εðkÞ = ħ2k2

2m :
However, in the presence of a periodic

potential, as we have seen, the parabola must
meet the zone boundary normally, and an
energy gap of 2|VK| develops between the lower
and the upper band. This gap increases as K
increases. The energy bands in the extended
zone scheme of a linear lattice with periodic
potential are shown in Figure 4.9.

Figure 4.10 shows the energy bands for a
linear lattice with periodic potential and suc-
cinctly demonstrates the development of the for-
bidden part of the zone (or more commonly
referred to as band gap) that increases as the
energy of the band increases.

ε (k)

ψ +

ψ −

1 K2
1 K− 2

O
k
→

FIGURE 4.8

The energy bands of a linear lattice in the reduced
zone scheme.

k

ε (k)

2 Vk

K

FIGURE 4.9

The energy bands of a linear lattice in the extended
zone scheme.

3π /a2π /aπ /a k0

E

Forbidden

Forbidden

FIGURE 4.10

The energy gaps in a linear lattice. The width in
energy increases as the energy of the band increases.
In pure materials, there are no eigenstates for
electrons with energy lying within these energy gaps.
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4.8.3 Repeated Zone Scheme
When the first Brillouin zone is periodically repeated through all k space, εðkÞ = εðk+KÞ. In fact,
εðk+KÞ is the same energy band as εðkÞ: This type of construction of energy bands is known as
the repeated zone scheme. This scheme is particularly useful in demonstrating the electron orbits in
a magnetic field. The repeated zone scheme and its connection with the reduced and extended zone
schemes is shown in Figure 4.11.

4.9 ELEMENTARY BAND THEORY OF SOLIDS
4.9.1 Introduction
We will now discuss the elementary band theory of solids using the one-dimensional lattice and
analyze how crystalline solids, of which the basic components are negatively charged electrons and
positively charged ions, have a wide diversity in physical properties. For example, some solids are
metals that are good conductors, some others are metals but poor conductors, some crystallize as
insulators, and the rest are crystals that are semiconductors. Each of these types of solids has widely
divergent properties. For example, whereas some metals such as the alkali metals are very good
conductors, some others such as the alkaline-earth metals are comparatively poor conductors.
Another striking feature is that the ratio of the resistivity of metals (good conductors) and insulators
is of the order of 10−20 at room temperature. As has been often remarked, this is one of the widest

E

Scheme

Zone

Extended

123 1

0

k1

−(k1− K) k1− K

−(k1+ K) k1+ K

π /a−π /a 2π /a−2π /a 3π /a−3π /a

2 3

Reduced zone

FIGURE 4.11

The repeated zone scheme for a linear lattice and its comparison with the reduced and extended zone
schemes shown in Figures 4.9 and 4.10.
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divergences in the physical properties occurring in nature. Another example is the difference
between the temperature dependence of the resistivity of metals and semiconductors. The resistivity
of metals, which is small at absolute zero, increases with increase of temperature. In contrast, the
resistivity of pure semiconductors, which are insulators (if the material is pure) at absolute zero,
decreases with increase of temperature. We will try to explain this wide variety of exotic properties
by using a simple one-dimensional band theory. In subsequent chapters, we will discuss the various
techniques used in the energy band theory of solids in three dimensions and discuss the properties
of various types of solids in a more rigorous manner.

4.9.2 Energy Bands in One Dimension
We have discussed how a periodic potential breaks the free electron energy curve, which is a para-
bola, into discrete segments of interval π/a: Thus, there is a forbidden region for eigenstates of elec-
trons in pure materials that is known as the energy gap. This energy gap increases with the increase
in energy; i.e., the higher the energy of the band, the larger its width in energy. This significant
fact, which is essentially the elementary band theory of solids, allows us to understand many of the
characteristic features of solids. The basic idea of the formation of these energy bands was shown
in Figure 4.10.

4.9.3 Number of States in a Band
Here, we consider a one-dimensional crystal constructed of primitive cells of lattice constant a. The
length of the crystal is L = Na, where N is the number of primitive cells. As we have noted, in one
dimension, the allowed values of the electron wave vector k in the first Brillouin zone are given by

k = 0; ± 2π
L
; ± 4π

L
; …, Nπ

L
: (4.100)

We note that because Nπ/L≡ π/a, the point, defined as −Nπ/L≡−π/a, is connected by a reciprocal
lattice vector K with π/a, and hence cannot be counted as an independent point. The total number
of points given in Eq. (4.100) is N. This result is also carried over to three dimensions; i.e., each
primitive cell contributes one independent value of k to each energy band. If one considers the spin
of the electron, each energy band will have 2N independent states.

4.10 METALS, INSULATORS, AND SEMICONDUCTORS
We can now discuss the reason crystalline solids have to be grouped into four extremely dissimilar
varieties: metals (good conductors), semimetals (poor conductors), insulators, and semiconductors.
First, by using the elementary band theory, we will discuss some of the general features that are
responsible for distinguishing solids into these four categories. Later, we will discuss some specific
examples in each category to illustrate the characteristic features.

If there is a single atom of valence one in each primitive cell, the first band (the bands are
stacked above each other with [increasing] energy gaps between them, as shown in Figure 4.11)
will be half-filled with electrons, and the solid will be a metal (good conductor) because there are
enough empty states available for electrons to be excited whenever an electric field E is applied. In
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fact, when an electric field E is applied, the force on the electron of charge –e is F = −eE. The
force is also the rate of change of momentum,

F = −eE = ħ dk
dt

: (4.101)

Because the alkali metals and noble metals have one valence electron per primitive cell, they are
good conductors. As an example, we consider sodium. Each Na atom has the atomic configuration
1s22s22p63s1. Thus, there is one valence electron in the 3s state in each separated Na atom, while
the 3s state could accommodate two valence electrons. When N such atoms are bound in a solid,
the 3s energy band has N electrons, and therefore, it is only half-filled (a band can accommodate
2N electrons). Thus, sodium is a good conductor because there are a large number of energy levels
available just above the filled ones and the valence electrons can be easily raised to a higher energy
state by an electric field, as shown in Eq. (4.101). In fact, as a rule of thumb, all monovalent solids
are good conductors.

According to the same rule of thumb, all divalent solids like the alkaline-earth metals that have
two valence electrons per primitive cell should be insulators. However, this is not true if we con-
sider a three-dimensional band picture. For example, we consider magnesium, of which the atomic
configuration is 1s22s22p63s2. The 3s energy band is full, and as per the one-dimensional band pic-
ture, magnesium should be an insulator. However, this is not true because in a three-dimensional
band picture, there is an overlap between the 3s and 3p bands, which is shown in Figure 4.12. In
fact, the same overlap was also there for sodium in a three-dimensional band picture, but we did
not have to take that fact into consideration because the 3s band was only half full. Because of this
overlap between 3s and 3p bands, magnesium, like all alkaline-earth metals, is a metal, but some
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FIGURE 4.12

(a) The overlap of the 3s and 3p energy bands in three dimensions. (b) In Al, the 3s band is full, but the 3p
band is not full. The upper energy level is the Fermi energy εF .
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divalent solids such as Sr and Ba are poor conductors because the overlap is small and a relatively
small number of electrons are excited when an electric field is applied.

We note in Figure 4.12a that the three components of the wave vector k are in different direc-
tions in the 3s and 3p bands. Thus, the lowest energy levels of the 3p band are lower in energy
than the highest energy levels of the 3s band, a fact that would be impossible in a one-dimensional
band picture. Because the electrons tend to occupy the lowest energy states, some electrons have
spilled over to the 3p band. We also note that the highest energy level in both bands is the Fermi
level εF , which is in conformity with the definition of the Fermi level.

All trivalent solids such as Al, Ga, In, and Tl are good metals because there are three valence elec-
trons per primitive cell, and hence, they can fill one and a half bands. For example, the atomic config-
uration of aluminum is 1s22s22p63s23p1. The valence electrons are in the 3p band that is half empty
and can be easily excited to higher energy states by an electric field. Therefore, aluminum is a very
good conductor. This is schematically shown in Figure 4.12b.

A crystalline solid becomes an insulator if it has only completely filled bands, provided the energy
gap between the last-filled band (known as the valence band) and the next allowed empty band (known
as the conduction band) is very large. The condition that the energy gap between the valence and con-
duction bands must be very large is due to the fact that the electrons can be thermally excited to the
conduction band at room temperature if the energy gap is small. In addition, when an electric field is
applied, the electrons are excited due to the external force (Eq. 4.101). The energy gap has to be large
enough to prevent the excitation of the electrons from the valence band to the conduction band at rea-
sonably large electric fields. The ionic crystals are good examples of insulators. The energy bands of an
ionic crystal such as NaCl are from the Na+ (1s22s22p6) and Cl−ð1s22s22p63s23p6Þ ions. Because both
of these ions have a closed-shell structure, all the occupied bands of NaCl are full and the energy gap
between the highest occupied band (valence band) and the next empty (conduction) band is very large.
Another example of an insulator that is a tetravalent solid is diamond, but the energy gap is very large
for it to become a semiconductor.

In an insulator, the energy gap is large enough to prevent the valence electrons to be excited to the
conduction band. However, if the applied electric field is greater than a critical value (known as the cri-
tical field), such that the valence electrons gain energy that is equal to or greater than the energy gap,
they can be excited to the conduction band. In such cases, the insulator behaves like a good conductor
as long as the applied electric field is greater than the critical field. Thus, insulators, which have large
energy gaps, are used as breaking devices in high-voltage transmission. When the external electric field
is greater than the critical field required to cross the energy gap, there is good transmission of electric
current because the insulator behaves as a good conductor, but when the applied electric field drops
below the critical value, the insulator stops the flow of current. The transmission of electricity is restored
by appropriate repairs such that the external electric field is again larger than the critical field.

In case of intrinsic semiconductors (pure semiconductors are called intrinsic in order to distin-
guish them from impurity [or doped] semiconductors), the energy gap between the valence band
and the conduction band is sufficiently low (0.7 eV for Ge and 1.09 eV for Si). Although an intrin-
sic semiconductor behaves as an insulator at absolute zero temperature, some valence electrons are
thermally excited to the conduction band, leaving behind an equal number of unoccupied states
(holes) in the valence band. We will later show that these holes act like positive charges. In an
applied electric field, both the (few) electrons in the conduction band and the holes in the valence
band are excited and move in opposite directions, thereby conducting electricity. However, because
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the number of conducting electrons and holes is much smaller than that compared to metals, the
resistivity of semiconductors is very large compared to that of metals. When the temperature is
increased, more valence electrons are excited into the conduction band, leaving behind more (posi-
tively charged) holes in the valence band. Thus, the resistivity of semiconductors decreases with
increase of temperature because of the increase in the number of carriers. In contrast, the resistivity
of metals increases with the increase of temperature because the electrons are scattered by the lattice
ions (phonons) and lattice impurities due to thermal vibrations.

We will now discuss the typical case of the most commonly used semiconductors such as Si
ð1s22s22p63s23p2Þ and Ge ð1s22s22p63s23p63d104s24p2Þ. We note that Si has two 3s and two 3p
electrons, and Ge has two 4s and two 4p electrons. Normally, we would expect Si and Ge to be con-
ductors because each one of them has four unfilled p states. However, the 3s and 3p levels (for Si)
and the 4s and 4p levels (for Ge) mix when they form covalent bonds. The energy of the electron
levels corresponding to the four space-symmetric wave functions, one for the 2s levels and three for
the 2p levels, is lowered. The energy of the other four levels, one 2s and three 2p, is raised. Thus, the
valence band has four levels per atom that are filled, whereas the conduction band is empty.

An interesting example is Sn, which is also a tetravalent solid. It has two phases: in one phase it
is metallic, whereas in another phase it is a semiconductor. The shape of the Brillouin zone changes
when the crystal structure is changed, and hence, it becomes possible to have large energy gaps to
hold all the electrons. On the other hand, Pb, which is a tetravalent solid is a metal because of the
band structure such that the electrons in the conduction band can be excited to higher energy states
by an electric field. To summarize, the elements in Group IV of the periodic table have a wide
range of properties. C in the form of a diamond is an insulator, Si and Ge are semiconductors, Sn
can either be a metal or a semiconductor, whereas Pb is a metal.

The pentavalent solids such as As, Sb, and Bi have 5 electrons per atom. However, their crystal
structure is such that there are 2 atoms per unit cell. Thus, there are 10 electrons per unit cell. These 10
electrons would normally fill 5 bands. However, due to the effect of the band structure, the fifth band is
not quite full because there is a little overlap (schematically very similar to Figure 4.12a) with the sixth
band. Therefore, even at zero temperature, a few electrons in both the fifth and the sixth bands are
always available to be excited (to carry the current) when an external electric field is applied. These are
poor conductors and are known as semimetals.

The iron group of the transition metals (Cr, Mn, Fe, Co, Ni) and the groups that are higher in
the periodic table have incomplete d-shells. For example, only 6 out of the 10 states in the 3d-shell
of Fe atom are filled, while two more electrons fill the outer 4s state. The d-orbitals in a solid over-
lap to form a “d-band” that can be treated by a tight-binding or LCAO method (see Chapter 5).
The two electrons that form an s-band (in some transition metals there are electrons in both s and p
states, and the corresponding band is known as the s-p-band) hybridize with the narrow d-band that
is capable of accommodating up to 10 electrons per atom. This hybridization between d-bands and
s-bands is shown in Figure 4.13. These bands are called resonance bands, and the hybridization is
important in understanding the magnetic phenomena. Because neither of the bands is full, these
solids are metallic and the conduction is mainly metallic.

The four possible band structures for a solid are shown in Figure 4.14. Thus, it is possible to
explain the occurrence of metals (good conductors), semimetals (poor conductors), insulators, and
(intrinsic) semiconductors from a simple one-dimensional picture of band theory. We will later dis-
cuss in detail the characteristic properties of each of these solids.
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We have summarized, by using the one-dimensional band theory of solids, the classification of
solids into metals (good conductors), semimetals (poor conductors), insulators, and semiconductors.
The rule of thumb is that each Brillouin zone has room for two electrons per primitive cell of a
sample. If we consider a linear lattice that has one monovalent atom per primitive cell, the Brillouin
zone is half filled. The electrons near the Fermi surface (the surface that separates the highest filled-
energy states from the empty states) can be accelerated by an applied electric field, and because
there are many empty states available, the metal is a good conductor. If there is one divalent atom
per primitive cell, the first zone should be normally filled with electrons. However, in a three-
dimensional band picture, there is usually overlap between the top of the electron states in the first
zone and the bottom of the empty electron states in the second zone. The energy gap (in different k
directions) disappears. This leads the electrons to spill over from the top of the first zone to the bot-

tom of the second zone, and the Fermi surface
is in both zones. Such metals are not very good
metals because of the small number of electrons
that are excited in an external electric field. If
the atom in each lattice point is trivalent, the
first Brillouin zone is completely filled, but the
second zone is half full.

The Fermi surface is in the second zone, and
because a large number of electron states above
the Fermi surface are empty, the solid is a metal
and a good conductor. If there is a quadrivalent
atom per primitive cell, the solid is either an
insulator or a semiconductor depending on the
magnitude of the energy gap. If there are two
quadrivalent atoms per primitive cell (examples

Allowed, occupied

Allowed, empty

Forbidden

Conductor
(a)

Key Conductor
(c)

Semiconductor
(d)(b)

Insulator

FIGURE 4.14

Four possible band structures for a solid: (a) conductor because the band is partially full, (b) insulator because
of large energy gap between the filled and the empty bands, (c) semimetals because the allowed bands overlap,
and (d) semiconductor because of the very small energy gap between the filled and the empty bands.
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FIGURE 4.13

(a) d-bands crossing s-bands; (b) s-d hybridization.
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are diamond, silicon, and germanium), there are eight valence electrons per primitive cell. Because the
bands do not overlap, diamond is an insulator (because of the large energy gap), and both silicon and
germanium are intrinsic semiconductors because of the small energy gap. In both cases, there is no
Fermi surface in the usual sense, but for semiconductors, the Fermi level is usually located at the center
of the energy gap.

The electrons in metals in the highest occupied states have immediate access to the empty states,
and the surface that separates these states is called the Fermi surface. However, the highest occupied
electron states in insulators and semiconductors (at zero temperature) are separated from each other
by energy gaps. Thus, the Fermi surface plays a vital role in determining the properties of metals.
The Fermi surface of free electrons is a sphere in three dimensions. However, the Fermi surface is
much more complex in a metal because of the periodic potential. To be able to understand the
increasing complexity of the Fermi surface in such solids, we need to first understand the properties
of two- and three-dimensional lattices and the Brillouin zones. In the nearly free electron approxi-
mation, a constant-energy surface is perpendicular to a Bragg plane when they intersect.

4.11 BRILLOUIN ZONES
We will first discuss the Brillouin zones for a two-dimensional square lattice, which we discussed in
Chapter 1. The Bragg planes bisect the line joining the origin to points of the reciprocal lattice. The
first Brillouin zone is defined as the set of points reached from the origin without crossing any
Bragg plane (except that the points lying on the Bragg planes are common to two or more zones).
The second Brillouin zone is the set of points that can be reached from the first zone by crossing
only one Bragg plane. One can make a generalization of this definition and define the nth Brillouin
zone as the set of points that can be reached from the origin by crossing no fewer than n – 1 Bragg
planes. The first four zones of the two-dimensional square Bravais lattice are shown in Figure 4.15.

In general, a Brillouin zone can be constructed by using the rule that an incoming wave scatters
strongly off a lattice with reciprocal lattice vector K, only when

k .K = ½K2: (4.102)

The set of points that satisfy Eq. (4.102) is a
plane that is perpendicular to the vector connect-
ing the origin to K and lying midway between 0
and K. When many such planes are constructed
using all possible K values, the origin would be
enclosed within a solid region. This is the first
Brillouin zone because all points inside are closer
to the origin than any reciprocal lattice vector.
An example of this construction is the Brillouin
zone of a two-dimensional centered rectangular
lattice shown in Figure 4.16.

As explained earlier, the nth Brillouin zone
is constituted of the set of points in reciprocal
space that is closer to the n – 1 reciprocal points

1

2 4

4
3

FIGURE 4.15

Brillouin zones for a two-dimensional square Bravais
lattice. The first three zones are contained entirely in
the square.
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than it is to the origin. The construction of the
first three Brillouin zones for a rectangular cen-
tered lattice is obviously more complicated than
a square lattice. Such construction for the first
three Brillouin zones, shaded in different ways,
is shown in Figure 4.17.

The first zone is the set of points closer to
the origin than any other reciprocal lattice point.
The second zone is constituted of the set of
points that one reaches by crossing only one
zone boundary. The third zone is the set of
points that one reaches by crossing a minimum
of two zone boundaries.

The construction of Brillouin zones for a
three-dimensional lattice gets more complicated.
For example, the first Brillouin zone of a simple
cubic lattice is simple cubic, but the first Bril-
louin zones of a bcc and a fcc lattice are much
more complicated. The first Brillouin zone of a simple cubic lattice with the symmetry points is
shown in Figure 4.18. (The symmetry points are explained in Appendix A.)

In Figure 4.18, the point Γ is at the center of the zone. R is at the corner of the cube that is con-
nected to the other corners so that all eight corners are a single point. Γ and R have the same representa-
tion, the cubic group. X is at the intersection of the kz axis with the lower face of the cube. M is at the
intersection of the kxky plane with the vertical edges (there are three equivalent points to M). M and X
have the same symmetry elements 4/mmm. T is equivalent to the three points on the other vertical
edges. The points T and Δ have the same point group, 4mm. The point Λ has point group 3m. The
points Σ and S are holomorphic to 2mm. The point Z has two mirror planes and a two-fold axis.
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2 4
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3

FIGURE 4.16

The zone boundaries for a two-dimensional centered
rectangular lattice are obtained by drawing
perpendicular bisectors between the origin and the
nearby reciprocal points.

2

1

2

2 2
3

33

3

3

3

FIGURE 4.17

The first three Brillouin zones of a two-dimensional
centered rectangular lattice.
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FIGURE 4.18

First Brillouin zone of the simple cubic lattice.
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The first Brillouin zone of the body-centered
cubic lattice, which is a rhombic dodecahedron,
is shown in Figure 4.19 along with the symme-
try points and the axes.

The symmetry operations of Γ,Δ,Λ,Σ are
the same as the similar points in the simple
cubic lattice shown in Figure 4.19. H has the
full cubic symmetry like Γ.

The Brillouin zone of a face-centered cubic
lattice is a truncated octahedron that is shown in
Figure 4.20. Here, Γ is at the center of the zone,
L is at the center of each hexagonal face, X is at
the center of each square face, and W is at each
corner formed from one square and two
hexagons.

The Brillouin zone of the hexagonal close-packed structure is shown with the symmetry points
in Figure 4.21.

4.12 FERMI SURFACE
4.12.1 Fermi Surface (in Two Dimensions)
For free electrons, the Fermi surface is a circle in two dimensions and a sphere in three dimensions.
The two-dimensional Fermi circles corresponding to one, two, and three electrons per atom for a
square lattice are shown in Figure 4.22.
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FIGURE 4.19

The first Brillouin zone of the bcc lattice.
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FIGURE 4.20

The Brillouin zone of the fcc lattice showing the
symmetry points.
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FIGURE 4.21

The Brillouin zone of the hcp structure.
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The weak periodic potential causes a distortion
of the Fermi circle of a two-dimensional electron
gas as it approaches the zone boundary. For exam-
ple, in Figure 4.22, the free electron circle c1 is
entirely within the first Brillouin zone. How-
ever, the free electron circles c2 and c3 inter-
sect the zone boundaries. Because there is an
energy gap between the electron states in the
zone boundaries, the Fermi circle is distorted
as it approaches the zone boundaries. In addi-
tion, the energy curves must be normal to the
zone boundaries and develop “necks.” The dis-
tortion of the Fermi circle by the weak peri-
odic potential is shown in Figure 4.23.

However, the distortion of the Fermi circle
does not suddenly develop only when the circle
approaches the Brillouin zone boundary. The energy contours develop bumps that increase as they
approach the zone boundary. The free electron Fermi circles are distorted much before they
approach the zone boundary and develop “necks” at the zone boundary because of the energy gap.
The distortion of these energy contours is shown in Figure 4.24.

We note from Figure 4.24 that there is a decrease in the constant energy contour when the
Fermi circle has contact with the Brillouin zone.

c1 c3c2

FIGURE 4.22

Two-dimensional Fermi circles corresponding to one,
two, and three electrons per atom in the Brillouin
zones of a square lattice (without distortion at the
zone boundaries).

FIGURE 4.23

The distortion of the Fermi circle of a two-dimensional
electron gas due to a periodic potential.

ky

kx

FIGURE 4.24

Distortion of the free electron Fermi circles as energy
contours approach the zone boundaries.

120 CHAPTER 4 Nearly Free Electron Model



4.12.2 Fermi Surface (in Three Dimensions)
The occupied states of the free electron gas lie within a sphere. The radius of this sphere is the
Fermi radius, and the surface is the Fermi surface. In Figure 4.25a, it is shown that when VK = 0,
the free electron Fermi sphere meets the zone boundary at a distance ½K from the origin O, but
there is no distortion of the Fermi surface. In Figure 4.25b, VK ≠ 0 and there is distortion of the
Fermi sphere at the zone boundary. The Fermi surface intersects the plane in two circles.

It can be shown (Problem 4.6) that the radii r1 and r2 of these circles are related by the equation

ðr12 − r2
2Þ = 4m

ħ2
jVKj : (4.103)

In Figure 4.26, we show a free electron Fermi surface completely enclosing the first Brillouin zone
of a two-dimensional centered rectangular lattice. We note that the shape of the Fermi surface is
modified near the zone boundaries.

Figure 4.27 shows the portion of the Fermi surface in the second Brillouin zone that is mapped
back into the first zone so that the energy surface is continuous. This is essentially achieved by using
the reduced zone scheme. The portion of the Fermi surface is mapped back to the first Brillouin zone
by appropriate translations through reciprocal lattice vectors so that the energy surface is contiguous,
as shown in Figure 4.27. However, this method of mapping back the Fermi surface to the first Bril-
louin zone by any single reciprocal lattice vector becomes increasingly complicated even when there
are electron states in the third Brillouin zone. In that case, it is not possible to map the contiguous
portions of the third Brillouin zone into the first Brillouin zone by a single reciprocal lattice vector. In
such cases, Harrison’s method of construction of the Fermi surface becomes very useful.

4.12.3 Harrison’s Method of Construction of the Fermi Surface
When the band structure of a solid gets more complicated and the number of valence electrons per
atom is large, it becomes very difficult to draw the Fermi surface of a metal. As we have noted, the
shape and contours of the Fermi surface are important in determining the physical properties of a
metal. To make this task simpler, Harrison2 proposed a method of constructing the Fermi surface of

O

(a)

K1
2

K1
2

O

(b)

r1 r2

FIGURE 4.25

(a) Free electron sphere cutting Bragg plane when VK= 0; (b) free electron sphere cutting Bragg plane when VK≠ 0.
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a metal of valence Z by using the periodic zone
scheme. According to his method, if the perturb-
ing potential is very small, the energy surfaces
must be spheres. The radius of the sphere,
which contains ½Z times the volume of a zone
(there are two electrons per each k state because
of spin), is drawn with the center at the origin.
The same sphere is drawn about each point of
the reciprocal lattice, and one obtains a pattern
that has the periodicity of the repeated zone
scheme. Harrison’s construction of the free elec-
tron Fermi surface is shown in Figure 4.28.

From Figure 4.28, one can choose various
parts that are continuously fitted together such
that the surfaces are repeated in each zone.
These different figures are either a branch of the
Fermi surface or a part of the Fermi surface in
the second and the third zone. The first zone is
completely filled and therefore does not have a Fermi surface. The different parts of the Fermi
surface for the second and the third zones are shown in Figures 4.29a and b.

We note from Figures 4.29a and b that these surfaces have cusps where the parts join because they
are drawn for spherical Fermi surfaces (free electrons). However, in the nearly free electron model, the
Fourier components of the potential would round off the corners, and one would obtain smooth

FIGURE 4.27

The portion of the Fermi surface in the second
Brillouin zone mapped back to the first zone.

FIGURE 4.26

Free electron Fermi surface completely enclosing the
Brillouin zone of a two-dimensional centered
rectangular lattice.

FIGURE 4.28

Free electron Fermi surface constructed by using
Harrison’s method.
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geometrical objects. This rounding off of the corners and the fact that the line of constant energy inter-
sects the zone boundary at normal incidence are shown for a corner of the third zone in Figure 4.30.

A more visual construction of Harrison’s method (see Figure 4.31) shows how the surface in the nth
Brillouin zone looks when it is mapped into the first Brillouin zone (i.e., the reduced zone scheme).

FIGURE 4.30

One corner of the third zone of Figure 4.29b due to
the effect of the periodic potential.

FIGURE 4.31

The Harrison construction of the Fermi surfaces for a
two-dimensional centered rectangular lattice.

(b)(a)

FIGURE 4.29

(a) Fermi surface of the second zone in the reduced zone obtained from Harrison’s construction
(Figure 4.28). The orbit is a hole orbit. (b) Fermi surfaces in the third Brillouin zone. The orbit in the top-right
corner (rosettes) is in the reduced zone scheme.
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Figure 4.31 shows how the surface of the nth Brillouin zone looks when it is mapped back into
the first Brillouin zone. The Fermi sphere in the second Brillouin zone is identified by all points in
the first Brillouin zone that are inside two or more spheres. The Fermi sphere in the third Brillouin
zone is identified by all points in the first Brillouin zone that are inside three or more spheres. One
can extend this method of obtaining Fermi surfaces in three dimensions by using the operations
of constructive solid geometry. The free electron Fermi surface of aluminum in the reduced zone
scheme, as obtained by Harrison, is shown in Figure 4.32.

PROBLEMS
4.1. It can be shown in quantum mechanics that the momentum operator is the generator of

infinitesimal translations ε (equivalent to an analogous relation in classical mechanics)

T̂ðεÞ = 1− iε
ħ
p̂: (1)

First zone—full

Third zone—electrons Fourth zone—electrons

Second zone—holes

U U

K K

W W

X
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Γ

Γ

Γ

Γ

FIGURE 4.32

Free electron Fermi surface of aluminum in the reduced zone scheme obtained by Harrison.
Reproduced from Harrison2 with the permission of the American Physical Society.
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Using ε= a/N in Eq. (1), one obtains

T̂ða/NÞ = 1− ia
ħN

p̂: (2)

By using the formula

e−ax = lim
N!∞

ð1− ax
N ÞN , (3)

show that the operator T̂ðaÞ corresponding to a finite translation a (in one dimension) can be
obtained by

T̂ðaÞ = lim
N!∞

½T̂ða/NÞ�N = e−iap̂/ħ: (4)

4.2. In general, any function f (r) can be expanded in terms of the plane waves that form a
complete set of functions. However, if a function f ðrÞ = f ðr+RÞ for all r and all k in the
Bravais lattice, then it is easy to show that

f ðrÞ = ∑
K
fKe

iK.r (1)

because only eiK
.r has the periodicity of the lattice. Show that the Fourier coefficients fK are

given by

fK = 1
v

Z
C

dr e−iK
.rf ðrÞ, (2)

where v is the volume of the primitive cell C. To prove Eq. (2), first show thatZ
C

dreiK
.ðr+lÞ =

Z
C′

dreiK
.r =

Z
C

dreiK
.r, (3)

where C′ is the translated cell when C is translated through a vector l. From Eq. (3), one obtains

ðeiK.l − 1Þ
Z
C

dr eiK
.r = 0, (4)

from which it follows that (because eiK
.l ≠ 1ÞZ

C

dr eiK
.r = 0, (5)

which is needed to prove Eq. (2) from Eq. (1).

4.3. By using the Born–von Karman boundary conditions, one obtains the periodicity for a crystal
lattice (which can be considered as a very large Bravais lattice with the volume of the
primitive cell V, the volume of the crystal),

f ðrÞ = f ðr+MiaiÞ, i = 1, 2, 3: (1)

It has been shown that a vector of the reciprocal to this lattice has the form

k = ∑
3

i=1

mi

Mi
bi: (2)
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In a manner similar to Problem 4.2, show that if

f ðrÞ = ∑
k
fke

ik.r, (3)

then Z
V

dr eik
.r = 0, (4)

and

fk = 1
V

Z
dre−ik

.rf ðrÞ: (5)

4.4. It was shown in Eq. (4.4) that the lattice potential VðrÞ has the periodicity of the lattice,

VðrÞ = Vðr+RÞ: (1)

Therefore, using the results from Problem 4.2, one obtains

VðrÞ = ∑
K
VðKÞeiK.r: (2)

From Eq. (2) of Problem 4.2, one obtains

VðKÞ = 1
v

Z
C

dr e−iK
.rVðrÞ . (3)

Assume that V(0) = 0. Show that because VðrÞ is real and if the crystal has inversion
symmetry,

VðKÞ = Vð−KÞ = VðKÞ�: (4)

Because the wave function ψðrÞ can be expanded in the set of plane waves

ψðrÞ = ∑
q
Cqe

iq.r, (5)

where the q′s are wave vectors of the form q = ∑
3

i=1

mi
Mi
bi, show that the Schrodinger equation

can be written as

− ħ2

2m
∇2 +VðrÞ−E

� �
ψðrÞ = ∑

q

ħ2

2m
q2 −E

� �
Cq +∑

K′
VK′Cq−K′

� �
eiq

.r = 0: (6)

The coefficient of each term in Eq. (6) must vanish (because the plane waves are orthogonal),

ħ2

2m
q2 −E

� �
Cq +∑

K′
VK′Cq−K′ = 0: (7)

If q = k−K, where k lies in the first Brillouin zone and changing the variables to K′ !
K′−K, show that Eq. (7) can be written as

ħ2

2m
ðk−KÞ2 −EÞCk−K

� �
+∑

K′
VK′−KCk−K′ = 0: (8)
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Eq. (8) shows that for a fixed k in the first Brillouin zone, only wave vectors that differ from k
by a reciprocal lattice vector are coupled. Rewriting ψðrÞ as ψKðrÞ and E as ε, from Eqs. (5)
and (8), show that

ψkðrÞ = eik
.rð∑

G
Ck−Ke

−iK,rÞ, (9)

and

ħ2

2m
ðk−KÞ2 − ε

� �
Ck−K +∑

K′
VK′−KCk−K′ = 0: (10)

Define

ukðrÞ = ∑
K
Ck−Ke

−iK.r, (11)

and hence show from Eqs. (9) and (11) that

ψkðrÞ = eik
.rukðrÞ: (12)

From Eq. (11), show that

ukðr+RÞ = ukðrÞ: (13)

Here, ψkðrÞ is the Bloch function, and ukðrÞ is the periodic part of the Bloch function (in
three dimensions).

4.5. In the Kronig–Penney model, an electron in a one-dimensional lattice is in the presence of a
potential

VðxÞ = ∑
n
V0ϕðx− nbÞφðnb+ c− xÞ, (1)

where b > c, n is zero or a positive integer, b + c= L and φ is the Heaviside unit-step function

φðxÞ = 0, x< 0:
1, x> 0:

� �
: (2)

The one-dimensional periodic potential can be represented as

Vðx+LÞ = VðxÞ, (3)

as shown in Figure P4.1. The potential energy as a function of distance is given in Figure P4.1
Because there is symmetry under the displacement by L, it can be shown that the
eigenfunction is

ψðxÞ = eikxuðxÞ, (4)

where u(x+ L)= u(x) and k is arbitrary, and as we will show, it is the propagation constant. In
addition, we consider the one-dimensional periodic potential visualized as a ring of
circumference NL, such that

ψðx+NLÞ = ψðxÞ: (5)
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From Eqs. (4) and (5), we obtain

eikðx+NLÞ = eikx, (6)

from which, we obtain

k = 2πn
NL

, where n = 0, ±1, ±2, :::: (7)

Here, k is called the propagation constant of the state. We represent the wave function as

ψðx+LÞ = eikLψðxÞ,
ψðxÞ = eikxuðxÞ, (8)

where

uðx+ LÞ = uðxÞ: (9)

The advantage of Eq. (8) is that if we know ψðxÞ for any one cell of the periodic lattice, it
can be calculated for any other cell.

To solve this problem, one can use the one-dimensional equivalence of Eq. (4.35) (except
that k is now called the propagation constant of the state k = 2πn

NL ),

d2u
dx2

+ 2ik du
dx

+ 2m
ħ2

E−VðxÞ− ħ2k2

2m

	 

uðxÞ = 0: (10)

From Figure P4.1 and Eq. (9), we have the periodicity condition

uðx+ LÞ = uðxÞ and duðx+LÞ/dx = duðxÞ/dx: (11)

Introducing the notations

k1 = 2mE
ħ2

� �1
2 and k2 = 2m

ħ2
ðV0 −EÞ

h i1
2, (12)

the solution of Eq. (10) for the square lattice can be written as

u1ðxÞ = A eiðk1−kÞx +Be−iðk1+kÞx, (13)

for the region of the well (from x= 0 to x= b), and

u2ðxÞ = Ceðk2−ikÞx +De−ðk2+ikÞx, (14)

First cell

V0

0

0 b L

E

x

c

Second cell

FIGURE P4.1

The Kronig–Penny model of the square potential lattice.
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for the region of the hill (x= b to x= L). Using the periodicity conditions mentioned
previously, show that

A+B = e−ikL½Cek2L +De−k2L�, (15)

and

ik1ðA−BÞ = k2e
−ikL½Cek2L −De−k2L�: (16)

Show from the continuity conditions that

Aeik1b +Be−ik1b = Cek2b +De−k2b, (17)

and

ik1½Aeik1b −Be−ik1b� = k2½Cek2b −De−k2b�: (18)

Eqs. (15) through (18) have nontrivial solutions only if the determinant of the matrix of the
coefficients vanishes. Show that

cos k1b cosh k2c −
k21 − k22
2k1k2

sin k1b sinh k2c = cos kL, E<V0: (19)

It can also be shown that

cos k1b cos k2c−
k21 + k22
2k1k2

sin k1b sin k2c = cos kL, E>V0: (20)

Eqs. (19) and (20) can be solved numerically, and the results are shown in Figure P4.2. The
remarkable feature is that the right sides of the eigenvalue equations are bound between –1
and +1. Thus, only those values of E that make the left side of these equations also lie in the
same interval and all other values are excluded. This is the origin of the band structure in
solids.

+1

0 1 2 3
E/V0

−1

FIGURE P4.2

The left sides of Eqs. (19) and (20) are plotted as functions of E that join smoothly at E= V0. The heavy lines
display the allowed range of energy values.
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4.6. If we write

k = ½K+ q,

Eq. (4.82) can be rewritten as

εðkÞ = ε0K/2 +
ħ2q2

2m
± 4ε0K/2

ħ2q2k
2m + jVKj2

� �1
2
, (1)

where qk is the parallel component of q. We can also write

εF = ε0K/2 − jVKj + δ: (2)

Show that:

a. When δ< 0, no Fermi surface intersects the Bragg plane.
b. When 0< δ< 2|VK|, the Fermi surface intersects the Bragg plane in a circle of radius,

r =
ffiffiffiffiffiffiffiffiffi
2mδ
ħ2

r
: (3)

c. When δ > |2VK|, the Fermi surface cuts the Bragg plane in two circles (because it lies in both
bands) of radii r1 and r2 and

r1
2 − r2

2 =
4m jVKj

ħ2
: (4)
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5.1 INTRODUCTION
In the preceding chapter, the nearly free electron approximation was described in detail. In this
approximation, the valence electrons are considered to be nearly free electrons moving in a back-
ground of positive charges that are arranged in a regular array such that the potential is periodic. The
positive charges are actually the cores of the atoms in which the valence electrons have been stripped
from the parent atoms. These cores either are located at the lattice points or a group of cores is located
symmetrically around each lattice point. The cores are constituted from atomic orbitals that are essen-
tially localized. In general, these atomic orbitals do not overlap. However, in some cases, the loca-
lized atomic orbitals overlap to an extent such that they form Bloch functions in the crystalline solid.

5.2 TIGHT-BINDING APPROXIMATION
It is useful to formulate a linear combination of these atomic orbitals such that they would be Bloch
functions as required for wave functions in a crystalline solid. Thus, the tight-binding approximation,
formulated for the core electrons, complements the nearly free electron approximation formulated for
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the valence electrons. The tight-binding method is very useful in calculating the energy bands of
partially filled d-shells of transition metal atoms as well as for describing the electronic structure of
insulators.

In its simplest form, the tight-binding method can be expressed as follows. We assume that
ϕaðrÞ is an atomic orbital for a free atom located at a lattice point at the origin; i.e., it is the ground
state of an electron moving in the potential vaðrÞ of an isolated atom such that the energy is εa. As
a first approximation, we consider a monatomic lattice with one atom located at each lattice point.
We assume that the free atom is in an s state since the bands obtained from the other (p, d,…)
states are much more complicated because the atomic levels are degenerate. We further assume that
the influence of one atom on another is small. If the bound levels of the atomic Hamiltonian ðHaÞ
are localized, the Schrodinger equation can be written as

HaϕaðrÞ = εaϕaðrÞ, (5.1)

where

Ha = − �h2

2m
∇2 + va: (5.2)

The range of ϕaðrÞ is very small when r exceeds the distance of a lattice constant. However, in
the crystalline solid, the Hamiltonian H would differ from the atomic Hamiltonian because of the
corrections to the atomic potential in the crystal lattice. If we write ΔVðrÞ as the (small) correction
to the atomic potential in the lattice (the difference between the periodic potential in the crystal
lattice and the potential of an isolated atom), the crystal Hamiltonian H can be written as

H = Ha +ΔVðrÞ: (5.3)

The periodic potential VðrÞ is the sum of the atomic potential vaðrÞ and the correction term ΔVðrÞ,
VðrÞ = vaðrÞ+ΔVðrÞ: (5.4)

In Figure 5.1, rϕaðrÞ and ΔVðrÞ are drawn
along a linear chain of the atomic sites that are
located at the lattice points.

The Schrodinger equation can be written as

− �h2

2m
∇2 +VðrÞ

� �
ψkðrÞ = EkψkðrÞ: (5.5)

We note that the eigenfunctions ψkðrÞ have to
be Bloch functions. As a zero-order approxi-
mation, we assume that ΔVðrÞ = 0 in the region
where ϕaðrÞ≠ 0: In that case, we can construct
the Bloch functions as a linear combination of
the atomic orbitals

ψkðrÞ = ∑
i
eik

.Riϕaðr−RiÞ, (5.6)

rφa

r
ΔV(r)

FIGURE 5.1

Here, rϕa(r) and ΔV (r) are plotted against r in a
linear chain of atomic sites.
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where the Ri are the complete set of Bravais lattice vectors in the crystal lattice. We will now prove
that ψkðrÞ are Bloch functions. From Eq. (5.6),

ψkðr+RjÞ= ∑
i
eik

.Riϕaðr+Rj −RiÞ
= eik

.Rj∑
i
eik

.ðRi−RjÞϕaðr+Rj −RiÞ
= eik

.Rj∑
l
eik

.Rlϕaðr−RlÞ
= eik

.RjψkðrÞ,

(5.7)

which are the criteria for the Bloch functions.
The expectation value of the energy can be written as

εðkÞ =

Z
ψ�
k − �h2

2m
∇2 +VðrÞ

� �
ψkðrÞdrZ

ψ�
kðrÞψkðrÞdr

: (5.8)

Assuming that the overlap between the neighboring cells is small,Z
ψ�
kðrÞψkðrÞdr≈ 1: (5.9)

We obtain from Eqs. (5.4) and (5.8),

εðkÞ≈∑
i, j
eik

.ðRi−RjÞ
Z

ϕ�
aðr−RjÞ − �h2

2m
∇2 + vaðrÞ+ΔVðrÞ

� �
ϕaðr−RiÞdr: (5.10)

From Eqs. (5.1) and (5.10), we can write εðkÞ in the alternate form

εðkÞ = εa +N∑
l
e−ik

.Rl

Z
ϕaðr−RlÞΔVðrÞϕaðrÞdr: (5.11)

Here, N is the number of atoms in the monatomic crystal lattice. Neglecting all integrals except
those at the atomic sites and between the nearest-neighbor atomic sites and defining Rn as the
nearest-neighbor lattice vectors of a primitive lattice in which the origin is located, we can rewrite
Eq. (5.11) in the alternate form

εðkÞ≈ εa − β− γ∑
l
e−ik

.Rl , (5.12)

where

β = −N
Z

ϕ�
aðrÞΔVðrÞϕaðrÞdr, (5.13)

and

γ = −N
Z

ϕ�
aðr−RnÞΔVðrÞϕaðrÞdr: (5.14)

5.2 Tight-Binding Approximation 133



As an example, we consider a simple cubic
lattice. The nearest-neighbor positions of a
simple cubic lattice of lattice constant a are
Rn = ð±a, 0, 0Þ, and ð0,±a, 0Þ, ð0, 0,±aÞ: Thus,
Eq. (5.12) becomes

εðkÞ= εa−β−2γðcoskxa+ coskya+ coskzaÞ:
(5.15)

The energies are located in a band of width 12 γ:
If ka�1, Eq. (5.15) yields

εðkÞffiεa−β−6γ+γk2a2: (5.16)

In this derivation, we have considered only
one state (the s state) of the free atom and
obtained one band. We note that usually for s
states, β=0: We also note that Eq. (5.15) is peri-
odic in k and therefore only those values of k
lying in the first Brillouin zone will define inde-
pendent wave functions. The number of states in
the first Brillouin zone that corresponds to a non-
degenerate atomic level is equal to 2N. In Figure
5.2, we schematically show εðkÞ plotted as a func-
tion of k along the cube axis by using the tight-
binding method. Here, εðkÞ has a minimum at k
= 0 along the cube direction and a maximum at
k=ðπ/a,0,0Þ, which is the zone boundary.

Thus, for every state of an electron in the
free atom, there will be a band of energies in
the crystal. The complexities of the problem
increase for higher atomic levels. One can gen-
eralize by stating that when N identical atoms
are kept far apart, and each atom has several
different atomic levels (orbitals), there will be
N-fold degenerate states for a single electron.
When these atoms are brought closer, the atomic
orbitals overlap, and a band that has N states is formed. This is shown in Figure 5.3.

Thus, one can refer to the 3s-band, 3p-band, 3d-band, and so on. It is too simplistic to consider
these higher atomic states in the simple tight-binding method discussed previously. However, in
Figure 5.3, we have schematically shown the formation of bands in solids by using the tight-binding
method. Figure 5.4 shows the broadening of the bands that ultimately overlap.

It is important to note at this stage that when these bands, formed from different atomic orbitals,
broaden and overlap, the tight-binding method has to be modified and one uses the linear combina-
tion of atomic orbitals (LCAO method). We will discuss specific cases of such overlaps when we
consider the p- and d-bands as well as the s‑d “resonance” bands.

ε (k)

−π /a π /a
k

O
100

2r

εa

FIGURE 5.2

Here, ε(k) is plotted as a function of k along the
cube axis.

Bands
in

solid

Levels of
free atoms

N-fold

N-fold

N-fold

ε

εc

εb

εa

O
a

FIGURE 5.3

Formation of bands from atomic levels as the atoms
come closer.
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5.3 LCAO METHOD
In the linear combination of atomic orbitals (LCAO) method (Ref. 18), the Bloch wave function of the
crystalline solid is expanded in terms that are linear combinations of atomic orbitals. Thus, Eq. (5.1) is
rewritten as

ψkðrÞ = ∑
i
eik

.Riϕcðr−RiÞ, (5.17)

where

ϕcðrÞ = ∑
j
βjϕjðrÞ, (5.18)

βj are arbitrary constants to be determined, and ϕjðrÞ is one of the set of localized atomic orbitals on the
atom located at the origin. In general, ψkðrÞ is used as a trial wave function and βj are obtained by
minimizing the ground-state energy.

The crystal Schrodinger equation can be rewritten as

HψkðrÞ = εðkÞψkðrÞ, (5.19)

where

H = Hat +ΔVðrÞ: (5.20)

Multiplying Eq. (5.19) by one of the atomic wave functions, ϕa
�ðrÞ, and integrating over all r, we

obtain Z
ϕa

�ðrÞ½Hat +ΔVðrÞ�ψkðrÞdr = εðkÞ
Z

ϕa
�ðrÞψkðrÞdr, (5.21)

V (r)

n = 1

n = 2
n = 3

r

Energy levels

N-fold
degenerate

levels

(a) (b)

(Spacing)−1

FIGURE 5.4

(a) Nondegenerate atomic levels; (b) energy levels of N such atoms in a periodic array plotted as a function
of mean interatomic spacing.
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which can be rewritten in the alternate form

ðεðkÞ− εaÞ
Z

ϕa
�ðrÞψkðrÞdr =

Z
ϕa

�ðrÞΔVðrÞψkðrÞdr, (5.22)

where we have used Eq. (5.1) to obtain εa: Because the atomic orbitals are orthonormal, i.e.,Z
ϕa

�ðrÞϕa′ðrÞdr = δaa′, (5.23)

we obtain from Eqs. (5.17), (5.18), and (5.23),Z
ϕa

�ðrÞψkðrÞdr = βa +∑
j
βj ∑

i≠0

Z
ϕa

�ðrÞϕjðr−RiÞeik.Ri dr

 !
: (5.24)

From Eqs. (5.21), (5.23), and (5.24), we obtain

�
εðkÞ− εa

�
βa = ðεa − εðkÞ∑

j
βj ∑

i≠0

Z
ϕa

�ðrÞϕjðr−RiÞeik.Ri dr

 !

+∑
j
βj

Z
ϕa

�ðrÞΔVðrÞϕjðrÞdr
� �

+∑
j
βj ∑

i≠0

Z
ϕa

�ðrÞΔVðrÞϕjðr−RiÞeik.Ri dr

 !
:

(5.25)

We note that each of the three terms on the right side of the equation is small (for different rea-
sons) unless the atomic levels are degenerate. The first term contains the overlap integralsZ

ϕa
�ðrÞϕjðr−RiÞdr where Ri ≠ 0. The atomic wave functions are centered on different lattice

sites, and therefore, the overlap is very small compared to unity because the atomic orbitals are
well localized. The second term on the right side of the equation is small because at large
distances, where ΔVðrÞ (which is the difference between the periodic and atomic potentials) is
significant, the atomic wave functions are small. The third term on the right side is small for the
same reason as the first term, because they also contain atomic wave functions centered at differ-
ent sites.

If the atomic levels are nondegenerate, i.e., for an s-level, Eq. (5.25) is essentially the same
as Eq. (5.13). For bands arising from atomic p-levels, which are triple-degenerate, Eq. (5.25)
would give a set of three homogeneous equations. One has to solve a 3× 3 secular problem. The
eigenvalues would give εðkÞ for the three bands, and βðkÞ, the appropriate linear combination of
the atomic orbitals at the various k values in the Brillouin zone, would be obtained from the
solutions. Similarly, the d-levels are five-fold degenerate and yield five homogeneous equations.
One has to solve a 5× 5 problem to obtain the eigenvalues as well as the values of β(k). In tran-
sition metals, the s and d electrons overlap in energy. In addition, because the s electrons have a
large degree of plane wave character, they have essentially a uniform spatial distribution. There-
fore, there is a spatial overlap between the s and the d orbitals. There is an intra-atomic s-d
resonance that hybridizes the s- and d-bands due to this overlap in both real space and energy.
Therefore, for transition metals, one has to solve a 6× 6 secular problem that includes both
d- and s-levels.
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The five d sub-bands of a transition metal in
the ΓΧ direction in the fcc structure that is
shown in Figure 5.5 are shown in Figure 5.6.

The progression of the 3d-band through the
Fermi energy for elements in and near the long
series of transition metals is shown in Figure
5.7. The bands that are primarily of sp character
are shown by the heavier lines.

The tight-binding approximation is more
complicated in crystalline solids in which the
Bravais lattice is not monatomic. For example,
the hexagonal close-packed metals are simple
hexagonal with a two-point basis. There are two
ways of solving this problem. One procedure is
to consider the two-point basis as a molecule, of
which the wave functions are known, and treat
the problem in the same manner as we have
done for a monatomic lattice, except that in this
case, molecular wave functions are used instead
of atomic wave functions. For s-levels, for
which the nearest-neighbor overlaps are small,
the overlap would be small in the molecule.
Thus, an atomic s-level will give rise to two
nearly degenerate molecular levels and hence
will yield two tight-binding bands. The alternate

L

X

W K

Γ

FIGURE 5.5

ΓΧ direction of the first Brillouin zone of the fcc structure.

E

XΓ

FIGURE 5.6

The five d sub-bands of a transition metal atom in
the ΓΧ direction of a fcc structure.
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FIGURE 5.7

The progression of the 3d-band through the Fermi energy for elements in and near the first long series of
transition metals.
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method is to make linear combinations of atomic levels centered at the Bravais lattice points and at
the basis points. The LCAO wave function would be of the form

ψkðrÞ = ∑
i

�
a1ϕðr−RiÞ+ a2ϕðr−Ri + lÞ

�
eik

.Ri , (5.26)

where l is the vector connecting the two basis atoms in the Bravais lattice.
In these methods of tight-binding calculations, we have considered only the spin-independent

linear combinations of atomic orbitals, thereby implicitly neglecting spin-orbit coupling, which is
important in calculating the atomic levels in the heavier elements. We can include spin-orbit
coupling by considering the interaction of the electron spin on the orbital of its parent atom located
at the origin as well as by including the interaction between the spin of that electron and the electric
field of all the other ions in ΔVðrÞ. In this method, we must use linear combinations of the
spin-dependent atomic wave functions.

The LCAO method is not very satisfactory for the quantitative calculation of Bloch functions in
solids. It is very difficult to calculate the three-center integrals and nonorthogonal basis functions. In
addition, representing the valence electron states in a metal or a semiconductor by an expression such as
Eq. (5.17) is basically wrong. We consider the interstitial region, the creation of which is illustrated in
Figures 5.8 and 5.9. Figure 5.8 shows the bound atomic orbitals of two free atoms.

In Figure 5.9, these two bound atomic orbitals are superposed, thereby creating an interstitial
region with a small constant potential.

ε = 0 +
r

υa υa

φa
(i)

ε rε

FIGURE 5.8

Potential wells centered on the nuclei of two free atoms.

r

ψk

ψ ′

ε

FIGURE 5.9

The Bloch functions in a crystalline lattice.
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The individual atomic orbitals, used in Eq. (5.17), do not exist in the interstitial regions between
the main potential wells centered on the atomic nuclei because they would lie above the energy of the
barriers between the atomic spheres. It is also inappropriate to represent a Bloch function, which is a
consequence of a periodic potential V(r) in the crystalline solid, by a linear combination of the atomic
orbitals ϕaðrÞ, which arise due to an atomic potential vaðrÞ and rapidly tend to zero as r→∞.

Finally, the set of functions used in the LCAO method is incomplete because it does not include the
scattered-wave eigenstates in the Schrodinger equation in the continuum, above the energy zero of
vaðrÞ: They are useful in the construction of the Bloch functions inside the atomic core but inappropri-
ate in the interstitial region, where the use of a linear combination of plane waves is more appropriate.

The main disadvantage of the tight-binding as well as the LCAO methods is that the independent
electron approximation is one of the bases of these approximations. This approximation works very well
for both insulators and the low-lying bands in metals. In such cases, the tight-binding bands are very low
in energy and completely filled. However, the independent electron approximation in the formulation of
the tight-binding method fails when there are partially filled bands that are obtained from localized atomic
orbitals with small overlap integrals. In particular, when we consider the properties of the narrow tight-
binding bands that are obtained from partially filled atomic shells, the failure of the independent electron
approximation becomes more apparent and leads to anomalous results. When one uses the tight-binding
method for the d- and f -shells in metals, the inclusion of the electron–electron interaction becomes very
important. In particular, when there is a magnetic structure, this failure is even more apparent.

One of the important reasons for going beyond the tight-binding approximation is that when
there is a second electron at a given atomic site, the strong repulsion between the first electron and
the second electron at the same site cannot be treated by the independent electron approximation.

An interesting consequence of the tight-binding approximation is the hypothetical question as to
what would happen if the distance between the atoms is continuously increased so that there is a
slow but steady transition from the metallic to the atomic state. The overlap integrals would become
smaller with the increase of the lattice constant, and eventually all bands, including the partially
filled conduction band(s), become very narrow tight-binding bands. The decrease of electrical con-
ductivity of a metal would continuously drop with the decrease of the overlap integrals as the lattice
constant increases and eventually would become zero. Thus, the metal would become an insulator.
This is known as a Mott transition. In practice, if electron–electron interactions are included, the
conductivity would abruptly become zero at a Mott transition.

The Mott transition has indeed been observed in certain transition metal oxides. They are nor-
mally insulators but suddenly become good conductors above a certain temperature.

5.4 WANNIER FUNCTIONS
One of the main problems of the tight-binding formulation is caused by the difficulties of orthogo-
nalization since a linear combination of the atomic orbitals is used. This orthogonalization problem
can be circumvented by defining a set of orthonormal wave functions that can be constructed from
Bloch functions and are localized on the atomic sites. These functions are known as Wannier func-
tions. The Wannier function (Ref. 19) centered at the lattice site Ri is defined as

wnðr−RiÞ = 1ffiffiffiffi
N

p ∑
k
e−ik

.RiψnkðrÞ, (5.27)
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where N is the number of lattice sites as well as the number of k states in the first Brillouin zone.
We will now show that the Wannier functions form an orthonormal set:Z

drw�
mðr−RjÞwnðr−RiÞ =

Z
dr∑

k
∑
k′

1
N
e−ik

.Ri + ik′.Rjψ�
mk′ðrÞψnkðrÞ: (5.28)

Because the Bloch functions are orthonormal (Problem 5.3), i.e.,Z
drψ�

mk′ðrÞψnkðrÞdr = δm,nδk,k′, (5.29)

Eq. (5.28) can be rewritten in the alternate formZ
drw�

mðr−RjÞwnðr−RiÞ = 1
N
∑
k
∑
k′
e−ik

.Ri+ik′.Rjδm,nδk, k′: (5.30)

Because it can be easily shown that (Problem 5.4)

∑
k
e−ik

.ðRi−RjÞ = Nδi, j, (5.31)

we obtain from Eqs. (5.30) and (5.31) the orthonormal conditions of the Wannier functions,Z
drw�

mðr−RjÞwnðr−RiÞ = δm,nδi, j: (5.32)

If the Wannier functions are known, one can obtain the Bloch functions from Eq. (5.27) by multi-
plying both sides by eik′

.Ri and summing over all direct lattice vectors Ri,

∑
Ri

eik′
.Riwnðr−RiÞ = 1ffiffiffiffi

N
p ∑

Ri

∑
k
e−iðk−k′Þ.RiψnkðrÞ: (5.33)

It can be easily shown that (Problem 5.5)

∑
Ri

e−ðk−k′Þ.Ri = Nδk,k′: (5.34)

From Eqs. (5.33) and (5.34), we obtain

ψnkðrÞ = 1ffiffiffiffi
N

p ∑
Ri

eik
.Riwnðr−RiÞ: (5.35)

It may be noted that any Bloch function is determined only within an overall phase factor. So the
Wannier functions defined in Eq. (5.27) can also be defined as

wnðr−RiÞ = 1ffiffiffiffi
N

p ∑
k
e−ik

.Ri + iφðkÞψnkðrÞ, (5.36)

where φðkÞ is an arbitrary real function. The Wannier functions can be optimized by making them drop
off as fast as possible when r−Ri starts increasing. This can be achieved by manipulating the arbitrary
function φðkÞ: The Wannier functions on adjacent sites can be schematically shown as in Figure 5.10.
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5.5 CELLULAR METHOD
The cellular method was originally proposed by Wigner and Seitz (Ref. 20) to calculate the band struc-
ture of sodium. Later, with the availability of powerful computers that could solve differential equations,
the cellular method was considerably improved and generalized to calculate the band structure of
metals. The essential principle behind the cellular method is that because of the Bloch condition

ψkðr+RiÞ = eik
.R iψkðrÞ, (5.37)

it is sufficient to solve the Schrodinger equation in
Eq. (5.5) within a single primitive cell C. The
wave function in other primitive cells can be
obtained from its values in C by using Eq. (5.37).
However, both ψkðrÞ and ∇ψkðrÞ must be contin-
uous as r crosses the cell boundary.

In the original Wigner–Seitz formulation, the
Wigner–Seitz cell of a fcc or a bcc lattice is a poly-
hedron (see Figure 5.11) that could be approxi-
mated as a sphere of equal volume of which the
radius is rs. We will denote this sphere as the
Wigner–Seitz sphere.

In addition, they considered the lowest state
energy of sodium metal so that k = 0. Thus, the
boundary conditions reduce to

ψkðr+RiÞ = ψkðrÞ, (5.38)

and because ψkðrÞ is periodic from cell to cell,
it should have a horizontal tangent at the surface
of the Wigner–Seitz sphere

∂ψk

∂r

� �
r=rs

= 0: (5.39)

FIGURE 5.10

The Wannier functions on adjacent sites.

rs

FIGURE 5.11

Wigner–Seitz cell of sodium metal (bcc structure)
approximated as a sphere.
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For a potential that is symmetric inside the sphere, the energy εð0Þ can be defined as shown in
Figure 5.12.

One can also write, by using the Bloch condition,

ψkðrÞ = eik
.rukðrÞ, (5.40)

where ukðrÞ is the periodic part of the Bloch function. From Eqs. (5.5) and (5.40),

− �h2

2m
ð∇2 + 2ik .∇− k2ÞukðrÞ+VðrÞukðrÞ = εðkÞukðrÞ, (5.41)

where ukðrÞ has a horizontal tangent at r = rs. The shape of the band can be approximately
obtained by using this method. However, the structure of the solid is neglected in this procedure.

There has been considerable improvement in the techniques of the cellular method for calcula-
tion of the band structure since Wigner and Seitz’s original papers in 1933 and 1934 (Ref. 21). The
starting point is the boundary conditions that ψkðrÞ and∇ψkðrÞ must be continuous as r crosses the
boundary of the primitive cell C (usually located at the origin, i.e., R = 0) to the neighboring cell

ψa

rs

ε (0)

Conduction band

V(r)

FIGURE 5.12

The ground-state energy ε(0) of sodium metal in the Wigner–Seitz method.

5.5 Cellular Method 143



located at the lattice point R. These boundary conditions, which introduce the wave vector k in the
solution as well as retain the discrete set of energies εnðkÞ = ε, can be restated as

ψkðrÞ = e−ik
.Rψkðr+RÞ (5.42)

and

∇ψkðrÞ = e−ik
.R∇ψkðr+RÞ (5.43)

for pairs of points on the surface separated by R. If the point r is located on the surface of the
primitive cell C, the normals n̂ to surface of the cell at r and r +R are oppositely directed. There-
fore, the continuity condition (Eq. 5.43) can be rewritten as (Problem 5.7)

n̂ðrÞ .∇ψkðrÞ = − e− ik.Rn̂ðr+RÞ .∇ψkðr+RÞ: (5.44)

In the cellular method, the periodic potential V(r) in the Wigner–Seitz cell C (see Figure 5.13) is
replaced by a potential V ′ðrÞ that has spherical symmetry (see Figure 5.14) about the origin.

Because we have made the approximation that the potential V ′ðrÞ is spherically symmetric
inside the cell C, a complete set of solutions to the Schrodinger equation (Eq. 5.5) is of the form
(see Goswami7 or any book on quantum mechanics)

ψεlmðrÞ = RεlðrÞYlmðθ,ϕÞ, (5.45)

where Ylmðθ,ϕÞ are the spherical harmonics and RεlðrÞ satisfies the differential equation

1
r2

d
dr

ðr2 d
dr
Þ+ 2m

�h2
ε−V′ðrÞ− �h2lðl+ 1Þ

2mr2

� �� �
RεlðrÞ = 0: (5.46)

FIGURE 5.13

The actual potential V (r) inside a primitive cell.

FIGURE 5.14

The approximate potential V′(r) with spherical
symmetry.
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Here, we have written ε instead of n (which is appropriate for an atom) for the quantum number
related to energy. Any linear combination of Eq. (5.45) would also be a solution of Eq. (5.5). Thus,
we obtain

ψðr, εÞ = ∑
lm
BlmRεlðrÞYlmðθ,ϕÞ, (5.47)

where the arbitrary coefficients Blm are determined from the boundary conditions in Eqs. (5.42) and
(5.44). In actual computations, a finite number of Blm are chosen, and an equal number of points on
the surface of the cell are chosen where the boundary conditions in Eqs. (5.42) and (5.44) are
imposed. One obtains a set of k-dependent linear homogeneous equations for Blm. The energies
εnðkÞ are those values of ε for which the determinant of the homogeneous equations for Blm

vanishes.

5.6 ORTHOGONALIZED PLANE-WAVE (OPW) METHOD
The nearly free electron method does not account for the rapid oscillatory behavior in the core
region of the atom. On the other hand, the tight-binding method, which matches reasonably well to
ψkðrÞ inside the atomic core, does not account for the scattered-wave eigenstates of the Schrodinger
equation in the continuum above the energy zero of the atomic potential vaðrÞ. The Bloch states in
the interstitial region must behave like a combination of free electron plane wave states. This anom-
aly of finding a complete set of wave functions that can account for the entire region in the crystal
was resolved by the orthogonalized plane-wave (OPW) method first introduced by Herring. This
method is based on the basic fact that the eigenfunctions of the crystalline Hamiltonian must be
orthogonal at every point in the crystal.

In the OPW method, one starts with the construction of a complete set of Bloch functions for
the core states. Here, the core states are defined as the atomic orbitals of the ions. A tight-binding
combination of the core states, which are Bloch functions, as constructed in Eq. (5.17), can be
written as

ϕckðrÞ = ∑
Ri

eik
.Riϕcðr−RiÞ, (5.48)

where ϕcðrÞ is one of the core orbital c. Here, the core wave functions are localized around the
atomic sites and are assumed to be known. In fact, ϕcðkÞ is a linear combination of degenerate one-
electron states. Thus, Eq. (5.48) is one of the solutions of the Schrodinger equation of the crystal
with energy εcðkÞ. As we have noted in the discussion of the tight-binding method, this would
form a fully occupied narrow band.

If we denote χkðrÞ as a wave function for one of the higher states, it should be orthogonal to the
core states defined in Eq. (5.48). In addition, the higher states χkðrÞ must have the properties of a
free electron wave function (plane wave)eik

.r in the interstitial region. Thus, we can define the
OPW as

χkðrÞ = eik
.r −∑

c
bcϕckðrÞ, (5.49)
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where the sum is over all the core levels. The coefficients bc are determined from the orthogonaliza-
tion condition

Z
drϕ�

ckðrÞχkðrÞ = 0: (5.50)

From Eqs. (5.49) and (5.50), we obtain

bc =
Z

drϕ�
ckðrÞeik

.r: (5.51)

In deriving Eq. (5.51), we have made the basic assumption that the core states are orthogonal, i.e.,

Z
drϕ�

ckðrÞϕc′kðrÞ = δc,c′: (5.52)

The OPW state χkðrÞ defined in Eq. (5.49) is appropriate for the interstitial region because the core
states are localized, and consequently, each ϕck is small. Thus, χkðrÞ behaves like the plane wave
eik

.r in the interstitial region. However, because χkðrÞ is orthogonal to the core state within the
core, it is appropriately a higher atomic orbital than the occupied atomic states. For example, if the
core states are 2s and 2p orbitals, χkðrÞ will behave like a 3s or 3p orbital with an extra nodal
surface.

A schematic representation of an OPW is shown in Figure 5.15.
The eigenfunctions of the Schrodinger equation in the crystalline lattice can be expressed as a

linear combination of OPWs that would form the basis states. The wave function can be written as

ψkðrÞ = ∑
K
Ck−K χk−KðrÞ: (5.53)

The coefficients Ck−K are obtained by using the variational principle, to minimize the expectation
value of the energy. The variational principle is briefly explained here.

If we define the energy functional

ε½ϕ� =

Z
�h2

2m
j∇ϕðrÞ j2 +VðrÞ jϕðrÞ j2

� �
drZ

jϕðrÞj2dr
, (5.54)

it follows from Eq. (11) of Problem 5.8 that

ε½ψk� = εk, (5.55)

which is the variational principle.
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5.7 PSEUDOPOTENTIALS
In 1959, Phillips and Kleinman14 developed the pseudopotential method that is extensively used to
calculate the band structure of metals. This method has been refined through the past 50 years. We will
essentially discuss the original theory proposed by Phillips and Kleinman. They showed that advantage
can be taken of the crystal symmetry to construct wave functions ϕkðrÞ, which are smooth parts of the
symmetrized Bloch functions. The wave equation satisfied by ϕkðrÞ contains an additional term of sim-
ple character that corresponds to the usual OPW terms and has a simple physical interpretation as an
effective repulsive potential. The sum of the crystal potential and this repulsive potential is known as
the pseudopotential. The cancellation between the attractive periodic potential and the repulsive poten-
tial in the core region is responsible for the rapid convergence of the OPW calculations for s states.

The pseudopotential method starts with the assumption that ψkðrÞ, as expressed in Eq. (5.53)
and with appropriate coefficients Ck−K obtained by the use of the variational method, is the exact
crystal wave function. We construct a linear combination of the plane waves,

φkðrÞ = ∑
K
Ck−Ke

iðk−KÞ.r, (5.56)

FIGURE 5.15

Plane waves, core functions, and orthogonalized plane waves.
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which have the same coefficients Ck−K. Because ψkðrÞ must be orthogonal to the core states ϕckðrÞ
described in Eq. (5.48), we obtain

ψkðrÞ = φkðrÞ−∑
c
<ϕckðrÞ jφkðrÞ>ϕckðrÞ: (5.57)

The Schrodinger equation in the crystal is

HψkðrÞ = εkψkðrÞ: (5.58)

From Eqs. (5.57) and (5.58), we obtain

HφkðrÞ−∑
c
<ϕckðrÞ jφkðrÞ>HϕckðrÞ = εkφkðrÞ− εk∑

c
<ϕckðrÞ jφkðrÞ>ϕckðrÞ: (5.59)

Using the relation

HϕckðrÞ = εckðrÞϕckðrÞ, (5.60)

in Eq. (5.59) and rearranging the terms, we obtain

HφkðrÞ+∑
c
ðεk − εckÞ<ϕckðrÞ jφkðrÞ>ϕckðrÞ = εkφkðrÞ: (5.61)

Eq. (5.61) can be expressed as

ðH +VRÞφkðrÞ = εkφkðrÞ, (5.62)

where VR is the repulsive part of the potential,

VRφkðrÞ�∑
c
ðεk − εckÞ<ϕckðrÞ jφkðrÞ>ϕckðrÞ: (5.63)

Thus, Eq. (5.62) is an effective Schrodinger equation satisfied by φkðrÞ, which is the smooth part of
the Bloch function. Because

H +VR = − �h2

2m
∇2 +VðrÞ+VR, (5.64)

the pseudopotential is defined as

Vps = VðrÞ+VR: (5.65)

From Eqs. (5.62), (5.64), and (5.65), we obtain

HpsφkðrÞ = − �h2

2m
∇2 +Vps

� �
φkðrÞ = εkφkðrÞ: (5.66)

The “smoothed” wave function φkðrÞ is often referred to as the pseudo wave function that satis-
fies the effective Schrodinger equation, which has a pseudo-Hamiltonian Hps in which the potential
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is relatively small because the pseudopotential Vps is the sum of the lattice potential and the repul-
sive potential VR: However, we note from Eq. (5.63) that VR is a nonlocal operator. Thus, we define

VRðr, r′Þ = ∑
c
ðεk − εckÞϕckðrÞϕ�

ckðr′Þ (5.67)

such that

VRφkðrÞ =
Z

VRðr, r′Þφkðr′Þdr′: (5.68)

Thus, VR is different when it operates on different functions with different angular momentum. This
implies that the effect of the pseudopotential Vps on a wave function is not just to multiply it by a
function of r. Further, because Vps depends on the energy εk that is supposed to be the quantity being
calculated, one cannot apply some of the basic theorems of quantum mechanics. For example, one can-
not apply the theorem that the eigenfunctions belonging to different eigenvalues of Hps are orthogonal.

The pseudopotential formulation has another problem in the sense that there is no unique
method to construct the pseudopotential. One can easily show (Problem 5.9) that the valence eigen-
values of the Hamiltonian H +VR are the same for any operator of the form

VRφkðrÞ = ∑
c
< θckðrÞ jφkðrÞ>ϕckðrÞ, (5.69)

where θckðrÞ are arbitrary functions. This is also an advantage because one can appropriately
choose the functions θckðrÞ such that there is good cancellation between V(r) and VR such that the
pseudopotential is small.

As an example, consider

θckðrÞ = −VðrÞϕckðrÞ: (5.70)

From Eqs. (5.65), (5.69), and (5.70), we obtain

VpsφkðrÞ = VðrÞφkðrÞ−∑
c
<ϕck jVðrÞ jφkðrÞ>ϕckðrÞ: (5.71)

Thus, one can subtract from V(r) any sum of the core functions. This cancellation is at the core of
the pseudopotential theory because it explains why the valence electrons in metals and semiconduc-
tors appear not to interact strongly with the ions of the crystal lattice. The success of the nearly free
electron model is a consequence of the cancellation principle implicitly included in the pseudopo-
tential concept. There has been significant improvement in the application of the pseudopotential
theory in the band calculations in metals, but here we have essentially discussed the original theory
developed by Phillips and Kleinman.

5.8 MUFFIN-TIN POTENTIAL
The muffin-tin potential is a very convenient description of the metal in the sense that it represents an
isolated ion within a sphere of radius ri about each lattice point and constant (zero) everywhere else.
Therefore, the periodic potential in the metals considered as a muffin-tin potential is shown in Figure 5.16.
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The muffin-tin potential UðrÞ is considered
to be a constant (zero) in the interstitial region
and spherically symmetrical within radius ri
about each ion (the core or the atomic region).
We assume that there is one ion located at the
center of each Wigner–Seitz cell and the spheres
do not overlap; i.e., the radius ri of the sphere is
smaller than the Wigner–Seitz radius rs: Thus,
the periodic potential of the lattice can be
defined as

VðrÞ = ∑
i
Uðjr−Ri jÞ: (5.72)

The Schrodinger equation can be solved exactly
within each sphere because of the spherical
symmetry as well as in the interstitial region
where the potential is zero. These solutions are

matched on the surface of each sphere, and the Schrodinger equation for the crystal is obtained.
The basis states ϕkεðrÞ are defined as follows:

1. ϕkε = eik:r in the interstitial region (outside the muffin hole). We note that because ϕkε is
obtained by matching the solutions at the boundaries of the sphere, there is no precondition that

ε = �h2k2
2m .

2. In the spherical region about Ri, ϕkε satisfies the atomic Schrodinger equation

− �h2

2m
∇2ϕkεðrÞ+Uð jr−Ri j ÞϕkεðrÞ = εϕkεðrÞ, jr−Ri j< ri: (5.73)

3. ϕkε is continuous at the boundary of the sphere. There are two elegant methods to solve the
eigenvalue problem of this type of Schrodinger equation: the augmented plane-wave (APW)
method and the Green’s function (KKR) method proposed independently by Korringa, and
Kohn and Rostoker (Ref. 11). We will first describe the APW method.

5.9 AUGMENTED PLANE-WAVE (APW) METHOD
The augmented plane-wave (APW) method was proposed by Slater15. The potential Uðjr−Ri jÞ is a
spherically symmetric function within the sphere (muffin-tin hole), and therefore, we write it as
U(r). We express the solutions ψεðrÞ = RεlðrÞYlmðr̂Þ of an electron in a spherically symmetric
potential (note that the energy quantum number is written as ε instead of n and the spherical harmo-
nics Yl,mðθ,ϕÞ are expressed as Yl.mðr̂ÞÞ. From atomic physics, we know that the radial part of the
Schrodinger equation for an atom satisfies

− �h2

2mr2
∂
∂r

r2 ∂
∂r

RεlðrÞ+ UðrÞ+ lðl+ 1Þ�h2
2mr2

� �
RεlðrÞ = εRεlðrÞ: (5.74)

FIGURE 5.16

Muffin-tin potential.
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Ignoring the solution of Eq. (5.74) that diverges at the origin, one can rewrite Eq. (5.73) as

ϕkε = ∑
∞

l=0
∑
l

m=−l
BlmðkÞYlmðr̂ÞRεlðrÞ: (5.75)

The coefficients BlmðkÞ are arbitrary, which are obtained from the boundary condition that the wave
function is continuous across the boundary of each sphere (muffin hole). The wave function in the
interstitial is a plane wave eik

.r. It is well known that the plane wave can be expanded in terms of
the spherical harmonics,

eik
.r = 4π∑

∞

l=0
∑
l

m=−l
iljlðkrÞY�

lmðk̂ÞYlmðr̂Þ, (5.76)

where jlðkrÞ is the spherical Bessel function. At the boundary of each sphere, r = Ri, where Ri is
the radius of each sphere. Matching Eqs. (5.75) and (5.76) at the surface of each sphere where
r = Ri, we obtain

BlmðkÞ = 4π
iljlðkRiÞY�

lmðk̂Þ
RεlðRiÞ : (5.77)

From Eqs. (5.75) and (5.77), we obtain

ϕkεðrÞ = 4π∑
∞

l=0
∑
l

m=− l

iljlðkRiÞY�
lmðk̂Þ

RεlðRiÞ Ylmðr̂ÞRεlðrÞ: (5.78)

We have a function ϕkεðrÞ for each value of k and ε. These APW functions have a discontinuity
in slope at the boundary of the muffin tin. The boundary conditions at the edge of the primitive
cell can be matched (Problem 5.7) by noting that the APW functions are plane waves at the edge of
the primitive cell. The plane waves obey the Bloch condition. Therefore, one can write the solution of
the Schrodinger equation of the crystal by making a linear combination of the APWs, all of the same
energy ε:

ψkðrÞ = ∑
K
bk+Kϕk+K, εðkÞðrÞ, (5.79)

where the coefficients bk+K are to be determined. The best way is to use the variational principle
(Problem 5.8), which is briefly described here.

We define an energy functional,

E½ψ � =

Z
�h2

2m
j∇ψðrÞ j2 +VðrÞ jψðrÞ j2

� �
drZ

jψðrÞ j2dr
: (5.80)

In the variational technique (Problem 5.8), E½ψ � = E½ψk� = εðkÞ when Eq. (5.80) is stationary with
respect to a differentiable function ψðrÞ that satisfies the Bloch condition with wave vector k. From
Eqs. (5.79) and (5.80), one can show that the condition that E½ψk� is stationary leads to
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∂E/∂bk+K = 0, which yields a set of homogeneous equations in bk+K. When the determinant
of the coefficients of these equations is equal to zero, one obtains an equation of which the roots
determine εðkÞ:

5.10 GREEN’S FUNCTION (KKR) METHOD
Korringa (1947) and Kohn and Rostoker11 independently proposed a Green’s function method to
calculate the band structure of metals. The KKR method essentially uses a Green’s function method
to solve the Schrodinger equation of a crystalline solid with a periodic potential.

The KKR method starts with the objective to find the “propagating” solutions of the Schrodinger
equation in the lattice

− �h2

2m
+VðrÞ−E

� �
ψkðrÞ = 0: (5.81)

Here, V(r) is the periodic potential, and the boundary conditions in the central polyhedron (Wigner–
Seitz cell) that surrounds the origin are

ψkðr1Þ = eik
.RψkðrÞ (5.82)

and

∂ψkðr1Þ/∂n1 = −e−ik.R∂ψkðrÞ/∂n: (5.83)

The conjugate points r and r1 are defined (see Figure 5.17) as the points on the surface of the
polyhedron separated by the lattice translation vector R.

The Green’s function is defined by

�h2

2m
∇2 + ε

� �
Gεðr− r′Þ = δðr− r′Þ: (5.84)

For conjugate boundary points r and r1,

Gεðr1 − r′Þ = eik
.RGεðr− r′Þ (5.85)

and

∂Gεðr1− r′Þ/∂n1 = −eik.R∂Gεðr−r′Þ/∂n: (5.86)

It can be shown that Gεðr− r′Þ can be rewritten
in the alternate form

Gεðr−r′Þ = − 2m
�h2

eiκ j r−r′ j
4π jr− r′ j , (5.87)

r→

r1
→

R
→

FIGURE 5.17

Conjugate boundary points r and r1.
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where

κ =
ffiffiffiffiffiffiffiffiffiffiffi
2mε
�h2

,

r
ε>0, (5.88)

and

= i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mð− εÞ

�h2
,

s
ε<0: (5.89)

An alternate way of expressing G is obtained by multiplying Eq. (5.81) by G�ðr− r′Þ and the com-
plex conjugate of Eq. (5.84) by ψkðrÞ, subtracting and integrating over r in the interior of the poly-
hedron (Problem 5.10) to obtain

ψkðrÞ =
Z

dr′GεðkÞðr− r′ÞVðr′Þψkðr′Þ: (5.90)

Consider the muffin-tin potential

V̂ðrÞ = VðrÞ−V0, r≤ ri

= 0, r> ri,
(5.91)

Here, ri is the radius of the inscribed sphere, and V0 is the average value of the constant potential
VðrÞ in the space between the inscribed sphere and the boundary of the polyhedron. Thus, we can
write the periodic potential as

VðrÞ =∑
i
V̂ðr−RiÞ: (5.92)

From Eqs. (5.87), (5.90), and (5.92), we obtain

ψkðrÞ =∑
i

Z
GεðkÞðr− r′ÞV̂ðr′−RiÞψkðr′Þdr′: (5.93)

We move the origin such that r″ = r′−Ri, and Eq. (5.93) can be rewritten as

ψkðrÞ =∑
i

Z
GεðkÞðr−r″−RiÞV̂ðr″Þψkðr″+RiÞ: (5.94)

Using the Bloch theorem ψkðr″+RÞ = eik
.Rψkðr″Þ and replacing r″ with r′ in Eq. (5.94), we obtain

ψkðrÞ =
Z

r′<ri−ε

dr′G0
k,εðkÞðr− r′ÞV̂ðr′Þψkðr′Þ, (5.95)

where the integration is done over a single cell, and the structural Green function or Greenian is
defined as

G0
k,εðkÞðr− r′Þ =∑

i
GεðkÞðr−r′−RiÞeik.Ri : (5.96)
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From Eqs. (5.87) and (5.96), G0
k,εðkÞðr− r′Þ can also be rewritten in the alternate form

G0
k,εðkÞðr− r′Þ = − 2m

�h2
1
4π

∑
i

eiκ j r−r′−Ri j
jr− r′−Ri j e

ik.Ri : (5.97)

The ordinary and structural Green functions are shown in Figure 5.18.
From Eq. (5.96), it can be easily shown that

�h2

2m
∇′2 + ε

� �
G0
k,εðkÞðr− r′Þ = δðr− r′Þ, r, r′< ri, (5.98)

where ri is the radius of the spherical region in muffin-tin potential. We can also write by using the
mathematical identity

G0
k,εðkÞ∇′

2ψkðr′Þ = ∇′ . ðG0
k,εðkÞ∇′ψkðr′Þ−∇′ψkðr′ÞG0

k,εðkÞÞ+ψkðr′Þ∇′2Gk,εðkÞ: (5.99)

From Eqs. (5.95), (5.98), and (5.99), we can show that

Z
r′−ε

dr′∇′ . ½G0
k,εðkÞðr− r′Þ∇′ψkðr′Þ−ψkðr′Þ∇′G0

k,εðkÞðr− r′Þ� = 0: (5.100)

r

l

r ′

r ′′

lr ′′

r ′′

r

r ′′

(a) G(r– r ′) propagating from r ′ to r                  (b) G0          (r– r ′) combines waves from
all points in the lattice.
k, ε (k)

FIGURE 5.18

(a) The ordinary Green function; (b) the structural Green function.
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Using the Gauss theorem to transform the volume integral to a surface integral over the sphere of
radius ri − ε, we obtainZ

r′−ε

ds′ G0
k,εðkÞðriθϕ, riθ′ϕ′Þ ∂

∂r′
ψkðr′θ′ϕ′Þ j r′=ri −ψkðriθ′ϕ′Þ ∂

∂r′
Gk,εðkÞðriθϕ, r′θ′ϕ′Þ j r′=ri

h i
= 0:

(5.101)

It can be easily shown11 that for

r< r′< ri,

ψðrÞ = ∑
∞

l=0
∑
m= l

m=−l
ClmRlðrÞYlmðθ,ϕÞ, (5.102)

and

Go
k,εðkÞðr− r′Þ = ∑

l,m
∑
l′,m′

½Alm,l′m′jlðκrÞjl′ðκr′Þ+ κδll′δmm′jlðκrÞnlðκr′Þ�Ylmðθ,ϕÞY�
l′m′ðθ′,ϕ′Þ: (5.103)

Here,

jlðxÞ = ðπ/2xÞ1/2Jl+ 1/2ðxÞ
nlðxÞ = ðπ/2xÞ1/2J− l− 1/2ðxÞ,

(5.104)

JνðxÞ are the Bessel functions, and Alm;l′m′ are functions of k and ε, which are characteristics for the
lattice under consideration. Substituting Eqs. (5.102) and (5.103) in Eq. (5.101), multiplying by
Y�
lmðθ,ϕÞ, integrating over the sphere r = ri −∈, using the normalization condition RlðriÞ = 1, and

finally letting ∈→0, we obtain

∑
l′,m′

jl½Alm;l′m′ð jl′Ll′ − jl′′Þ+ κδll′δmm′ðnl′Ll′ − nl′′Þ�Cl′m′ = 0, (5.105)

where

Ll =
dRlðrÞ
dr

/RlðrÞ j r=ri

jl′ =
djlðκrÞ
dr

j r=ri

nl′ =
dnlðκrÞ
dr

j r=ri :

(5.106)

Before equating the determinant of Eq. (5.105) to zero, we divide each row by jl and each col-
umn by ð jl′Ll′ − jl′′Þ and obtain the secular equation

Det Alm;l′m′ + κδll′δmm′
ðnlLl − nl′Þ
ð jlLl − jl′Þ

				
				 = 0: (5.107)
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Eq. (5.107) is used by first tabulating the structure constants Alm,l′m′ as functions of ε and k for
each type of lattice. The logarithmic derivatives Ll for the first few l are obtained as functions of
energy. The convenient way of solving Eq. (5.107) is to fix ε (and hence κ) to find those k’s
(k enters through the A’s) that make Eq. (5.107) vanish. It may be noted that the same expression
(Eq. 5.107) can be also obtained by using a variational method.

One may note a good deal of similarity between the Green function (KKR) and the APW method.
In the APW method, the expansion is in terms of spherical harmonics. Then a secular determinant is
solved for contributions from different lattice vectors. In contrast, in the KKR method, the summation
is over lattice vectors (in practice, the summation is over reciprocal lattice vectors by first making a
Fourier transformation of G0

k,εðkÞðr− r′Þ) and then have a secular determinant in the contributions
from different spherical harmonics. Anderson (Ref. 1) has proposed an approximate first-principle
method for calculating the band structure of closely-packed structures. In his atomic sphere model
(ASM), the atomic polyhedra are replaced by spheres of the same volume and the potential is spheri-
cally symmetric within each sphere. The ASM model has no interstitial region.

5.11 MODEL PSEUDOPOTENTIALS
It is obvious from the preceding discussions that the APW and KKR methods do not depend on the
atomic potentials, but only on the gradient of Rl at the surface of the atomic sphere. It can be shown
from the partial wave theory of scattering that for
a spherical potential, the radial solution Rlðr, εÞ
can be matched to a free electron wave of the
same energy ε = �h2κ2/2m and angular momen-
tum l, through a phase shift ηlðεÞ defined by

Ll � Rl′ðRi, εÞ
RlðRi, εÞ =

jl′ðκrÞ− tan ηlðεÞ . nl′ðκrÞ
jlðκrÞ− tan ηlðεÞ . nl′ðκrÞ

j r=Ri
,

(5.108)

where Ri for a muffin-tin potential is defined in
Eq. (5.73) and the spherical Bessel functions and
their derivatives were defined earlier. In the model
pseudopotential approach, each atomic potential
va is replaced by a weak potential wa, which has
the same scattering amplitude as conduction elec-
trons. The energy εðkÞ of the crystal would be
identical to this hypothetical material. Figure 5.19
shows how the model potential w, with wave
function ϕ inside the atom, replaces the effect of
the true potential V with the true wave function ψ :

The analytical pseudopotentials of Phillips
and Kleinman are nonlocal, energy dependent,
and arbitrary. Thus, one can obtain an infinitely

r

r

φ

ψ

|ψ |

ω

υ

ε

FIGURE 5.19

The true potential V with wave function ψ is replaced
by model potential w with wave function ϕ inside the
atom.
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large number of localized potentials, wlðr, εÞ, that can be used to obtain the true radial functions Rl

outside the atomic core. However, the same model potential wlðr, εÞ would not work for a different
ε or l. Thus, the various angular momentum components in a wave function have to be separated
by introduction of appropriate operators. However, it is more convenient to introduce the functional
form of each model pseudopotential wlðr, εÞ for computational convenience. The appropriate choice
for a muffin-tin lattice is a delta-function singularity for each value of l, to reproduce the scattering
phase shift ηlðεÞ at the surface of the sphere.

The model pseudopotential for the KKR matrix elements is shown in Figure 5.20.
It can be shown, by the use of the analytical properties of spherical Bessel functions and plane

waves, that the pseudopotential matrix elements used in the KKR method can be written as

VKKR
ps ðK,K′Þ = − 4πN

κ
∑
l
ð2l+ 1Þ tan ηl′

jlð jk−K jRiÞjlð jk−K′ jRiÞ
½ jlðκRiÞÞ�2

Plð cos θKK′Þ, (5.109)

where

cot ηl′� cot ηl − nlðκRiÞ/jlðκRiÞ: (5.110)

5.12 EMPIRICAL PSEUDOPOTENTIALS
The pseudopotential theory of Phillips and Kleinman established the existence of weak potentials
due to cancellations. The empirical pseudopotential concept is based on the assumption that one can
choose weak potentials to match the important features of experimental results. An example of the
empirical pseudopotential is the empty-core potential. The Ashcroft pseudopotential U(r) is obtained
from the approximation that

UðrÞ = 0, r<Rc, (5.111)

and

UðrÞ = −U0e
−r/d/r, r>Rc, (5.112)

l = 1

l = 0

j0 (κ Rl)

υMT

εMTZ

l = 2 Rl

Rl

Rl

Rl

A2

A1

A0

R0(r)

FIGURE 5.20

Model pseudopotential for KKR matrix elements.
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where Rc is a cutoff radius, and d is the exponen-
tial decay length. The Ashcroft (Ref. 2) empty-
core pseudopotential is shown in Figure 5.21.

The three parameters in the empty-core pseu-
dopotential are U0,Rc, and d. These parameters
are adjusted to fit the measurement of magnetic
or optical experimental results. In general, these
types of potentials yield satisfactory results for
alkali metals or aluminum.

5.13 FIRST-PRINCIPLES PSEUDOPOTENTIALS
The starting point for a convenient method of obtaining first-principles pseudopotentials (probably a
misnomer) is to start with the Kohn–Sham equations12 obtained by using the local density approxi-
mation (LDA),

− �h2

2m
∇2ψ iðrÞ+ VðrÞ+

Z
dr′

e2nðr′Þ
jr− r′ j +

δεxcðnÞ
δn

� �
ψ iðrÞ = εlψ iðrÞ, (5.113)

where ψ iðrÞ is one of N single-electron wave functions, n(r) is the density defined by

nðrÞ = ∑
N

i=1
jψ iðrÞ j2, (5.114)

and εxc is the exchange-correlation energy of the uniform electron gas, which means that it can be
chosen freely to ensure that properties of the uniform electron gas are obtained correctly. In the
first-principle pseudopotential method, one chooses an atom and makes the approximation that n(r)
is spherically symmetric about the nucleus. Thus, the atomic potential is VðrÞ = − Ze2

j r j , and all the
solutions are of the form ψðrÞ = RnlðrÞYlmðθ,φÞ, where RnlðrÞ is the radial wave function and
Ylmðθ,φÞ is a spherical harmonic. With these approximations, Eq. (5.113) can be rewritten as

− �h2

2m
1
r

∂2
∂r2

r−
lðl+ 1Þ
r2

� �
RnlðrÞ+

Z
e2nðrÞ
jr− r′ j dr′−

Ze2

r
+ δεxc

δn
− εni

� �
RnlðrÞ = 0: (5.115)

Eq. (5.115) is solved for all the electrons of the atom, and the energies of these states are εni:
The outermost states that are in partially filled shells are singled out for special treatment

because they contribute to the bonding between atoms and solids. The radial wave functions and
the pseudo radial wave functions of such a solid are schematically shown in Figure 5.22.

The radial wave functions for a solid with partially filled shells can be obtained from
Eq. (5.115) by using the appropriate values for nðrÞ, Z, εxc, and εni. The corresponding pseudo
radial function Rps

nl ðrÞ is obtained from each radial function RnlðrÞ by picking a point beyond the
rightmost node and drawing a smooth curve into the origin. This pseudo radial function Rps

nl ðrÞ

Rc

−U0

U
(r

)

Distance r

0

0

FIGURE 5.21

The Ashcroft empty-core pseudopotential.
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should join on to the actual radial function RnlðrÞ with two continuous derivatives, should be with-
out any nodes, but vanish as rl at the origin. In addition, the pseudo wave functions built from
these pseudo radial functions have to be normalized.

We can now replace the Coulomb potential − ze2
r in Eq. (5.115) with the pseudopotential

Vps
l ðrÞ = �h2

2m
1

r′Rps
nl

∂2r′Rps
nl

∂r2
−

lðl+ 1Þ
r2

" #
−

"Z
e2npsðr′Þ
jr− r′ j dr′+

δεxc
δnps

− εnl

#
, (5.116)

such that when one solves the Kohn–Sham equations, the radial functions Rps are obtained instead
of R. However, there is a different Vps

l ðrÞ for each angular momentum state. To be able to resolve
this problem that the pseudopotential is nonlocal, we write an arbitrary wave function as a sum of
its angular momentum components,

ψðrÞ = ∑
lm
ψ lmðrÞYlmðθ,ϕÞ: (5.117)

We multiply Eq. (5.117) by Y�
l′m′ðθ,ϕÞ, and integrating over θ and ϕ, we obtainZ

dθdϕ Y�
l′m′ðθ,ϕÞψðrÞ = ∑

lm
ψ lmðrÞ

Z
dθdϕ Y�

l′m′ðθ,ϕÞYlmðθ,ϕÞ: (5.118)

Using the orthonormality condition of the spherical harmonics,Z
dθdϕY�

l′m′ðθ,ϕÞYl,mðθ,ϕÞ = δl,l′δm.m′, (5.119)

R5s

R5p0.0

0.0

R4d

R
nl

(r
)

R ps
4d

R ps
5p

Rps
5s

r

FIGURE 5.22

Schematic diagram of the radial wave functions Rnl ðrÞ and pseudo radial wave functions Rps
nl ðrÞ for 4d, 5s,

and 5p states of a solid with partially filled shells.
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we can rewrite Eq. (5.118) as

ψ lmðrÞ =
Z

dθdϕ Y�
lmðθ,ϕÞψðrÞ: (5.120)

The pseudopotential Vps
l ðrÞ defined in Eq. (5.116) is multiplied by ψ lmðrÞ defined in Eq. (5.120) in

forming the Hamiltonian.

PROBLEMS
5.1. The 12 nearest neighbors of the origin of a fcc crystal are

R = a
2
ð±1,±1, 0Þ, a

2
ð±1, 0,±1Þ, a

2
ð0,±1,±1Þ: (1)

Show that for an s-level, of which the wave function depends only on the magnitude r,

εðkÞ = εs − β− 4γð cos 1
2
kxa cos

1
2
kya+ cos 1

2
kya cos

1
2
kza+ cos 1

2
kza cos

1
2
kxaÞ, (2)

where

γ = −
Z

drϕ�ðx, y, zÞΔUðx, y, zÞϕðx− 1
2
a, y− 1

2
a, zÞ: (3)

Show that in the limit of small ka, Eq. (2) can be rewritten as

εðkÞ = εs − β− 12γ + γk2a2: (4)

5.2. Show that the tight-binding expression for energies of an s-band in a fcc crystal can be
written as

ε = εs − β− 4γð1+ 2 cos μπÞ along ΓX,

where 0≤ μ≤ 1:

5.3. Show that the Bloch functions of different bands and different k are orthonormal, i.e.,Z
ψ�
mk′ðrÞψnkðrÞdr = δn,mδk,k′:

5.4. Show that ∑
k
e− ik.ðRi −RjÞ = Nδi, j, where the summation is over all values of k in the first

Brillouin zone and Ri andRj are direct lattice vectors.

5.5. Show that ∑
Ri

e−iðk−k′Þ.Ri = Nδk,k′, where the summation is over all the direct lattice

vectors Ri.
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5.6. Show that for a simple cubic lattice of side a, the Wannier function at the origin is

wnðrÞ =
ffiffiffiffi
N

p
unkðrÞ sinðπx/aÞ sinðπy/aÞ sinðπz/aÞðπx/aÞðπy/aÞðπz/aÞ , (1)

where unkðrÞ is the periodic part of the Bloch function.

5.7. The periodic part of the Bloch function has the property

ukðrÞ = ukðr+RÞ, (1)

where R is a Bravais lattice vector. If r lies on the boundary of the unit cell and r+R is
another boundary point of the cell, then

n̂ðrÞ .∇ukðrÞ = − n̂ðr+RÞ .∇ukðr+RÞ, (2)

where n̂ðrÞ is normal to the cell boundary. Because

ψkðrÞ = eik
.rukðrÞ, (3)

show that

eik
.Rn̂ðrÞ .∇ψkðrÞ = − n̂ðr+RÞ .∇ψkðr+RÞ: (4)

5.8. Define the functional

ε½ϕ� =

Z
�h2

2m
j∇ϕðrÞ j2 +VðrÞ jϕðrÞ j2

� �
drZ

jϕðrÞ j2dr
, (1)

where

ϕðrÞ = ψkðrÞ+ δϕðrÞ: (2)

Here, ψkðrÞ is the wave function in the Schrodinger equation,

− �h2

2m
∇2ψkðrÞ+VðrÞψkðrÞ = εkψkðrÞ, (3)

V(r) is the periodic potential in the lattice, and both ϕðrÞ and ψkðrÞ satisfy the Bloch
condition. From Eqs. (1) and (2), show that

ε½ϕ� = ε½ψk�+OðδϕÞ2: (4)

Define the functional

f ½θ,φ� =
Z

dr �h2

2m
∇θ� .∇φ+VðrÞθ�φ

� �
: (5)
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Using the Dirac notation, show that

ε½ϕ� = f ½ϕ,ϕ�
<ϕ jϕ>

: (6)

Using the integration-by-parts formulas for any functions φ1ðrÞ and φ2ðrÞ that have the
periodicity of the Bravais lattice,Z

c

drφ1∇φ2 = −
Z
c

drφ2∇φ2 (7)

and Z
c

drφ1∇2φ2 =
Z
c

drφ2∇2φ1, (8)

show that

f ½φ,ψk� = εk<φ jψk > (9)

and

f ½ψk,φ� = εk<ψk jφ> , (10)

where φ also satisfies the Bloch condition. Hence, show that

f ½ϕ,ϕ� = εkf<ψk jψk > +<ψk jδϕ> +< δϕ jψk > g+ oðδϕÞ2, (11)

<ϕ jϕ> = <ψk jψk > +<ψk jδϕ> +< δϕ jψk > + oðδϕÞ2, (12)

and

ε½ϕ� = f ½ϕ,ϕ�
<ϕ jϕ>

= εk +OðδϕÞ2: (13)

5.9. Show that the valence eigenvalues of the Hamiltonian H +VR are the same for any operator
of the form

VRφkðrÞ = ∑
c
< θckðrÞ jφkðrÞ>ϕckðrÞ, (1)

where θck are completely arbitrary functions.

5.10. The Schrodinger equation for a crystalline solid with a periodic potential VðrÞ is
− �h2

2m
∇2 +VðrÞ− ε

� �
ψðrÞ = 0, (1)
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and the Green’s function is defined as

− �h2

2m
∇2 − ε

� �
Gðr− r′Þ = − δðr− r′Þ: (2)

Multiply Eq. (1) by G�ðr− r′Þ and the complex conjugate of Eq. (2) by ψðrÞ, subtract and
integrate over r, use the Hermitian property of the Green’s function

Gεðr− r′Þ = G�
εðr′− rÞ, (3)

and show that

ψkðrÞ =
Z

dr′GεðkÞðr− r′ÞVðr′Þψkðr′Þ: (4)
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6.1 BAND PICTURE
In Chapter 4, we discussed how the different types of solids can be classified as metals, semimetals,
insulators, and semiconductors according to the band picture. In Chapter 5, we considered some of the
methods used for calculation of the energy bands of solids. To summarize the band picture of solids,
one constructs Brillouin zones, which are the Wigner–Seitz cells of the reciprocal lattice. Each Brillouin
zone can have N k states (where N is the number of primitive cells in the crystal) and hence can accom-
modate 2N electrons (because each k state can contain two electrons of opposite spin). The electrons in
the lattice move in a periodic potential in a background of the positively charged ions (because the
valence electrons have been stripped off from their parent atoms) that opens up an energy gap 2 jVK j
at each Brillouin zone boundary. In pure materials, there are no eigenstates for electrons with energies
lying within these energy gaps. This can be restated as “the electron states are forbidden in this energy
gap.” Normally, these energy gaps appear in the free electron parabola at the Brillouin zone boundaries
because of the periodic potential. This is called the extended zone scheme because it is extended over
the entire reciprocal space. However, any k state in the extended zone scheme can be written as

k = k1 ± K, (6.1)

where K is a reciprocal lattice vector, and k1 is a vector in the first Brillouin zone. Therefore, we can
map the different segments of the extended zone into the first zone and use a band index n to identify
them. These are called bands because each segment is an independent region of energy levels. For
example, the state kni in the nth zone can be written as

kin = kni −K, (6.2)

where kin is the corresponding state in the reduced zone. In the reduced zone scheme, these electron
energy bands are stacked above each other in the first Brillouin zone. The energy gap between the bands
increases as one proceeds from the lowest zone to the higher zones. This is shown in Figure 6.1.

It is easy to classify the solids in the band
picture (as we did in Chapter 4) by counting the
number of electrons per unit cell. Thus, all mono-
valent and trivalent solids are good metals because
they are either half-filled or one-and-a-half-filled
bands. A divalent solid, which normally would be
an insulator, is actually a poor conductor because
of the overlap of the bands in three dimensions.
Solids with five electrons per atom such as As, Sb,
and Bi have two atoms per unit cell that would fill
five bands, but due to a small overlap of the fifth
and sixth band, there are a few electrons in both
bands that can be excited to higher energy states,
and hence these are poor conductors. These are
known as semimetals. Solids with four electrons
per atom range from insulators (diamond) to
semiconductors (Ge, Si). Sn is either a metal or a
semiconductor, depending on the phase in which it
crystallizes, whereas Pb is a pure metal.

0

k2|Vk|

2|V2k|

2|V3k|

K1
2

ε

FIGURE 6.1

The bands stacked above each other in the reduced
zone scheme.
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6.2 BOND PICTURE
To be able to discuss the properties of diamond as well as that of semiconductors such as Ge and Si,
which crystallize in the “diamond structure,” we need to discuss the bond picture of solids. The simplest
bond picture is that of a covalent bond shown in Figure 6.2, which is formed by a hydrogen molecule.

There is a repulsive force between the two nuclei, but the attractive force between the two electrons
and the nuclei lowers the energy of the system. This is the simplest example of a covalent bond. The
simplest example of a tetrahedral bond is that of a methane molecule, shown in Figure 6.3.

Diamond, Si, and Ge crystallize in the diamond structure, which is essentially a fcc lattice with a
basis of two atoms at (0, 0, 0) and (¼,¼,¼) per unit cell. It can be visualized as having an atom at
each lattice point of a fcc lattice and another atom at each point of a second fcc lattice of which the
corner is at one-fourth of the distance along the main diagonal of the cube. The valence electrons in
the ground state of the free atoms have the
configuration 2s22p2, 3s23p2, and 4s24p2 for
diamond, Si, and Ge, respectively. In the crystal,
the ground state is formed from the configuration
nsnp3, where n = 2, 3, and 4 for diamond, Si,
and Ge, respectively. The valence electrons form
directed sp3 tetrahedral bonding orbitals (from the
orthonormal s and p orbitals) of the form (assum-
ing no overlap)

ϕ1 =
1
2
ðs+ px + py + pzÞ,

ϕ2 =
1
2
ðs− px + py + pzÞ,

ϕ3 =
1
2
ðs+ px − py − pzÞ,

ϕ4 =
1
2
ðs− px − py − pzÞ:

(6.3)

There is a tetrahedral bond between the atom
that forms the center of the tetrahedron and the
neighboring four atoms. In fact, there is only one
way in which these tetrahedra can be arranged so
that each atom forms bonds with four others. In
the diamond structure, each atom is at the center of
a tetrahedron with the nearest-neighbor atoms at
the vertices. The diamond structure is shown in
Figure 6.4.

The positions of the atoms in the unit cell of
the diamond structure projected on a cube face
are shown in Figure 6.5.

The points 0 and ½ are on the fcc lattice, and
those at ¼ and ¾ are on a similar lattice displaced
among the body diagonal by one-fourth of its
length.

FIGURE 6.3

A simple example of tetrahedral bonding (methane
molecule).

e−

e−

H +H +

FIGURE 6.2

Covalent bond of a hydrogen molecule.
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6.3 DIAMOND STRUCTURE
Diamond obviously crystallizes in the diamond structure. The orbital electrons of carbon atom have
the structure ð2s22p2Þ: When they form the diamond crystal, the valence electrons are in the state
ð2s2p3Þ: They form the directional sp3 orbitals as shown in Eq. (6.3). The tetrahedral bonding in
diamond is due to the bonding between a carbon atom and its four nearest carbon atoms. However,
diamond is an insulator because of the large energy gap between the filled valence band and the
empty conduction band. At room temperature, the valence band is completely filled with electrons,
whereas the conduction band is empty because the energy gap is too large for electrons to be
excited to the conduction band. When an external electric field is applied, the electrons cannot be
excited to the higher energy states that lie in the energy gap.

6.4 Si AND Ge
Si and Ge crystallize in the diamond structure. The Bravais lattice of the diamond structure has a
basis of two atoms, each of which has eight sp electron states, but only four of them are occupied
by electrons. Thus, the Brillouin zones have to accommodate 16 electron states, but only eight elec-
trons (from the two atoms) fill them. Consequently, the band structure has eight sub-bands. Four of
these are completely filled, and the other four are completely empty at 0°K:

A

B

FIGURE 6.4

The diamond structure. Each atom forms the center
of a tetrahedron.
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FIGURE 6.5

Positions of the atoms in the unit cell of the diamond
structure projected on a cube face.
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Si and Ge are typical examples of semiconductors because the energy gap between the valence
band and the conduction band is sufficiently small. At absolute zero, these are insulators, but at
room temperature, a few electrons are excited from the valence band to the conduction band. The
conductivity is small but increases with increase of temperature. The property of these intrinsic
semiconductors can be easily understood from the bond picture that will help us understand the
property of impurity or doped semiconductors as well as that of the p-n junctions and their impor-
tance in electronics.

A simple example can illustrate the formation of the energy gap in these solids by considering the
fact that Si and Ge have covalent bonding. The sp states in a free atom form an eight-fold-degenerate
level. In an Si dimer, the electron states would interact and form bonding and antibonding levels, as
shown in Figure 6.6.

The tetrahedral bonding of Si is shown in
Figure 6.7. An Si atom ð3s23p2Þ has four valence
electrons. In the crystalline form, a Silicon atom
has the valence configuration ð3s3p3Þ, which
forms four sp3 hybrids and results in the tetra-
hedral bonding with the four nearest Si atoms.
Therefore, each bond has two electrons shared
by two Si atoms. In principle, the wave func-
tions of these electrons would extend through-
out the crystalline solid. However, the electron
cloud, which is essentially a pair of electrons
of opposite spin, is mostly located in the bond
between the neighboring Si ions, as shown
schematically in Figure 6.7. This is also con-
firmed by band calculations.

Ge also crystallizes in the diamond structure.
In the Ge atom, the valence electrons have the
ð4s24p2Þ configuration, whereas in the crystalline
form, the valence electrons have the ð4s4p3Þ
configuration. These form the sp3 hybrids, as
explained in Eq. (6.3). Each of these four orbital
wave functions is directed toward the vertex of a
tetrahedron, and hence, the electronic structure of
Ge is almost identical to that of Si. The band
structures of Si and Ge, calculated by Cheli-
kowsky and Cohen3 using the empirical nonlocal
pseudopotential method, are shown in Figures 6.8
and 6.9.

We note that the energy gaps in both Ge and
Si are indirect. The highest occupied state lies at
Γ. However, the lowest lying unoccupied state is
near the Χ point, and thus the gap is “indirect.”

Antibonding

Bonding

FIGURE 6.6

Bonding and antibonding levels in a silicon dimer.

Si Si Si

Si Si Si

Si Si Si

FIGURE 6.7

Electronic structure (schematic) of Si.
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6.5 ZINC-BLENDE SEMICONDUCTORS
The III–V zinc-blende semiconductors such as GaAs and InSb have the same basis core of closed
shells as Si and Ge. However, Ga and In have three outer electrons, whereas As and Sb have five
outer electrons. In addition, Ga or In occupies all the A sites in the diamond structure, whereas As
or Sb occupies all the B sites (see Figure 6.4). The bond picture of GaAs is shown in Figure 6.10.

The bond structure of InSb is similar to that of GaAs. We note that the bond structures of GaAs
and InSb are different from that of Si or Ge in the sense that because Ga (or In) has three outer elec-
trons and As (or Sb) has five outer electrons, there is a shrinking of the charge clouds toward As (or
Sb), and away from Ga (or In). These compounds are also semiconductors like Si and Ge, but with a
smaller energy gap. Their band structures, as calculated by Chelikowsky and Cohen using a nonlocal
pseudopotential method, are shown in Figures 6.11 and 6.12.

ZnS, which is a II–VI compound, has the zinc-blende structure (in fact, the name is derived from it).
It is also a semiconductor like the III–V compounds. In ZnS, Zn has two electrons, and S has six
electrons in the outermost shells. However, the S6+ ions attract the eight electrons surrounding it and
try to pull them further in through a process known as electron affinity. The S6+ ions try to form a
closed shell, and the Zn2+ ions barely hold on to the two outermost electrons. In the process, the two
electrons in each bond are much closer to S than to Zn because the bond electrons are greatly polarized
by the residual charge on the ions. The zinc sulphide bond is shown schematically in Figure 6.13.
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FIGURE 6.8

Band structure of Si calculated by Chelikowsky and
Cohen by using nonlocal pseudopotential. The
dashed lines are results obtained by using local
pseudopotential.
Reproduced from Chelikowsky and Cohen3 with the permission

of the American Physical Society.
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FIGURE 6.10

Bond structure of GaAs.
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Band structure of GaAs calculated by Chelikowsky
and Cohen.
Reproduced from Chelikowsky and Cohen3 with the permission

of the American Physical Society.
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Band structure of InSb calculated by Chelikowsky
and Cohen.
Reproduced from Chelikowsky and Cohen3 with the permission

of the American Physical Society.
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FIGURE 6.13

Schematic picture of zinc sulphide bond.
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6.6 IONIC SOLIDS
In CuCl, the copper atom has one electron in its outermost shell, whereas the chlorine atom has
seven electrons. In the crystalline form, the Cu atom loses its electron, which is captured by the
chlorine atom. CuCl crystallizes in an alternating lattice. The attraction is between the Cu+ and Cl−

ions. In fact, there are two alternate crystal structures in which the ionic crystals crystallize: the
NaCl structure and the CsCl structure. The important factor in the crystal structure in an ionic crys-
tal is to have as many negative ions as possible around a positive ion. A schematic diagram of
sodium chloride is shown in Figure 6.14.

The sodium chloride crystal structures are shown in Figure 6.15. In the sodium chloride struc-
ture, the space lattice is fcc, and the basis has one Na+ ion at (000) and one Cl− ion at (½½½).

The cesium chloride crystal structure is shown in Figure 6.16. The space lattice is simple cubic,
and the basis has one Cs+ ion at (000) and one Cl− ion at (½½½).

We have discussed the progression of the band structure from perfectly covalent silicon in
which the four electrons are distributed around the Si4+ ion cores in tetrahedral bonding, to
covalent gallium arsenide, where there is more charge of the electron cloud surrounding the
As5+ core than Ga3+: Consequently, GaAs has a small ionic character. The zinc sulphide crystal
is weakly covalent because Zn2+ has very few valence electrons while S6+ is almost full; there-
fore, the electron cloud is mostly around S6+: ZnS is also partly ionic in character. Sodium
chloride is perfectly ionic because the Na+ ion has lost its valence electron to the chlorine atom
that becomes the Cl− ion. The attraction between the ions of opposite sign results in the ionic
bond.

A schematic diagram of the progression from perfectly covalent to perfectly ionic crystals is
shown in Figure 6.17.

FIGURE 6.14

A schematic diagram of sodium chloride.

FIGURE 6.15

Sodium chloride crystal structure.
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FIGURE 6.16

Cesium chloride structure.

Zn2+

Zn2+S6+

S6+
Na+

Na+

Cl7+

Cl7+

Si 4+

Si 4+ Si 4+

Si 4+ Ga3+

Ga3+As5+

As5+

FIGURE 6.17

A schematic diagram of progression from perfectly covalent to perfectly ionic crystals.
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6.7 MOLECULAR CRYSTALS
6.7.1 Molecular Solids
The column VIII elements are good examples of molecular solids. The solid noble gases (except
helium) crystallize in monatomic fcc Bravais lattices. Each atom has a stable closed-shell type,
which gets deformed in the solid. However, the solid is held together by the van der Waals or fluc-
tuating dipole forces. These forces are very weak and can be qualitatively calculated by considering
two atoms (A and B) at a distance r. At any instant, if atom A has an instantaneous dipole moment
pA (of which the time-averaged value vanishes), then the electric field at atom B due to atom A is
proportional to pA=r3: The dipole moment at atom B due to this electric field is given by

pB� αpA
r3

, (6.4)

where α is the polarizability of the atom. The interaction energy between two dipoles of moment pA
and pB is given by

Vi = −β pApB
r3

≈−αβ pA
2

r6
= − A

r6
, (6.5)

where β is the polarizability of atom B and A = αβ pA
2: Thus, the lowering of energy between two

atoms due to the van der Waals force is very small.

6.7.2 Hydrogen-Bonded Structures
In the hydrogen-bonded structures, the forces between the molecular groups are through a shared
proton. The chemical properties of the molecules dominate the properties of these structures.

6.8 COHESION OF SOLIDS
The cohesive energy is the difference between the energy of a solid and the energy of a gas of
widely separated atoms from which the solid is eventually constituted. Essentially, the determination
of the cohesive energy answers two separate questions. First, it explains how a large group of atoms
form a crystalline solid when they come together. Second, it explains which crystal structure leads
to the lowest energy.

As we have seen, crystals can be divided into five categories: molecular, ionic, covalent, metallic,
and hydrogen bonded. We will discuss the cohesive energy of each type of solids.

6.8.1 Molecular Crystals: Noble Gases
The van der Waals interaction between two molecules, which are well separated at a distance r, is
derived (using a classical theory) in Eq. (6.5). However, the term that is proportional to r−6

(Eq. 6.5) represents the interaction energy between the molecules at large distances that do not have
a permanent dipole moment. We note that the induced dipole moment in van der Waals interaction
is such that it is always attractive and hence lowers the energy of the system. It may be noted that
quantum or thermal fluctuations always induce small dipole moments in atoms that normally do not
have any dipole moments. However, when the atoms come close together such that their separation
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is of the same order as that of the atomic radii, there is an additional repulsive force between them.
This additional force is proportional to r−12: The resulting potential, which is the sum of the attractive
force arising out of the van der Waals term (Eq. 6.5) and the repulsive force, can be written as

ϕðrÞ = − A
r6

+ B
r12

, (6.6)

where A and B are positive constants. For convenience, we introduce the parameters σ = B
A

� �1/6
and ∈ = A2

4B , so that Eq. (6.6) can be written as

ϕðrÞ = 4∈ σ
r

� �12
− σ

r

� �6� �
: (6.7)

This is known as the Lennard–Jones 6-12 potential. The Lennard–Jones parameters ∈ and σ are
appropriately chosen to reproduce the thermodynamic properties of gaseous neon, argon, krypton,
and xenon at low temperatures. The Leonard–Jones potential ϕ/4∈ has been plotted against r/a in
Figure 6.18.

The total potential energy U of a crystal of N atoms separated by R (using periodic boundary
conditions so that each atom has identical surroundings) is given by (from Eq. 6.7)

U = 1
2
N ∑
R≠0

ϕðRÞ = 2N∈ ∑
R≠0

σ
R

� �12
− σ

R

� �6� �
, (6.8)

where the sum is over all nonzero vectors for the
bcc lattice (He) or the fcc lattice (all other noble
gases). Here, the factor ½ is multiplied because the
interaction energy of each atom has been counted
twice. The potential energy per atom is given by

u =U/N = 2∈ ∑
R≠0

σ
R

� �12
− σ

R

� �6� �
: (6.9)

If the nearest-neighbor distance is r, we can
rewrite Eq. (6.9) as

u = 2∈ A12
σ
r

� �12
−A6

σ
r

� �6� �
, (6.10)

where

An = ∑
R≠0

r
R

� �n
: (6.11)

It can be shown that A6= 14.45 for a fcc structure
and 12.25 for a bcc structure while A12= 12.13 for
a fcc structure and 9.11 for a bcc structure.

The nearest-neighbor equilibrium spacing r0
is easily obtained from Eq. (6.10) from the
expression,

∂u=dr = 0 jr=r0 : (6.12)
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FIGURE 6.18

The Leonard–Jones 6-12 potential.
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From Eqs. (6.10) and (6.12), we obtain,

r0 = σ
2A12

A6

� 	1/6
: (6.13)

The cohesive energy per ion pair at equilibrium, u0 ≡ ε/N, is obtained from Eqs. (6.10) and (6.13),

u0 = −∈ A6
2

2A12
≈−8:6∈, (6.14)

for a fcc lattice. The Bulk modulus B is given by

B = V ∂2ε
∂V2

: (6.15)

For a fcc lattice,

V
N

= r3ffiffiffi
2

p = v, ∂
∂v

=
ffiffiffi
2

p
3r3

∂
∂r

: (6.16)

Therefore, at equilibrium,

B0 =
ffiffiffi
2

p
9r0

∂2u
∂r2

jr=r0 =
4∈
σ3

A12
A6

A12

� 	5/2

: (6.17)

6.8.2 Ionic Crystals
The ionic crystals crystallize in four common lattice structures: the sodium chloride, the cesium
chloride, the zinc-blende, and the wurtzite structures. The largest term in the interaction energy is
the Coulomb interaction because the particles in the ionic crystals are electrically charged ions. The
dipole interaction, considered for molecular crystals, which is inversely proportional to the sixth
power of the interionic distance, is easily neglected. However, the short-range core‒core repulsion
due to the Pauli principle prevents the crystal from collapsing. We assume that in the first unit cell,
the negative ion is at the origin, and the positive ion is at a distance d (d is a translation vector
through a/2 of a cubic side). The total cohesive energy per ion pair is

uðdÞ = ucoulombðdÞ+ ucoreðdÞ: (6.18)

As an example, we consider the sodium chloride structure that is a fcc Bravais of negative ions
at site Ri and a second Bravais lattice of positive cations displaced by d from the first lattice. The
total potential energy of a single anion or cation is given by

u = − e2

d
1+ ∑

i≠ 0

d
jRi +dj −

d
Ri

� 	( )
: (6.19)

The total potential energy for N/2 ions pair (or N ions) is given by

U = −Ne2

2d
1+ ∑

i≠ 0

d
jRi +dj −

d
Ri

� 	( )
: (6.20)
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The energy per ion pair is obtained by dividing Eq. (6.20) by N/2 ions, and we obtain

ucoulðdÞ = − e2

d
1+ ∑

i≠ 0

d
jRi +dj −

d
Ri

� 	( )
: (6.21)

The evaluation of the summation is complicated and depends on the lattice structure in addition to
containing diverging terms. It can be shown, by performing a Ewald summation (Problem 6.4), that

ucoulðdÞ = − αe2

d
, (6.22)

where α is known as the Madelung constant, which depends on the crystal structure.
The repulsive term ucoreðdÞ, which is essential in preventing a collapse, can only be estimated

approximately by a phenomenological term,

ucoreðdÞ = A
12d

: (6.23)

The total energy per pair of ions is obtained from Eqs. (6.22) and (6.23),

uðdÞ = −α e
2

d
+ A

d12
: (6.24)

The equilibrium distance d0 is obtained from the relation

∂uðdÞ
∂d

= 0: (6.25)

From Eqs. (6.24) and (6.25), we obtain

α e2

d20
= 12 A

d30
, (6.26)

which leads to

d0 =
12A
αe2

� 	1/11
: (6.27)

The phenomenological constant A is obtained by matching the minimum of the potential to the
experimental results.

6.8.3 Covalent Crystals
The theory of cohesion in the covalent crystals involves much more complex calculation than that
of ionic or molecular crystals. The main reason is that in the crystalline form, the valence electrons
in covalent crystals are distributed in a very different way than they are in a group of isolated
atoms or ions. Previously, for noble gases and ionic crystals, we obtained reasonable results by cal-
culating the potential energy of a large number of deformed ions or atoms that were arranged in the
relevant crystal structure. To calculate the cohesive energy of covalent crystals, we have to calculate
their band structure by following techniques discussed in Chapter 5. In fact, the theory of chemical
bonding in molecules is used to describe the cohesion in covalent insulators.
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We can make a qualitative discussion by considering a specific case. For example, we place a
set of carbon atoms in the sites of a diamond structure, where the lattice constant is large enough
so that there is no interaction between the ions, and consequently, the cohesive energy is zero. As
the lattice constant is gradually reduced, the atomic orbitals would start overlapping, and the interac-
tion energy between the atoms placed at the designated lattice sites would correspondingly decrease.
If the outermost shell of the isolated atom were filled, this overlap would lead to core‒core repul-
sion due to the Pauli exclusion principle, and the energy would increase. However, because the out-
ermost shells of the carbon atoms are partially filled, the electrons are flexible enough to rearrange
themselves whenever there is overlap between neighboring wave functions. The primary reason for
this flexibility is due to the fact that in the same atomic shell, there are empty energy levels. Thus,
when the lattice constant of the (hypothetical) diamond structure is reduced to an appropriate value
(the actual lattice constant of diamond), the cohesion energy will be sufficient to form the crystal.
The overlap of the outermost shells leads to lowering of the energy. The new levels formed by the
electrons are no longer localized around a single atom or ion. The bond picture of covalent solids
in general, and the tetrahedral bonding in diamond structure in particular, partially explains the
cohesion in such crystals. However, as noted earlier, the theory of cohesion in covalent crystals
requires more complex calculations.

6.8.4 Cohesion in Metals
In general, the theory of the cohesion of metals also requires band theory calculations. However, the
explanation of cohesion for the alkali metals is comparatively easier because one can consider an
alkali metal to consist of a sea of electrons moving around in a background of localized positively
charged atomic cores that are located at the lattice sites. There are three types of contributions to
the cohesive energy of alkali metals: the interaction between the sea of electrons and the back-
ground of positive ions, the average kinetic energy of the electrons, and the exchange energy.

The interaction between the ion cores and the sea of electrons can be expressed as

εel = −
Z

dr nðrÞ∑
i

e2

jr−Rij +
e2

2
∑
i≠j

1
jRi −Rjj +

1
2

Z
dr1dr2

e2nðr1Þnðr2Þ
jr1 − r2j , (6.28)

where n(r) is the electron density. We note that the first term in Eq. (6.28) is the sum of the attrac-
tive Coulomb interaction between the electrons and the ions; the second term is the sum of the
repulsive interaction between the positively charged ions of charge e at the lattice sites Ri and Rj

(the factor 1/2 prevents double counting); and the third term is the direct electron‒electron interac-
tion term that is a function of the electron densities n(r1) and n(r2). If n(r) is taken as a constant,
n = N=V : It can be easily shown by adapting a technique used similar to that for ionic crystals in
Problem 6.4,

εel
N

= − 1
2
α e

2

rs
, (6.29)

where α is the Madelung constant and rs (defined in Chapter 3) is the free space around each elec-
tron in an electron gas,

rs =
3V
4πN

� �1/3
: (6.30)
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We also showed in Chapter 3 that the average kinetic energy of the electrons is given by

εk
N

= 3
5
εF = 3ħ2kF2

10m
= 3ħ2

10m
9π
4

� �2/3 1
rs2

: (6.31)

The exchange term arises due to the fact that electrons at r1 and r2 flip places while interacting
with each other. Because the wave function is antisymmetric, a negative sign is introduced due to
this interaction. The exchange integral can be written as

εex = −
Z
e2dr1dr2
jr1 − r2j ∑

n<m
½ϕ�

nðr1Þϕ�
mðr2Þϕnðr2Þϕmðr1Þ δχiχj �, (6.32)

where ϕ′s are the one-particle wave functions and χ′s are the spin index. In the jellium model, the
exchange energy can be shown to be

εex
N

= − 3e2

4π
9π
4

� �1/3 1
rs
: (6.33)

Adding Eqs. (6.29), (6.31), and (6.33); using the value α = 1:792 for fcc, bcc, and hcp lattices;
expressing the results in terms of Bohr radius a0 = 0:529A°; and measuring the energy in units of
electron volts per atom, we obtain

ε
N

= −24:35
ðrs/a0Þ + 30:1

ðrs/a0Þ2
− 12:5
ðrs/a0Þ

" #
eV /atom: (6.34)

The minimum of ε
N occurs when rs

a0
≈ 1:6: However, for alkali metals, the observed values of rs

a0
are between 2 and 6. The significant difference between the theoretical value and the experimental
results is due to the neglect of correlation energy in this derivation. The treatment of correlation
energy is beyond the scope of the present discussions because they are treated by using quantum
field theory. Qualitatively, one can summarize the effect of correlation by stating that the correla-
tions tend to keep the electrons apart, thereby further decreasing the energy of the system derived
in Eq. (6.34).

We will now formulate the semiclassical model of electron dynamics and then derive the
Boltzmann equations, which are essential for understanding the study of solids.

6.9 THE SEMICLASSICAL MODEL
The semiclassical model predicts the position r and the wave vector k of each electron evolved in
the presence of external electric field E and magnetic field B in the absence of collisions. The basic
assumptions of the semiclassical model are as follows:

1. The band index n is a constant of motion, and there are no “interband transitions.”
2. The position of an electron in a crystal with inversion symmetry evolves according to

_r = vnðkÞ = 1
ħ
∂εnk
∂k

: (6.35)
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3. The electron wave vector obeys the equation of motion

ħ _k = −eEðr, tÞ− e
c
_r ×Bðr, tÞ, (6.36)

where Eðr, tÞ and Bðr, tÞ are electric and magnetic fields that may vary spatially. Eqs. (6.35) and
(6.36) can be derived from the Lagrangian formulation in classical mechanics as follows (see
Symon10).

If the forces acting on a dynamical system depend on the velocities, we can define a function
Uðq1, q2, :::, qf ; _q1, _q2, :::, _qf tÞ, called the velocity-dependent potential (which includes the ordinary
potential energy V), such that the generalized force Qk associated with the coordinate qk is given by

Qk =
d
dt

∂U
∂ _qk

− ∂U
∂qk

, k = 1, :::, f : (6.37)

The Lagrangian function is defined as

L = T −U, (6.38)

and the equations of motion can be written as

d
dt

∂L
∂ _qk

− ∂L
∂qk

= 0: (6.39)

If we consider a system described in terms of a fixed system of coordinates, the kinetic energy T
is a homogeneous quadratic function of the generalized velocities _q1, _q2, :::, _qn, we obtain from
Euler’s theorem,

∑
f

k=1
_qk

∂T
∂ _qk

= 2T: (6.40)

If V, the potential energy, is a function of the coordinates q1, q2, :::, qf , the total energy from
Eqs. (6.40) and (6.41) is

E = T +V : (6.41)

The Hamiltonian function is defined as

H = ∑
f

k=1
pk _qk − L: (6.42)

We can also write

dL = ∑
f

k=1

∂L
∂ _q k

d _qk +
∂L
∂qk

dqk

� 	
+ ∂L

∂t
dt

= ∑
f

k=1
ðpkd _qk + _pkdqkÞ+ ∂L

∂t
dt:

(6.43)

From Eqs. (6.42) and (6.43), we obtain

dH = ∑
f

k=1
ð _qkdpk − _pkdqkÞ−∂L

∂t
dt: (6.44)
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Thus, we obtain

_qk =
∂H
∂pk

and _pk = − ∂H
∂qk

, k = 1,…, f , (6.45)

Eq. (6.42) can be written in the generalized form that whenever there is a Lagrangian LðQ, _Q Þ, it is
also possible to derive a Hamiltonian, using the formulae

H = ∑
l

_QlPl − L (6.46)

and

Pl =
∂L
∂ _Ql

: (6.47)

Here, the Q’s are the three components of rc and the three components of kc (the subscript c is for
classical values that we will drop in the future).

In an electromagnetic field, the electromagnetic force on an electron of charge −e can be written as

F = −eE− e
c
V×B: (6.48)

The Hamiltonian can also be written by replacing the Hamiltonian in a pure perfect crystal lattice by an
equivalent Hamiltonian operator εnð−i∇Þ, where n is the band index. Thus, the electron is treated as
free because the effect of the lattice potential is included in εnð−i∇Þ, the modified kinetic energy. If the
potential of the external field is UðrÞ, the equivalent Hamiltonian operator can be written in the alter-
nate form,

Hðr,pÞ = εnð−i∇Þ+UðrÞ: (6.49)

According to the quantum mechanical formulation, the Hamiltonian operator is obtained by repla-
cing the classical momentum variable p by −iħ∇ in the classical Hamiltonian function. Thus, by
reversing the steps, we obtain the equivalent classical Hamiltonian from Eq. (6.49) by replacing
−i∇ by p/ħ,

Hðr,pÞ = εnðp/ħÞ+UðrÞ: (6.50)

Here, the basic assumption is that the energy functions εnðkÞ are known from band structure
calculations, and thus, there is no need to include the explicit form of the periodic potential of
the ions.

The equations of motion can be written in the canonical Hamiltonian form (Eq. 6.45),

_r = ∂H
∂p

, (6.51)

and

_p = −∂H
∂r

: (6.52)

From Eqs. (6.50) and (6.51), we obtain

_r ≡ vnðkÞ = ∂H
∂p

= ∂
∂p

fεnðp/ħÞ+UðrÞg =
∂εnðp/ħÞ

∂p
= 1

ħ
∂εnðkÞ
∂k

: (6.53)
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From Eqs. (6.48), (6.50), and (6.52), we obtain

p_ = −∂H
∂r

= −∂U
∂r

= F = −e Eðr, tÞ+ 1
c
vnðkÞ×Bðr, tÞ

h i
: (6.54)

An alternate way to approach the problem is by defining the vector and scalar potentials A and ϕ as

B = ∇×A (6.55)

and

E = −∇ϕ− 1
c
∂A
∂t

: (6.56)

From Eqs. (6.48), (6.55), and (6.56), we can write F as

F = e∇ϕ+ e
c
∂A
∂t

− e
c
∇ðv .AÞ: (6.57)

One can show from Eqs. (6.41) and (6.42) that the Hamiltonian for the electrons in the nth band
can be written as

Hðr, pÞ = εn
1
ħ

p+ e
c
Aðr, tÞ

h i� �
− eϕðr, tÞ (6.58)

and

ħ _k = −eE− ev
c

×B, (6.59)

where the variables ħk are defined as

ħk = p+ e
c
Aðr, tÞ: (6.60)

The canonical crystal momentum p (which is the canonical momentum in the Hamiltonian formula-
tion) can be written as

p = ħk− e
c
Aðr, tÞ: (6.61)

6.10 LIOUVILLE’S THEOREM
We will now briefly discuss Liouville’s theorem before proceeding further. The configuration and
the motion of a system is specified by the coordinates and momenta, q1, q2, :::, qf : p1, p2, :::, pf : The
2f -dimensional space is called the phase space of the mechanical system. The velocity of the phase
points is given by the Hamilton equations in Eq. (6.45). The possible state of the mechanical system
is represented by each phase point that is occupied by a “particle” that moves according to the
equation of motion (Eq. 6.45). These particles trace out paths that represent the history of
the mechanical system. The solutions of the equations of motion are uniquely determined because
the positions and momenta are given, and hence, there is only one possible path through each phase
point. Liouville’s theorem states that the phase “particles” move as an incompressible fluid. The
phase volume occupied by a set of “particles” is a constant. The proof of Liouville’s theorem can
be found in any standard book of classical mechanics (see Symon10).
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6.11 BOLTZMANN EQUATION
The Boltzmann equation can be obtained by first considering the continuity equation. Here, we con-
sider the motion of particles illustrated in Figure 6.19. We consider a large number of a conserved
collection of identical particles at position x, moving with a velocity vðxÞ and density gðxÞ: In a
time Δt, the total number of particles moving into a small region dx minus the number of particles
that are moving out is equal to

ΔgðxÞ = vðxÞgðxÞΔt− vðx+ dxÞgðx+ dxÞΔt: (6.62)

In the limit Δt ! 0,

∂g
∂t

= − ∂
∂x

vðxÞgðx, tÞ: (6.63)

Eq. (6.63) can be generalized for many variables as

∂g
∂t

= −∑
i

∂
∂xi

við x!Þgð x!, tÞ: (6.64)

We define grkðtÞ as the occupation number of electrons at time t with position r and wave vector k.
Thus, grkðtÞ is the probability that a state is occupied at time t. From Eq. (6.64), we obtain

∂grk
∂t

= − ∂
∂r

. r_grk −
∂
∂k

. _kgrk: (6.65)

In an electromagnetic field, we have derived

_r = 1
ℏ

∂ε
∂k

= v,

ℏ _k = −eE− e
c
v×B = Fðr,kÞ:

(6.66)

E does not depend on k, and v does not depend
on r. Further,

∂
∂k

. v×B = B . ∂
∂k

× v = 0 because v = 1
ħ

∂ε
∂k

:

(6.67)

From Eqs. (6.65) through (6.67), we obtain

∂g
∂t

= −r_ . ∂
∂r

g− _k . ∂
∂k

g: (6.68)

From Eqs. (6.66) and (6.68), we obtain

∂g
∂t

+ v . ∂
∂r

g+ 1
ħ
F . ∂

∂k
g = 0: (6.69)

However, there are momentum transfers caused
by thermal fluctuations and impurities, which are
not included in Eq. (6.69). To include these,

g(x)

υ (x) υ (x + dx)

g (x + dx)

x + dxx

FIGURE 6.19

Density of particles at x and x + dx.

6.11 Boltzmann Equation 183



Boltzmann added a collision term to Eq. (6.69), and the resulting equation, known as the Boltzmann
equation, can be written as

∂g
∂t

+ v . ∂
∂r

g+ 1
ħ
F . ∂

∂k
g =

∂g
∂t

� 	
coll

: (6.70)

The terms on the left side of the equation are known as the drift terms, and the term on the right side is
known as the collision term.

6.12 RELAXATION TIME APPROXIMATION
In thermal equilibrium, the distribution function reduces to the Fermi function

frk = 1
eβrðεk−μrÞ + 1

, (6.71)

where T(r) is the temperature at r and μr is the constant that produces the correct density nðrÞ. The
collision term ∂g

∂t

� �
coll

in Eq. (6.70) must be such that the distribution g must relax toward thermal

equilibrium. The simplest approximation for this to happen is the relaxation time approximation,

∂g
∂t

� 	
coll

= − 1
τε
ðgrk − frkÞ, (6.72)

where τε is defined as the relaxation time. In the simplest solutions, τε is considered as a constant τ.
If we approach the same problem in an alternate method, we can argue that because g = gðr,k, tÞ,

we can write
dg
dt

=
∂g
∂t

+ _r .
∂g
∂r

+ _k . ∂g
∂k

: (6.73)

From Eqs. (6.70), (6.72), and (6.73), we obtain
dg
dt

= − g− f
τε

: (6.74)

Integrating Eq. (6.74), we obtain

gðr,k, tÞ =
Zt
−∞

dt′f ðrðt′Þ,kðt′ÞÞ e
−ðt−t′Þ/τε
τε

: (6.75)

Here, rðt′Þ and kðt′Þ, which are solutions of the semiclassical equations, evolve in time such that
r(t) = r and k(t) = k. Integrating Eq. (6.75) by parts, we obtain

gðr,k, tÞ = f ðr,kÞ−
Zt
−∞

dt′ e−ðt−t′Þ/τε d
dt′

f ðrðt′Þ,kðt′ÞÞ: (6.76)

Because f is the Fermi function, which is evaluated at local temperature and chemical potential,

d
dt′

f ðrðt′Þ,kðt′ÞÞ = _rðt′Þ . ∂
∂r

+ _kðt′Þ . ∂
∂k

� �
f ðrðt′Þ, kðt′ÞÞ: (6.77)

184 CHAPTER 6 Static and Transport Properties of Solids



From Eq. (6.71), we obtain

∂f
∂r

=
∂f
∂ε

−∂μ
∂r

−
ðε−μÞ
T

∂T
∂r

� �
, (6.78)

∂f
∂k

=
∂f
∂ε

∂ε
∂k

= ħvk
∂f
∂ε

, (6.79)

and

∂f
∂ε

= − ∂f
∂μ

: (6.80)

In addition, from Eq. (6.66), we have

_k . ∂f
∂k

= −evk .E: (6.81)

Substituting Eqs. (6.77) through (6.81) in Eq. (6.76), we obtain

gðr,k, tÞ = f ðr,kÞ−
Zt
−∞

dt′ e−ðt−t′Þ/τεvk . eE+
∂μ
∂r

+
εk−μ
T

∂T
∂r

� �
∂f ðt′Þ
∂μ

: (6.82)

Neglecting the time dependence of all terms except the exponential factor, the integral can be easily
done, and we obtain

gðr,kÞ = f ðr,kÞ− τεvk . eE + ∇!μ +
εk − μ
T

∇!T
h i ∂f

∂μ
: (6.83)

The current density can be written as

J = −2e
Z

evkgðkÞdk, (6.84)

which can be rewritten in the alternate form

J = −2
Z

eVkf ðkÞdk− 2
Z

e2τeVkðVk .EÞ ∂f∂ε − e
T
ðK1 . ð−∇TÞÞ, (6.85)

where

Kn =
1
4π2

τe
ħ

ZZ
VkVkðε− μÞnð− ∂f

∂εn
Þ dS
vk

dε . ð−∇TÞ, (6.86)

and we have used
RR
dk = 1

8π2
RR

dS
ħvk

dε for integration over a constant energy surface (Problem 6.7).

Eq. (6.86) indicates that even if there were no electric field, the thermal gradient, ∇T , would give
rise to an electric current. This is known as the thermo-electric effect, which we will discuss later. We
note that Eq. (6.85) can be rewritten in the alternate form

J = −2
Z

eVk f ðkÞdk+ e2K0 .E− e
T
K1 . ð−∇TÞ: (6.87)
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6.13 ELECTRICAL CONDUCTIVITY
In an electric field E, which is independent of time, there is no variation of g, f, μ, and T with posi-
tion. We can rewrite Eq. (6.83) in the simpler form

gðkÞ = f ðkÞ− τεvk . ½eE� ∂f∂μ : (6.88)

To calculate the electrical conductivity, we need to first calculate the current density,

J = −2e
Z
evkgðkÞdk: (6.89)

From Eqs. (6.88) and (6.89), we obtain

J = −2
Z
evkf ðkÞdk− 2

Z
e2τεvk . ðvk .EÞ ∂f∂ε, (6.90)

where we have used the identity,

∂f
∂μ

= − ∂f
∂ε

: (6.91)

In Eq. (6.90), because fk is the equilibrium Fermi distribution function,

−
Z
evkfkdk ≡ 0: (6.92)

From Eqs. (6.90) and (6.92), we obtain

J = 1
4π3

ZZ
e2τεvkðvk .EÞ − ∂f

∂ε

� 	
dS
ħvk

dε, (6.93)

where we have changed an integral over a volume of k space into integrations over surfaces of con-
stant energy (Problem 6.7).

In a metal,

− ∂f
∂ε

� 	
= δðε− εFÞ: (6.94)

We obtain from Eqs. (6.93) and (6.94),

J = 1
4π3

e2τε
ħ

Z
vkvkdSF

vk
.E: (6.95)

The equation for electric conductivity tensor can be expressed as

J = σ .E: (6.96)

From Eqs. (6.95) and (6.96), we obtain

σ = 1
4π3

e2τε
ħ

Z
vkvkdSF

vk
: (6.97)
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In crystals with cubic symmetry, the conductivity tensor is a scalar and if E and J are both in the
same x direction,

ðvkvk .EÞx = Evx
2 = 1

3
v2E: (6.98)

From Eqs. (6.97) and (6.98), we obtain

σ = e2

12ħπ3

Z
Λ dSF , (6.99)

where Λ is the mean free path

Λ = τv: (6.100)

6.14 THERMAL CONDUCTIVITY
The thermal conductivity experiment is usually done by keeping the specimen in an open circuit.
This implies that the specimen has an electric field E, but there is no electric current; i.e., J = 0.
From Eqs. (6.87) and (6.92), we have an electric field in the wire

E = − 1
e
K−1

0 K1
1
T
.∇T: (6.101)

The thermal conductivity can be calculated from the total flux of heat (per unit volume)

U = 2
Z

fkfεðkÞ−μgvkdk: (6.102)

From Eqs. (6.83), (6.86), and (6.102), we obtain

U = −eK1 .E+ 1
T
K2 . ð−∇TÞ: (6.103)

From Eqs. (6.101) and (6.103), we obtain

U = 1
T
ðK1K

−1
0 K1 .∇T−K2 .∇TÞ, (6.104)

which can be rewritten in the alternate form

U = 1
T
ðK2−K1K

−1
0 K1Þ . ð−∇TÞ: (6.105)

The thermal conductivity κ is defined as

U = κ . ð−∇TÞ: (6.106)

If we neglect the second term of Eq. (6.105) for metals, we obtain from Eqs. (6.105) and (6.106)

κ≈ 1
T
K2: (6.107)

Using the expansion (Problem 6.8)Z
FðεÞdε −∂f0

∂ε

� 	
dε = FðμÞ+ 1

6
π2ðkBTÞ2 ∂2FðεÞ

∂ε2

� �
ε=μ

+ :::, (6.108)
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and σ = e2K0 [from Eq. (6.87) under isothermal conditions], we can write

κ = π2

3
k2

e2
Tσ: (6.109)

This is also known as the Wiedemann–Franz law.

6.15 WEAK SCATTERING THEORY OF CONDUCTIVITY
6.15.1 Relaxation Time and Scattering Probability
We will now consider a more realistic description of the collisions by assuming that there is a scat-
tering probability

Wk,k′dk′dt
ð2πÞ3

, (6.110)

which is the probability in an infinitesimal time interval dt that an electron with wave vector k is
scattered into any one of the group of levels with the same spin in an infinitesimal k-space volume
element dk′ about k′: These levels are not forbidden by the exclusion principle in the sense that
they are not occupied. Because, by definition, gðk′Þ is the fraction of levels in the volume element
dk′ about k′ that are occupied, the fraction that is unoccupied is 1−gðk′Þ, and hence, the total prob-
ability per unit time for a collision (which is precisely the definition of 1

τðkÞ), is given by (from
Eq. 6.110)

1
τðkÞ =

Z
dk′
ð2πÞ3

Wk,k′½1− gðk′Þ�: (6.111)

We note that τðkÞ is not the usual relaxation time defined in Eq. (6.72) but explicitly depends on
the distribution function gðkÞ:

6.15.2 The Collision Term
The number of electrons scattered out of the volume element dk about k in time interval dt is given by

dnout = −
dgðkÞ
dt

� 	
out

dk
ð2πÞ3

dt: (6.112)

The total number of electrons per unit volume in dk about k that suffer a collision in time interval dt is
also obtained from Eq. (6.111) as

dnout =
dt
τðkÞ gðkÞ

dk
ð2πÞ3

: (6.113)

From Eqs. (6.111) through (6.113), we obtain

dgðkÞ
dt

� 	
out

= −
gðkÞ
τðkÞ = −gðkÞ

Z
dk′
ð2πÞ3

Wk,k′½1−gðk′Þ�: (6.114)
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The electrons not only scatter out of the level k, but are also scattered into it from other levels. By mak-
ing a similar argument as before (see Problem 6.8), we obtain

dgðkÞ
dt

� 	
in
=

g0ðkÞ
τðkÞ =

�
1− gðkÞ

�Z
dk′
ð2πÞ3

Wk′,kgðk′Þ: (6.115)

If we define

dgðkÞ
dt

� 	
coll

=
dgðkÞ
dt

� 	
in
+

dgðkÞ
dt

� 	
out

, (6.116)

we obtain from Eqs. (6.114) through (6.116)

dgðkÞ
dt

� 	
coll

=
Z

dk′
ð2πÞ3

fgðk′Þ½1− gðkÞ�Wk′,k − gðkÞ½1− gðk′Þ�Wk,k′g: (6.117)

In the relaxation-time approximation, Eq. (6.104) can be rewritten as

dgðkÞ
dt

� 	
coll

=
g0ðkÞ− gðkÞ

τðkÞ
� �

: (6.118)

6.15.3 Impurity Scattering
In any real specimen, at very low temperatures, the main source of collisions would be impurities
because the scattering of electrons by the thermal vibrations of the ions and the electron‒electron
scattering become increasingly weak as the temperature is lowered. This impurity-electron scattering
will be elastic as long as the energy gap between the impurity ground state and the excited state is
large compared to kBT : We consider the case of elastic scattering by fixed substitutional impurities
that are located at random lattice sites R in the crystal. The basic assumptions made in this calcula-
tion are as follows:

1. There is a relatively small number of impurities in the crystal, such that one can consider the
electrons to be interacting with one impurity at a time.

2. There are very few excited impurity ions that lose energy to electrons in collisions.
3. There are very few empty electronic levels that are low enough in energy to receive an electron

after it has lost enough energy to excite an impurity ion.
4. The scattering potential U, which describes the interaction between an electron and a single

impurity, is spherically symmetrical and weak.
5. The energies of the occupied electronic states εk are isotropic and depend only on the magnitude

of k.
6. The probability of scattering between two levels k and k′ vanishes unless k = k′ and depends on

the common value of their energies and on the angle between k and k′:

The rate at which an electron at k makes a transition to k′ is given by Fermi’s golden rule (see,
for example, Goswami4),

Wk,k′ =
2π
ħ
δðεðkÞ− εðk′ÞÞj<kjUtðrÞjk′>j2, (6.119)
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where

UtðrÞ = ∑
R
Uðr−RÞ: (6.120)

Here, Uðr−RÞ are spherically symmetric potentials centered at sites R. In simple cases, one can
write

UtðrÞ = niUðrÞ, (6.121)

where ni is the number of impurities per unit volume. In more rigorous derivations, one can con-
sider UtðrÞ as the sum of pseudopotentials of impurity atoms added to a perfect crystal or of atoms
dislocated from their regular positions in the crystal. Here,

<kjUjk′> =
Z

drψ�
nkðrÞUðrÞψnkðrÞ, (6.122)

and the Bloch functions ψnkðrÞ are normalized,Z
cell

drjψnkðrÞj2 = vcell: (6.123)

We note from Eq. (6.119) that Wk,k′ = 0 unless εðkÞ = εðk′Þ. In addition, Wk,k′ is independent
of the electron distribution function in the independent electron approximation. Further, because
UðrÞ is spherically symmetric, Wk,k′ depends only on the angle between k and k′, and therefore,
we obtain

Wk,k′ = Wk′,k: (6.124)

This symmetry is also known as “detailed balancing.” From Eqs. (6.117) and (6.124), we obtain

∂gðkÞ
∂t

� 	
coll

= −
Z

dk′
ð2πÞ3

Wk,k′ ½gðkÞ− gðk′Þ�: (6.125)

We further assume that the solution of the Boltzmann equation g has the form

gk = fk + aðεÞ .k, (6.126)

where a is a vector that depends on k only through its magnitude εðkÞ and fk is the local equili-
brium distribution function (Fermi function). We define the relaxation time through

1
τε
½gðkÞ− f ðkÞ� =

Z
dk′
ð2πÞ3

Wk,k′½gðkÞ− gðk′Þ�: (6.127)

Because Wk,k′ vanishes unless εðkÞ = εðk′Þ, aðεÞ = aðε′Þ and we obtain from Eqs. (6.126) and
(6.127),

1
τε
aðεÞ .k = aðεÞ .

Z
dk′
ð2πÞ3

Wk,k′ðk−k′Þ: (6.128)

From Eq. (6.128) and Eq. (3) of Problem 6.8, we obtain

1
τε

=
Z

dk′
ð2πÞ3

Wk,k′ð1− k̂ . k̂′Þ: (6.129)
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When k and k′ are on the Fermi surface, k = k′ = kF : If we define

q = k− k′, (6.130)

we obtain

q2 = 2k2Fð1− k̂ . k̂′Þ (6.131)

or

ð1− k̂ . k̂′Þ = 2
q
2kF

� 	2

: (6.132)

We can now write from Eqs. (6.119) and (6.130),

Wk,k′ =
2π
ħ

�����
Z

dr
V
eiq

.r∑
R
Uðr−RÞ

�����
2

δðεF − εðk′ÞÞ: (6.133)

Eq. (6.133) can be rewritten in the alternate form

Wk, k′ =
2π
ħ

1
V2

�����∑R eiq
.R
Z
dreiq

.r UðrÞ
�����
2

δðεF − εðk′ÞÞ: (6.134)

We define the static structure factor

SðqÞ = 1
Ns

����∑
R
eiq

.R
����2, (6.135)

and the Fourier transform of the scattering potential U(r)

UðqÞ =
Z

dr eiq
.r UðrÞ, (6.136)

where Ns is the number of scatterers. From Eqs. (6.130) and (6.134) through (6.136), we obtain

Wk,k′ =
2πNs

ħV2
SðqÞjUðqÞj2 δðεF − εðjk−qj ÞÞ: (6.137)

Substituting Eqs. (6.132) and (6.137) in Eq. (6.129), we obtain

1
τε

=
2πNs

ħV

Z
dk′
ð2πÞ3

SðqÞjUðqÞj2 δðεF − εðjk−qÞjÞÞ2 q
2kF

� 	2

: (6.138)

Eq. (6.138) can be rewritten in the alternate form,

1
τε

= Ns

ħV
1
4π

Z
q4

k2F
dq SðqÞjUðqÞj2

Z1
−1

dðcos θÞ δ
�
εF − ε

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F + q2 − 2kFq cos θ

q ��
: (6.139)

We also use the results of the angular integration,Z1
−1

dð cos θÞδ
�
εF − ε

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2F + q2 − 2kFq cos θ

q ��
=

θð2kF − qÞ
q ð∂ε/∂kFÞ , (6.140)
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where θðx− aÞ is the step function,

θðx− aÞ = 1, for x> a
= 0, for x< a:

(6.141)

The step function is related to the Dirac delta function,

δðx− aÞ = dθðx− aÞ/dx: (6.142)

From Eqs. (6.139) through (6.142), we obtain (Problem 6.10)

1
τε

= 1
4πħ2k2FvF

Ns

V

Z2kF
0

dq q3SðqÞjUðqÞj2: (6.143)

The resistivity (in the relaxation time approximation) is given by

ρ = m
ne2τε

= 3πNs

4e2ħv2Fk
4
f V

Z2kF
0

dq q3 SðqÞjUðqÞj2: (6.144)

6.16 RESISTIVITY DUE TO SCATTERING BY PHONONS
We consider only one atom per unit cell that is located at the lattice site (its equilibrium position) at
zero temperature. At a finite temperature, the deviation of the atom or ion from equilibrium position
is (from Chapter 2)

ul = r−Rl −d: (6.145)

The static structure factor is defined in Eq. (1.64). We obtain

∑
l
eiq

.ðRl+ulÞ = ∑
l
eiq

.Rl ½1+ iq .ul + :::�: (6.146)

The structure factor of the unperturbed lattice, ∑
l
eiq

.Rl , has no contribution to the resistivity. From

Eqs. (2.158) and (2.182), we have the Fourier transform of

ûl =
1ffiffiffiffiffiffiffiffi
MN

p ∑
k
∈̂
k
!
λ
Q̂
k
!
λ
eik

.Rl , (6.147)

where

Q̂
k
!
λ
= ħ

2ω
k
!
λ

2
4

3
5
1
2

â
k
!
λ
+ â†

−k
!
λ

� 	
: (6.148)

We can rewrite from Eqs. (6.147) and (6.148),

ul =
1ffiffiffiffi
N

p ∑
kλ
½ûkλeik.Rl + û†kλe

−ik.Rl �, (6.149)
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where

ûkλ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ħ
2Mω

k
!
λ

s
∈!kλâkλ: (6.150)

From Eqs. (6.146) and (6.149), we obtain

∑
l
eiq

.ðRl+ulÞ = 1ffiffiffiffi
N

p ∑
lk
i½ûk .qeiðk+qÞ.Rl + û†k . qe

iðq−kÞ.Rl �, (6.151)

where only the longitudinal mode (q||k) is retained. Because

∑
l
eiðq+kÞ.RlÞ = NδK,q+k, (6.152)

Eq. (6.151) can be rewritten in the alternate form

∑
l
eiq

.ðRl+ulÞ =
ffiffiffiffi
N

p
∑
Kk

i½ûk . qδK,q+k + û†k .qδK,q−k�: (6.153)

In the N-process (normal scattering), K = 0 and q = k; i.e., the wave vectors of electrons and
phonons are equal. In the Umklapp process (U-process), K≠ 0. In the following discussion, we will
consider the N-process.

From Eqs. (6.135) and (6.153), we obtain

SðqÞ = 1
N
∑
l

< jeiq.ðRl+ulÞ j2>
≈< j û†q .qj2>,

(6.154)

because δ0,q−k ≠ 0 can be nonzero only when both k and q are in the first Brillouin zone.
From Eqs. (6.137) and (6.141), we obtain

SðqÞ = ħ
2Mωq

j ∈!: q!j2<âqâ†q + â†qâq>, (6.155)

where ∈! is the polarization vector of the longitudinal mode. S(q) can be rewritten in the alternate
form,

SðqÞ = ħq2

2Mωq
ð2nq + 1Þ: (6.156)

From Eq. (6.144) and (6.156), we obtain

ρ = 3π
e2ħv2F

Ns

V

� �
1
4k4F

Z2kF
0

dq q3
ħq2

2Mωq
ð2nq + 1ÞjUðqÞj2: (6.157)

It can be shown after some algebra that ρ can be written as

ρ = 3π
e2ħv2F

Ns

V

� �
1
4k4F

ħ
2Mc

kBT
ħc

� �5 Z2Θ/T
0

dz z4 e
z + 1
ez − 1

����U zkFT
Θ

� �����2: (6.158)
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In Eq. (6.158), Θ = ħkFc
kB

; z = qΘ
kFT

,Θ is the Debye temperature, c is the velocity of the longitudinal
wave, and M is the mass of the ion. At large temperatures, ρ is linear in T, while at very low
temperatures, ρ� T5:

PROBLEMS
6.1. Derive Eq. (6.10) from Eq. (6.9).

6.2. Two noble gas atoms of charge Ze, each surrounded by Z electrons, are at 0 and R, where R
is so large that there is no interaction between the electronic charges around the two nuclei.
The Hamiltonian of the system can be written as

H = H1 +H2 +HI , (1)

where the interaction Hamiltonian HI is given by

HI = e2 Z2

R
−∑

z

j=1

Z

rð1Þj −R j
+ Z

rð2Þj

0
@

1
A+ ∑

z

i, j=1

1

jrð1Þi − rð2Þj

2
4

3
5: (2)

a. Show that the effect of the first-order perturbation is exponentially small because the
ground state of the two atoms is spherically symmetric and the charge distributions hardly
overlap because they are far apart.

b. Show that in the second-order perturbation theory, all contributions to the relevant integrals
are small unless jrð1Þj j ≪R and jrð2Þj −R j ≪R: Thus, one can expand Eq. (2) as

HI ≈− e2

R3
∑
i, j

3ðrð1Þj
.RÞðrð2Þi −RÞ
R2

− rð1Þj
. ðrð2Þi −RÞ

2
4

3
5: (3)

c. Hence, show that the leading term in the second-order perturbation theory,

ΔE = <0 jHI j0>+∑
k

j<0 jHI j k> j 2
E0 −Ek

, varies as − 1
R6 :

This is essentially the quantum theory of the van der Waals force.
6.3. Derive Eq. (6.17) for the Bulk modulus at equilibrium.

6.4. We have derived in Eq. (6.21)

ucoulðdÞ = − e2

d
1+ ∑

i≠ 0

d
jRi + d j −

d
Ri

� 	( )
, (1)

Rewrite the expression as

ucoulðdÞ = e2

d
fdSð0Þ− dSðdÞ−1g: (2)

S(d) can be written as (because Ri is a vector)

SðdÞ = ∑
i≠ 0

1
jd−Ri j , (3)
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which can be expressed in the integral form

SðdÞ =
Z∞
0

2 drffiffiffi
π

p ∑
i≠ 0

e−r
2 jd−Ri j 2 : (4)

Eq. (4) can also be rewritten as

SðdÞ =
Z∞
0

2 drffiffiffi
π

p
Z

dk
r3

ffiffiffiffiffi
π3

p ∑
Ri ≠ 0

e−k
2/r2 + 2ik.ðd−RiÞ: (5)

Using the relation,

∑
i
eiq

.Ri = ð2πÞ3 1
Ω
∑
K
δðq−KÞ, (6)

where δðq−KÞ is the Dirac delta function and Ω is the volume of the unit cell, show that
Eq. (5) can be rewritten as

SðdÞ =
Z∞
0

2 drffiffiffi
π

p
Z

dk
r3

ffiffiffiffiffi
π3

p ∑
K

ð2πÞ3
Ω

δð2k−KÞ
( )

−1

" #
e−k

2/r2+2ik.d: (7)

Show that Eq. (7) can be simplified as

SðdÞ =
Z∞
0

2 drffiffiffi
π

p π3

r3
ffiffiffiffiffi
π3

p ∑
K

1
Ω
e−K

2/4r2 + iK.d−ed
2r2

� �
, (8)

= ∑
K

4π
ΩK2

eiK
.d− 1

d
: (9)

In deriving Eqs. (4) and (9), we have used the identity

1
d
=
Z∞
0

2 drffiffiffi
π

p e−d
2r2 : (10)

Eq. (9) diverges for the K= 0 term. S(0) also diverges. However, S(d) – S(0) does not
diverge, which can be shown by rewriting S(d) from Eqs. (4) and (8) as

SðdÞ =
ZG
0

2 drffiffiffi
π

p π3

r3
ffiffiffiffiffi
π3

p ∑
K≠0

1
Ω
e−K

2/4r2 + iK.d−ed
2r2

" #
+
Z∞
G

2 drffiffiffi
π

p ∑
Ri≠0

e−r
2ðd−RiÞ2 , (11)

where G is of the order of a reciprocal lattice vector. Eq. (11) can be rewritten by using the
procedure followed earlier as

SðdÞ = ∑
K≠ 0

4π
ΩK2

e−K
2/4G2 + iK.d−

ZG
0

2 drffiffiffi
π

p e−d
2r2 +

Z ∞

G

2 drffiffiffi
π

p ∑
Ri ≠ 0

e−r
2ðd−RiÞ2 : (12)

Each of the terms in Eq. (12) converges. Similarly, one can show that S(0) also converges.
Thus, dSðdÞ−dSð0Þ converges, although the individual summations in Eq. (9) do not
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converge. Hence, we define

dSðdÞ− dSð0Þ+ 1 = α, (13)

where α is the Madelung constant.

6.5. Derive Eq. (6.35) from Eq. (6.34).

6.6. Derive Eq. (6.82) from Eqs. (6.72) through (6.81).

6.7. Derive Eq. (6.93) from Eq. (6.92).

6.8. According to the Sommerfeld expansion rule,

Z∞
−∞

dεHðεÞf ðεÞ =
Zμ
∞

HðεÞdε+ ∑
∞

n=1
anðkbTÞ2n d2n−1

dξ2n−1
HðεÞ j ε=μ: (1)

Here, ξð2nÞ = 22n−1 π2n

ð2nÞ!Bn, f ðεÞ is the Fermi distribution function, ξ is the Riemann zeta

function, and Bn are the Bernoulli numbers. If

HðεÞ = dFðεÞ
dε

, (2)

show (by using the values ξð2Þ = π2

6 and B1 = 1
6Þ thatZ∞

−∞

dεFðεÞ −∂f
∂ε

� 	
= FðμÞ+ π2

6
ðkBTÞ2 ∂2FðεÞ

∂ε2

� �
ε=μ

: (3)

6.9. Derive Eq. (6.115) by making the same arguments made for Eq. (6.114).

6.10. Write the vector k′ in terms of its components

k′ = k′k +k′⊥ = ðk̂ . k′Þk̂ + k′⊥: (1)

Show that because the collision probability Wk,k′ depends only on the angle between k and k′
(for elastic scattering), Z

dk′Wk,k′k′⊥ = 0: (2)

Hence, show that because for k≠ k′,Wk,k′ = 0,Z
dk′Wk,k′ = k

Z
dk′Wk,k′ðk̂ . k̂′Þ: (3)

6.11. Derive Eq. (6.143) from (6.139) through (6.142).
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7.1 INTRODUCTION
In the nearly free electron model, we assumed that the motion of the electrons is independent of
each other. The independent electron was assumed to obey the one-electron Schrodinger equation,
and the lattice potential was considered to be due to the motion of the electron in a background
of static positive charges in the lattice. In this approximation, we neglect the electron–electron
interaction as well as the motion of the ions at a finite temperature.
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However, in a rigorous solution of the underlying quantum mechanical problem, the Hamiltonian of
the solid should include the motion of the interacting N electrons as well as the motion of the nuclei of
which the mass is much heavier than that of the electrons. Because the nuclei are much more massive
than the electrons and the interaction between the conduction electrons and the lattice waves is a com-
plex problem, as a first step in solving the Hamiltonian, we will apply the Born–Oppenheimer approxi-
mation. According to this approximation, the electronic problem is first solved by assuming that the
nuclei are static, classical potentials. The motion of the nuclei gradually increases around their equili-
brium positions in the lattice when the temperature increases. As we saw in Chapter 2, the quanta of
these lattice vibrations are called phonons. In the Born–Oppenheimer approximation, it is assumed that
the cloud of negative charge of the electrons follow the nuclei in their motion. Because this motion is
followed by charge redistribution, the energies involved in moving the nuclei also depend on the elec-
tron energy. This interaction between the conduction electrons and lattice waves is a dynamical problem
that can be treated by perturbation theory. In the adiabatic approximation of Born and Oppenheimer, the
eigenfunction of the Hamiltonian can be written as a product of the N-electron wave function
Ψðr1s1, r2s2,…, rNsNÞ and ΦðuÞ, where ΦðuÞ satisfies a Schrodinger equation for the wave functions
of the ions and Ψðr1s1, r2s2,…, rNsNÞ is the wave function of the N electrons in a static lattice, frozen
with the lth ion at the point Rl of the Bravais lattice. Here, the instantaneous positions of the N electrons
are ri(i = 1, 2,…, N) and the corresponding spins are si. We will consider the ionic motion in a later
section, where we will show that we would need to add an additional term εeðuÞ, which is the total
energy of the electrons as a function of the ions, in the Schrodinger equation for the ions.

If we include the electron–electron interactions, the Schrodinger equation for the N-electron
wave function can be written as

HΨ = ∑
N

i=1
− ħ2

2m
∇2
i Ψ− ze2∑

l

1
jri −Rl j Ψ

� �
+ 1

2
∑
i≠ j

e2

jri − rj j Ψ: (7.1)

It is impossible to solve Eq. (7.1), even with the fastest computer available to physicists, because
the total number of electrons is of the order of 1023. The only possible way to solve Eq. (7.1) is by
making drastic approximations. We will start with the simplest approximation, known as the Hartree
approximation.

7.2 HARTREE APPROXIMATION
There are two alternate methods to derive the Hartree approximation. We will first consider the
simplest method. We proceed with the basic idea of “deriving” from Eq. (7.1) the one-electron
Schrodinger equation for the electrons in a lattice potential of the form

− ħ2

2m
∇2ψðrÞ+UðrÞψðrÞ = εψðrÞ, (7.2)

by obviously making suitable (and drastic) approximations in Eq. (7.1). The potential due to the
static ions in the lattice is

UionðrÞ = −ze2∑
l

1
jr−Rl j : (7.3)
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The effective electron–electron potential UeeðrÞ can be approximated as an electron moving in a field
produced by the sum of all other electrons. If the electrons are considered as a smooth distribution of
negative charge of charge density −enðrÞ, where n(r) is the number density of electrons,

nðrÞ = ∑
j
jψ jðrÞj2, (7.4)

the potential energy of the electron in this field would be

UeeðrÞ =
Z

dr′ e2nðr′Þ
jr− r′ j : (7.5)

The one-electron Schrodinger equation is obtained by adding U = Uion +Uee,

− ħ2

2m
∇2ψ iðrÞ− Ze2∑

l

1
jr−Rl j ψ iðrÞ+ e2∑

j

Z
dr′ jψ jðr′Þj2 1

jr− r′j

" #
ψ iðrÞ = εiψ iðrÞ: (7.6)

Eq. (7.6) is known as the Hartree equation. The Hartree equation can also be derived from Eq. (7.1) by
following a variational method as follows. We write the N-electron wave function as

Ψðr1s1, r2s2,…, rNsNÞ = ψ1ðr1s1Þψ2ðr2s2Þ…ψNðrNsNÞ, (7.7)

where ψ iðrisiÞ are a set of orthonormal one-electron wave functions. We have to consider Ψ as a trial
wave function for a variational calculation and find the equation that is satisfied by the single-particle
functions ψ iðri,siÞ so that the trial function (Eq. 7.7) minimizes

<H>= ∑
s1
∑
s2
…∑

sN

Z
dr1dr2… drNΨ�HΨ: (7.8)

Here, Ψ is normalized because the set ψ iðrisiÞ is orthonormal. If we rewrite the Hamiltonian in
Eq. (7.1) as

H = ∑
i
Hi +

1
2
∑
i≠ j

Vij, (7.9)

we note that Hi operates only on the coordinate of the ith electron and Vij operates on the two-body
coordinates of both i and j. From Eqs. (7.7) through (7.9), we obtain

<H>= ∑
i

Z
ψ�
i Hiψ idr+

1
2
∑
i≠ j

ZZ
dri drj ψ�

i ψ
�
j Vijψ iψ j: (7.10)

If we minimize <H> with respect to variation of ψ�
i , we obtain

δ<H>= ∑
i

Z
δψ�

i

�
Hi +∑

j≠i

Z
ψ�
j Vij ψ j drj

�
ψ i dri = 0, (7.11)

where the variations δψ�
i satisfy the equationZ

δψ�
i ψ i dri = 0, (7.12)
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because of their normalization conditions. Eq. (7.12) acts as a constraint on the variation of <H>. We
follow the method of Lagrangian multipliers by multiplying Eq. (7.12) by a multiplier ∈i and subtract
the sum from Eq. (7.11). We obtain

∑
i

Z
δψ�

i

�
Hi +∑

j≠i

Z
ψ�
j Vij ψj drj −∈i

�
ψidri = 0: (7.13)

Because the variations δψ�
i are independent, the coefficient of each δψ�

i must vanish; i.e., we must have�
Hi +∑

j≠i

Z
ψ�
j Vij ψ j drj

�
ψ i = ∈i ψ i, (7.14)

which, along with Eqs. (7.1) and (7.9), leads to the Hartree equation,

− ħ2

2m
∇2ψ iðriÞ− Ze2∑

l

1
jri −Rl j ψ iðriÞ+ e2∑

j≠i

Z
drj jψ jðrjÞj2 1

jri − rj j

" #
ψ iðriÞ = εiψ iðriÞ: (7.15)

Comparing Eqs. (7.6) and (7.15), we note that the result of the formal derivation of the Hartree
equation (Eq. 7.15) is almost identical to that derived earlier (Eq. 7.6) by using a qualitative argument
except that each electron interacts not with the full charge density of the system (Eq. 7.6), but with the
charge density minus the density of the electron itself. However, in general, the set of equations in
Eq. (7.6) is known as the Hartree equations and is easier to solve. In what follows, we will assume that
Eq. (7.6) is the Hartree equation even though it fails to represent the way in which a particular config-
uration of the N – 1 electrons affects the electron under consideration.

The nonlinear Hartree equations (Eq. 7.6) for one-electron wave functions and energies are
usually solved by first guessing a form for Uee (the term in the square bracket in Eq. 7.6) and the
one-particle Schrodinger equation is solved. The value of Uee is again computed from the
new wave functions ψ iðrÞ, and the Schrodinger equation is again solved using these values. This
iteration procedure is continued until there is no significant change in the potential. In fact, for this
reason, the Hartree approximation is also known as the “self-consistent field approximation.”

The major failure of the Hartree approximation is that in the formal derivation (by using the
variational principle), we started with Eq. (7.7) in which the basic approximation is that the full
N-electron wave function Ψ is a product of the one-electron levels. However, this simple assump-
tion is not compatible with the Pauli principle according to which the N-electron wave function is
antisymmetric; that is, the sign of Ψ changes when two of its arguments are interchanged, i.e.,

Ψðr1s1,…, risi,…, rlsl,…, rNsNÞ = −Ψðr1s1,…, rlsl,…, risi,…, rNsNÞ: (7.16)

Eq. (7.7) does not satisfy the constraints imposed by Eq. (7.16) unless Ψ= 0 identically.
In addition to the noncompliance of the Pauli principle, the other failure of the Hartree approxi-

mation is that it does not include the well-known effects such as “exchange,” “correlation,” and
“screening.” In what follows, we will discuss “exchange” by deriving the Hartree–Fock equations
and “screening” by discussing “Thomas–Fermi theory” and “Lindhard theory,” but we will ignore
“correlation” because it is much harder to discuss and is in the realm of “many-body problems,”
which requires the use of “field theory,” a subject beyond the scope of this book.
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7.3 HARTREE–FOCK APPROXIMATION
7.3.1 General Formulation
Fock and Slater showed that the simplest way to ensure that the N-electron wave function obeys the
Pauli principle is to construct a Slater determinant of orthonormal one-electron wave functions that
is antisymmetric:

Ψðr1s1, r2s2,…, rNsNÞ = 1ffiffiffiffiffi
N!

p

ψ1ðr1s1Þ ψ1ðr2s2Þ ::::::::::::::::::: ψ1ðrNsNÞ
. . .
. . .
. . .

ψNðr1s1Þ ψNðr2s2Þ :::::::::::::::::: ψNðrNsNÞ

����������

����������
: (7.17)

The Slater determinant can be rewritten in the alternate form,

Ψðr1s1, r2s2,…, rNsNÞ = 1ffiffiffiffiffi
N!

p ∑
n
ð−1Þn ψn1ðr1s1Þψn2ðr2s2Þ…ψnN ðrNsNÞ, (7.18)

where the sum is over all permutations n of 1…N. Eq. (7.18) can be rewritten in the alternate form

Ψðr1s1… rNsNÞ = 1ffiffiffiffiffi
N!

p ∑
n
ð−1Þn∏

j
ψnjðrjsjÞ: (7.19)

Here, if the Hamiltonian does not involve the spin explicitly, ψ iðrjsjÞ has the simple form

ψ iðrjsjÞ = ϕiðrjÞχiðsjÞ, (7.20)

where χiðsjÞ = δsj,1 for “spin-up” functions and χiðsjÞ = δsj,−1 for “spin-down” functions.
It can be shown, by using the Slater determinant (Eq. 7.19) for the wave function
Ψðr1s1, r2s2,…, rNsNÞ in Eq. (7.1) and a variational technique, very similar to that used for the
Hartree approximation but involving much more tedious algebra, that the Hartree–Fock equation
can be rewritten as (Problem 7.1)

−ħ2
2m

∇2ϕiðrÞ− ze2∑
l

1
jr−Rl j ϕiðrÞ+ e2∑

j

Z
dr′ jϕjðr′Þ j2 1

jr− r′ j

" #
ϕiðrÞ

−∑
j

Z
dr′ e2

jr− r′ j ϕj
�ðr′Þϕiðr′ÞϕjðrÞδχi, χj = εiϕiðrÞ:

(7.21)

Eq. (7.21) can also be expressed as

− ħ2

2m
∇2ϕiðrÞ+UionðrÞϕiðrÞ+UelðrÞϕiðrÞ+UexðrÞϕiðrÞ = εiϕiðrÞ: (7.22)

The Hartree–Fock equation derived in Eq. (7.21) differs from the Hartree equation derived in
Eq. (7.15) in the sense that there is an additional term (the last term) on the left side of the equation
known as the exchange term. It can be interpreted by stating that particles 1 and 2 flip places during
the course of interaction and the negative sign in the exchange integral is due to the antisymmetry
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of the wave function. The exchange term is in fact an integral operator of the type UexðrÞϕðrÞ =Z
Uðr, r′Þϕðr′Þdr′. Thus, the Hartree–Fock equations are a complicated set of nonlinear equations

that can only be solved numerically.

7.3.2 Hartree–Fock Theory for Jellium
The only case in which the Hartree–Fock equations can be solved exactly is the jellium model
where the electrons in a metal are considered to be a set of free electrons of which the solutions
are the familiar plane waves. In the jellium model, the positively charged ions are represented by a
uniform distribution of positive charge with the same density as the electronic charge.

If there are N electrons in a volume V, the wave function of the free electrons is the plane
waves

ϕiðrÞ = eiki
.rffiffiffiffi
V

p : (7.23)

The kinetic energy term is

− ħ2

2m
∇2 1ffiffiffiffi

V
p eiki

.r
� �

= 1ffiffiffiffi
V

p ħ2ki2

2m
eiki

.r = ħ2ki2

2m
ϕiðrÞ: (7.24)

The potential due to the interaction of the ions with the electrons in Eq. (7.22) in the jellium
model can be expressed from Eq. (7.21) as

UionðrÞ = −N
V

Z
dr′ e2

jr− r′ j : (7.25)

The potential due to the Coulomb interaction in Eq. (7.22) in the jellium model can be expressed
from Eq. (7.21) as

UelðrÞ =
Z

dr′∑
N

j=1

e2 jϕjðrÞ j2
jr− r′ j

. (7.26)

For plane waves,

∑
N

j=1
jϕjðrÞ j2 = N

V
. (7.27)

From Eqs. (7.26) and (7.27),

UelðrÞ = N
V

Z
dr′ e2

jr− r′ j
. (7.28)

From Eqs. (7.25) and (7.28), we obtain

Uion +Uel = 0: (7.29)
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We note that this type of cancellation is true only for the jellium model. We will now discuss
the exchange term that arises due to the antisymmetry of the wave function and distinguishes
the Hartree approximation from the Hartree–Fock approximation. The exchange term can be
written as

UexϕiðrÞ = −∑
N

j=1

�Z
dr′ e2

jr− r′ jϕ
�
j ðr′Þϕiðr′Þ

�
ϕjðrÞδχi, χj : (7.30)

From Eqs. (7.23) and (7.30), we obtain

UexϕiðrÞ = − e2

V3/2
∑
N

j=1

�Z
dr′ e

iðki−kjÞ.r′eikj
.r

jr− r′ j
�
δχi, χj : (7.31)

Changing the variable of integration r′′ = r′− r, we can rewrite Eq. (7.31) as

UexϕiðrÞ = − e2

V3/2
∑
N

j=1

�Z
dr′′ e

iðki−kjÞ.r′′
r′′

�
eiki

.r δχi, χj : (7.32)

Using the relation

ϕiðrÞ = 1ffiffiffiffi
V

p eik
.ri , (7.33)

and the Fourier transformation

Z
dr′′ e

iðki−kjÞ.r′′
r′′

= 4π
jki −kj j2

, (7.34)

Eq. (7.32) can be rewritten as

UexϕiðrÞ = −e2ϕiðrÞ∑
N

j=1

1
V

4π
jki −kjj2 δχi, χj : (7.35)

Before we proceed further, it is appropriate to mention that there is a divergence when ki→ kj.
This divergence arises due to the unphysical assumption in the Hartree–Fock approximation, which
treats only two electrons at a time, that the Coulomb interaction e2

j r− r′ j decays very slowly at long
distances. In practice, the effective interaction between two electrons falls off much more rapidly
due to the effect of screening, i.e., where the rest of the electrons play a role in reducing this
interaction. We will treat the effect of screening in a subsequent section.

The sum over kj can be converted to an integration over k space as outlined in Chapter 3:

∑
k
FðkÞ = V

8π3

Z
dkFðkÞ. (7.36)
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The density of states is usually multiplied by a factor of 2 because each k state can have two elec-
trons of opposite spin. However, the Kronecker delta function δχi, χj reduces the density of states by
a factor of 1

2. Thus, Eq. (7.35) can be rewritten as

UexϕiðrÞ = −e2ϕiðrÞ
ZkF

dk
8π3

4π
ðk2 + k2i − 2kki cos θÞ

: (7.37)

Because dk = k2dk sin θ dθ dϕ, integrating Eq. (7.37) over dϕ yields a factor of 2π. Then
integrating over dðcos θÞdθ and subsequently over dk (Problem 7.2), we can easily show that

UexϕiðrÞ = −e2ϕiðrÞ 1
2πki

ðk2F − k2i Þ ln kF + ki
kF−ki

� �
+ 2kikF

� �
: (7.38)

We define a Lindhard dielectric function as

FðxÞ = 1
2
+

ð1− x2Þ
4x

ln 1+ x
1− x

��� ��� (7.39)

and express Eq. (7.38) as

UexϕiðrÞ = − 2e2

π
kFF

ki
kF

� �
ϕiðrÞ: (7.40)

From Eqs. (7.22), (7.24), (7.29), and (7.40), we obtain

εiðkÞ = ħ2k2i
2m

− 2e2

π
kFF

ki
kF

� �
: (7.41)

We note that the group velocity of the electrons at the Fermi surface, 1
ħ

∂ε
∂ki

� 	
j ki=kF , is infinite, an

unphysical result due to the fact that screening has been neglected in deriving the Hartree–Fock
results.

The total energy of the N-electron system is obtained by summing over εiðkÞ, multiplying the
first term in Eq. (7.41) by 2 (because each k has two spin levels), and then dividing the second
term by 2 (to avoid counting each electron pair twice while summing the interaction energy of an
electron with all electrons). We obtain

E = 2 ∑
k≤kF

ħ2k2

2m
− e2kF

π
∑
k≤kF

1+
k2F − k2

2kkF
ln

kF + k
kF − k

����
����

� �
: (7.42)

The first term was evaluated in Chapter 1, and the second term is evaluated in Problem 7.3. We
obtain

E = N 3
5
εF −

3
4
e2kF
π

� �
: (7.43)
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Eq. (7.43) can also be rewritten as (Problem 7.4)

E
N

= e2

2a0

�
3
5
ðkFa0Þ2 − 3

2π
ðkFa0Þ

�

= 2:21

ðrs/a0Þ2
− 0:916

ðrs/a0Þ

" #
Ry,

(7.44)

where a0 is the Bohr radius and rs is the radius of the average free space (sphere) for each electron
(Chapter 1). It may be noted that the second term in Eq. (7.44) is comparable to the first term for simple
metals, and hence, the electron–electron interaction term cannot be ignored in the theory of metals.

However, as we indicated earlier, there is a logarithmic singularity in the expression for energy
when k = kF . The singularity arises due to the fact that we have ignored the presence of other
electrons when considering the effect of electron–electron interaction in the Hartree–Fock approxi-
mation. One has to consider the effect of screening to eliminate this divergence. There are two
theories to include the effect of screening. We will first discuss the general effect of screening and
then discuss both the Thomas–Fermi and Lindhard theories of screening.

7.4 EFFECT OF SCREENING
7.4.1 General Formulation
It is shown in Problem 7.5 that the Fourier transform of the external potential due to an external
positive charge (for example, substituting a Zn ion for a Cu ion), ϕeðqÞ, is related to the Fourier
transform of the total potential (external plus induced charge), ϕðqÞ, by the relation

ϕðqÞ = ϕeðqÞ
∈ðqÞ , (7.45)

where ∈ðqÞ is the wave-vector-dependent dielectric constant. This type of relation is normally used in
dielectric materials where the wave vector dependence is not considered because the fields are uniform.

The induced charge density ρiðrÞ is linearly related to the total potential ϕðrÞ = ϕeðrÞ+ϕiðrÞ,
provided ϕðrÞ is sufficiently weak. Here, ϕeðrÞ is the potential due to the extra positively charged
particle introduced in the metal, and ϕiðrÞ is the potential due to the cloud of screening electrons
induced by it. In such a case, one can write Fourier transforms as

ρiðqÞ = χðqÞϕðqÞ: (7.46)

We will now derive a relation between χðqÞ and ∈ðqÞ, the dielectric constant. The Poisson’s equa-
tions for the particle’s charge density ρeðrÞ can be written as

−∇2ϕeðrÞ = 4πρeðrÞ, (7.47)

the Fourier transform of which is

q2ϕeðqÞ = 4πρeðqÞ: (7.48)
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If the total charge density ρðrÞ = ρeðrÞ+ ρiðrÞ, the Poisson’s equation is

−∇2ϕðrÞ = 4πρðrÞ, (7.49)

the Fourier transform of which is

q2ϕðqÞ = 4πρðqÞ: (7.50)

From Eqs. (7.46), (7.48), and (7.50), we obtain

ϕðqÞ = ϕeðqÞ
1− 4π

q2
χðqÞ

� � : (7.51)

Comparing Eqs. (7.45) and (7.51), we derive the relation between ∈ðqÞ and χðqÞ,

∈ðqÞ = 1− 4π
q2

χðqÞ: (7.52)

7.4.2 Thomas–Fermi Approximation
Thomas and Fermi argued that if the total local potential ϕðrÞ is slowly varying, the energy of an
electron, εðkÞ, will be modified from the free electron value. Treating this modification in a classi-
cal approximation, we obtain

εðkÞ = ħ2k2

2m
− eϕðrÞ: (7.53)

The induced charge density is

ρiðrÞ = −e½nðrÞ− n0�, (7.54)

where −enðrÞ is the charge density when there is a local potential ϕðrÞ, and en0 is the charge
density of the positive background ðϕðrÞ = 0Þ. We can rewrite Eq. (7.54) in the alternate form

ρiðrÞ = −e½n0ðμ+ eϕðrÞÞ− n0ðμÞ�, (7.55)

where

n0ðμÞ = 1
4π3

Z
dk 1

e½βððħ2k2/2mÞ−μÞ� + 1
. (7.56)

Because ϕðrÞ is small, we make a Taylor expansion of the first term in Eq. (7.55). The leading
terms cancel, and Eq. (7.55) can be rewritten in the alternate form

ρiðrÞ≈−e2 ∂n0
∂μ

ϕðrÞ: (7.57)
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We make a Fourier transformation of ρiðrÞ andϕðrÞ, and from Eqs. (7.46) and (7.57), we obtain

χTFðqÞ = −e2 ∂n0
∂μ

: (7.58)

From Eqs. (7.52) and (7.58), we obtain

∈TFðqÞ = 1+ 4πe2

q2
∂n0
∂μ

, (7.59)

where ∈TFðqÞ is the dielectric constant in the Thomas–Fermi approximation. If we define a screen-
ing factor

λ2TF = 4πe2
∂n0
∂μ

, (7.60)

Eq. (7.60) can be rewritten as

∈TFðqÞ = 1+
λ2TF
q2

: (7.61)

As an example, if there is a point charge Q at r, it can be shown that (Problem 7.6)

ϕðrÞ = ϕeðrÞe−λTFr: (7.62)

This is known as the screened Coulomb potential because there is an exponential damping factor λTF.

7.4.3 Lindhard Theory of Screening
In a quantum mechanical treatment of Eq. (7.53), the one-electron Schrodinger equation can be
written as

− ħ2

2m
∇2ψkðrÞ− eϕðrÞψkðrÞ = εkψkðrÞ, (7.63)

where −eϕðrÞ is the potential energy. In the absence of the potential, the one-electron wave
function is a plane wave that we denote by | k>. Using first-order perturbation theory, we obtain

ψkðrÞ = jk>+∑
q
bk+q jk+q>, (7.64)

where

bk+ q =
< k+ q j− eϕðrÞ jk>
ε0ðkÞ− ε0ðk+qÞ (7.65)

and

jk> = eik
.r: (7.66)
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The charge density is

ρðrÞ = −e∑
k
f 0ðkÞ jψkðrÞj2 = ρ0ðrÞ+ ρiðrÞ, (7.67)

where f 0ðkÞ is the equilibrium Fermi distribution. We can write the charge density as

ρðrÞ = −e∑
k
½ f 0ðkÞ jψkðrÞj2� (7.68)

= −e∑
k
f 0ðkÞ



e−ik

.r +∑
q
b�k+qe

−iðk+qÞ.r
�


eik
.r +∑

q
bk+qe

iðk+qÞ.r
�" #

. (7.69)

Eq. (7.69) can be approximated as

ρðrÞ≈−e∑
k
f0ðkÞ

�
1+∑

q
bk+qe

iq.r +∑
q
b�k+qe

−iq.r
�

(7.70)

or

ρðrÞ≈ ρ0ðrÞ+∑
k
∑
q

e2ϕðqÞ½ f 0ðkÞ− f 0ðk+qÞ�eiq.r
εðkÞ− εðk+qÞ


 �
, (7.71)

where we have written k for k− q, k+ q for k, and eiq
.r for e−iq

.r as the labels for the second term.
Because

ρðrÞ = ρ0ðrÞ+ ρiðrÞ, (7.72)

ρiðrÞ = ∑
q
ρiðqÞeiq.r, (7.73)

from Eqs. (7.71) through (7.73), we obtain

ρiðqÞ = e2∑
k

f 0ðkÞ− f 0ðk+qÞ
εðkÞ− εðk+qÞ ϕðqÞ: (7.74)

From Eqs. (7.46) and (7.74), we obtain

χLðqÞ = e2∑
k

f 0ðkÞ− f 0ðk+qÞ
εðkÞ− εðk+ qÞ , (7.75)

where χLðqÞ is the expression derived from Lindhard theory. From Eqs. (7.52) and (7.75), we
obtain the expression for the dielectric constant for static screening in the Lindhard theory:

∈LðqÞ = 1− 4πe2

q2
∑
k

f 0ðkÞ− f 0ðk+qÞ
εðkÞ− εðk+ qÞ : (7.76)
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We first consider the dielectric constant when q→ 0: We can write

εðkÞ− εðk+qÞ≈−q .∇kεðkÞ (7.77)

and

f 0ðkÞ− f 0ðk+ qÞ≈−q .
∂f 0ðkÞ
∂ε

∇kεðkÞ: (7.78)

From Eqs. (7.76) through (7.78), we obtain

∈LðqÞ≈ 1− 4πe2

q2
∑
k

∂f 0ðkÞ
∂ε

, (7.79)

which can be rewritten in the alternate form,

∈LðqÞ≈ 1+ 4πe2

q2

Z
−
∂f 0ðkÞ
∂ε

� �
gðεÞdε, (7.80)

where gðεÞ is the density of states. Because, at very low temperatures,

−
∂f 0ðkÞ
∂ε

� �
≈ δðε− εFÞ, (7.81)

Eq. (7.80) can be rewritten in the alternate form

∈LðqÞ≈ 1+ 4π2

q2
gðεFÞ: (7.82)

From Eq. (7.82), we obtain ∈→∞ as q → 0: Thus, an external field of long wavelength is almost
entirely screened due to the flow of electrons. We can show that the same results are obtained
through a simpler method by using the Thomas–Fermi approximation.

We can also write

εðkÞ− εðk+qÞ≈−ħ2ðk .q/mÞ (7.83)

and

∑
k
FðkÞ =

Z
dk
4π3

FðkÞ: (7.84)

We note that Eq. (7.84) is different from Eq. (7.34) because we have considered V = 1 and
multiplied the density of states by a factor of 2 to be able to accommodate two electrons of opposite
spin in each k state.

We obtain from Eqs. (7.71) through (7.73) and (7.83) through (7.84),

ρiðqÞ = −e2
Z

dk
4π3

f0ðkÞ− f0ðk+qÞ
ħ2ðk .q/mÞ ϕðqÞ: (7.85)
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Comparing with the definition of ρiðqÞ = χðqÞϕðqÞ, in Eq. (7.46), we obtain

χLðqÞ = −e2
Z

dk
4π3

f0ðkÞ− f0ðk+ qÞ
ħ2ðk . qÞ/m : (7.86)

We note that the equilibrium Fermi function for free electrons is

f0ðkÞ = 1
eβðħ2k2/2m−μÞ + 1

, (7.87)

f0ðkÞ− f0ðk+ qÞ≈ ħ2

m
k . q ∂

∂μ
f0ðkÞ+Oðq2Þ: (7.88)

From Eqs. (7.86) and (7.88), we obtain

χLðqÞ≈−e2 ∂n0
∂μ

= χTFðqÞ, (7.89)

which is identical to the Thomas–Fermi result derived in Eq. (7.58).
However, the general result for χLðqÞ in Lindhard theory can be obtained by integrating Eq.

(7.86) at T= 0. It can be shown that (Problem 7.7)

χLðqÞ = −e2 mkF
ħ2π2

� �
1
2
+ 1− x2

4x
ln 1+ x

1− x

����
����

� �
, (7.90)

where x = q
2kF

. We note that when T <<TF ,

∂n0
∂μ

= gðεFÞ = mkF
ħ2π2

: (7.91)

From Eqs. (7.90) through (7.91), we obtain

χLðqÞ = χTFðqÞFðxÞ: (7.92)

We have shown that the function in the square bracket, which is 1 at x= 0 and is equal to the func-
tion F(x) appearing in the Hartree–Fock energy, is the Lindhard correction to the Thomas–Fermi
result. Thus, the dielectric constant ∈L = 1− 4πχL/q

2 is not analytic at q = 2kF . In fact, the static
dielectric constant in the Lindhard theory can be written as (Problem 7.8)

∈LðqÞ = 1+ 4πe2

q2
mkF
ħ2π2

1
2
+

4k2F − q2

8kFq
ln

2kF + q
2kF − q

����
����

� �
: (7.93)

It can also be shown that at large distances and at T = 0, the screened potential ϕðrÞ of a point
charge is of the form

ϕðrÞ� 1
r3

cos 2kFr: (7.94)
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If we write

∈LðqÞ = 1+
λ2L
q2

, (7.95)

where λL is the screening parameter, we obtain

λ2L = 4πe2
mkF
ħ2π2

1
2
+

4k2F − q2

8kFq
ln

2kF + q
2kF − q

����
����

� �
: (7.96)

The variation of λ2L as a function of q is shown in Figure 7.1.
We note from Eqs. (7.60) and (7.96) that as q→ 0, λL→ λTF . The effective screening length 1/λL

increases as q increases, and it becomes increasingly difficult to screen out the potentials of short
wavelength.

When q = qc = 2kF , there is a logarithmic singularity in the expression for λ2L. This singularity
arises due to the term f 0ðkÞ− f 0ðk+ qÞ occurring in the summation over k in the expression for
∈LðqÞ in Eq. (7.76). If we consider the values of k, where either jk> is occupied and jk+q> is
empty or vice versa, these lie in two regions covering the surface of the Fermi sphere. Figure 7.2
shows these regions of the Fermi sphere.

λ2

0 2kF q

FIGURE 7.1

Variation of Lindhard screening parameter with q.

q kF q q

(a) (b) (c)

FIGURE 7.2

Contribution to the dielectric constant from different regions of the Fermi sphere.
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These regions gradually expand as q increases. Thus, the sum over k increases until a value of
q = qc = 2kF is reached and the whole Fermi sphere contributes to the sum. Because there are no
additional terms in the sum over k, the functional form of the sum changes. However, each term
remains a continuous function of q. The singularity is not serious because the contribution from the
last few points on the sphere before reaching q = qc = 2kF is small. However, at q = 2kF ,
∂∈L/∂q→∞.

If we consider the effect of an extra positive point charge in the jellium model, the “external
field” is

VðrÞ = e2/r, (7.97)

and the Fourier transform in a three-dimensional box is

VðqÞ = 4πe2/q2: (7.98)

The “screened” potential is

UðqÞ = VðqÞ/∈LðqÞ (7.99)

and

UðrÞ =
Z

UðqÞe−iq.rdq: (7.100)

From Eqs. (7.93) and (7.98) through (7.100), we obtain

UðrÞ = 4πe2
Z

q2 + 4me2kF
ħ2π

1
2
+

4k2F − q2

8kFq
ln

2kF + q
2kF − q

����
����

� �
 �−1
e−iq

.rdq: (7.101)

Due to the singularity at q = 2kF , there will be a special contribution to UðrÞ that will contain
oscillations of wave number 2kF . These oscillations are known as Friedel oscillations or Ruderman–
Kittel oscillations depending on the context. We will now derive the Friedel oscillations using a
much simpler approach.

7.5 FRIEDEL SUM RULE AND OSCILLATIONS
Friedel derived an equivalent formula for the oscillations by considering the effect of a spherically
symmetric potential UðrÞ (impurity) placed in the electron gas. First, he derived a sum rule for the
valence difference between the impurity and the solvent metal. Then he derived an expression for
the oscillating charge density associated with the singularity in Eq. (7.101). It is well known in
quantum mechanics14 that when an incident plane wave (for convenience, we consider it moving in
the z direction) is scattered by a spherically symmetric potential (see Figure 7.3), the wave function
at a distance far from the scattering target ðr→∞Þ can be expressed as

ψkðr, θÞ = eikz +
f ðθÞeikr

r
: (7.102)
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It has been shown in Liboff—Eqs. (14.11) through (14.13)—that at large distances,

ψkðr, θÞ = ∑
∞

l=0
ilð2l+ 1Þeiδl 1

kr
sinðkr− lπ

2
+ δlÞPlðcos θÞ: (7.103)

Here, Plð cos θÞ is a Legendre polynomial, and δl is a phase shift for the lth partial wave

ψk,lðr, θÞ = Ak,l
1
r
sinðkr− lπ

2
+ δlÞPlðcos θÞ: (7.104)

Friedel used the boundary condition that ψk = 0 at r =ℜ, as if the spherically symmetric potential
was placed at the center of a sphere of radius ℜ. Thus, the values of k that are appropriate are

kℜ− lπ
2
+ δl = mπ, (7.105)

where m is an integer. We note that the phase shift δl would have been zero if the sphere had been
empty. In that case, the “allowed” values of k would be

km =

�
m+ l

2

�
π

ℜ
: (7.106)

There are many values of l for each value of m, and there are (2l+ 1Þ values of ψ for each l. How-
ever, the total number of states with ε≤ εF , i.e., states of which the wave vector is less than kF ,

FIGURE 7.3

Plane wave is incident in the z direction on spherically symmetric potential at the center. The scattered
outgoing wave is spherical.
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would be the same as that for the cubic lattice considered in Chapter 1. When the impurity with the
spherically symmetric potential is at the center of the sphere, δl ≠ 0 and the “allowed” values of k
do not become equal to km. They will be shifted by δl/ℜ. In addition, δl varies with k. This is
shown schematically in Figure 7.4.

Thus, between k and k′, the set will have ½δlðkÞ− δlðk′Þ�/π new “allowed” values. Because
δlðk = 0Þ = 0, counting a factor of 2 for spin states of an electron and the fact that for each l
there are (2l+ 1Þ states, the total number of extra electrons needed to fill up to the Fermi wave
vector kF is

ξ = 2
π
∑
l
ð2l+ 1ÞδlðkFÞ: (7.107)

Here, ξ is the difference between the valence of the spherically symmetric impurity and
the metal, which is the number of electrons necessary to neutralize the charge of the impurity.
Eq. (7.107) is the Friedel sum rule, which was derived with two basic assumptions that the charge
of a spherically symmetric impurity must be neutralized by extra electrons within a finite distance,
and at large distances, kF is the same as in the crystal without any impurity.

At large distances from the spherical potential at the center of the sphere ℜ, the change in the
electron charge density associated with the phase-shifted waves in Eq. (7.104) is given by
δρ = −eδn, where δn is the change in electron density,

δρ = −e∑
l
ð2l+ 1Þ

ZkF
0

h
ψk,lðδlÞ 2 − ψk,lð0Þ 2

i
2ℜ
π

dk:
������������ (7.108)

Here, we have used the expression from Eq. (7.106),

km − km−1 =
π
ℜ

, (7.109)

and there are two spin states for each k.
The wave function in Eq. (7.104) has been normalized in a sphere of radius ℜ in which the

terms going to zero more rapidly at large values of r have been neglected,

Z
jψk,lðr, δlÞ j2 r2 dr sin θ dθ dϕ = A2

l

Zℜ
0

Zπ
0

Z2π
0

dr sin2ðkr− lπ
2
+ δlÞP2

l ðcos θÞ sin θ dθ dϕ: (7.110)

π /

δi(k)/

k ′k

FIGURE 7.4

New “allowed” values between k and k′.
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Because
Z1
−1

P2
l ðxÞdx = 2

2l+ 1 and sin2φ = 1
2 ð1− cos 2φÞ, neglecting the oscillatory terms, we obtain

Al ≈
ð2l+ 1Þ1/2
ð2πℜÞ1/2 : (7.111)

From Eqs. (7.104) and (7.111), we obtain

ψk,lðr, δlÞ≈
ð2l+ 1Þ1/2
ð2πℜÞ1/2

1
r
sin ðkr− lπ

2
+ δlÞ : (7.112)

From Eqs. (7.108) and (7.112), we obtain

δρ = − e
π2

∑
l
ð2l+ 1Þ

ZkF
0

sin2ðkr− lπ
2
+ δlÞ− sin2ðkr− lπ

2
Þ

h i
1
r2

dk: (7.113)

Using the formula

sin2ðαÞ− sin2ðβÞ = sinðα+ βÞ sinðα− βÞ, (7.114)

we obtain from Eq. (7.113)

δρ = − e
2π2

∑
l
ð2l+ 1Þ

Zkf
0

sinð2kr− lπ + δlÞ sin δl 1
r3

dð2krÞ: (7.115)

By integrating Eq. (7.115), we obtain

δρ≈ −e
2π2

∑
l
ð2l+ 1Þð−1Þl sin δl

cos ð2kFr+ δlÞ
r3

: (7.116)

Here, the terms going to zero more rapidly at r (the limit of the integral at k= 0) have been dropped. Eq.
(7.116) gives the oscillating charge density that arises due to the singularity obtained earlier in Eq.
(7.101). The oscillating charge is not a negligible effect because it varies as 1/r3. Further, the electrons
are driven away by the spherically symmetric impurity in some regions because δρ becomes negative.

7.6 FREQUENCY AND WAVE-NUMBER-DEPENDENT DIELECTRIC
CONSTANT

We consider a homogeneous electron gas that has a number density n = N/v, where v is the volume
of the crystal. When an external perturbation ϕeðr, tÞ is applied, fluctuations in the electron gas are
induced such that

n = n0 + δn: (7.117)
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The fluctuations give rise to an internal potential ϕiðr, tÞ, which essentially describes the screening
effect of the electron gas on an electron at r. These fluctuations are obtained by the Poisson
equation

∇2ϕiðr, tÞ = −4πe2δnðr, tÞ: (7.118)

The total potential acting on the electron is

ϕðr, tÞ = ϕiðr, tÞ+ϕeðr, tÞ: (7.119)

The statistical mean values of any physical quantity G are determined through the statistical opera-
tor <Ĝ> = trðρ̂ĜÞ (Eq. 3.14) where ρ̂k is defined in Eq. (3.24) as

ρ̂k = Zk
−1e−βðεðkÞ−μÞ, (7.120)

where Zk is the grand partition function defined in Eq. (3.23) as

Ẑk = 1+ e−βðεðkÞ−μÞ, (7.121)

where the spin has been omitted in both Eqs. (7.120) and (7.121).
It can be easily shown that the equilibrium state of the electron gas (index 0) is given by

Ĥ0 jk> = εðkÞ jk>, (7.122)

and

ρ̂0 jk> = f0ðkÞ jk>, (7.123)

where f0ðkÞ is the Fermi distribution function. In the presence of the time-dependent external
perturbation,

Ĥ = Ĥ0 + ϕ̂ðr, tÞ (7.124)

and

ρ̂ = ρ̂0 + δρ̂ðr, tÞ: (7.125)

We have

iħδ _̂ρ jk> =
h
Ĥ, ρ̂

i
jk> =

h
Ĥ0, δ ρ̂

i
jk>+

h
ϕ̂, ρ̂0

i
jk>: (7.126)

Here, we have neglected the term ½ϕ̂, δ ρ̂� jk> in Eq. (7.126). We note that Ĥ0 commutes with ρ̂0.
We can rewrite Eq. (7.126) as

iħ<k′ jδ _̂ρ jk> = ½εðk′Þ− εðkÞ�< k′ jδ ρ̂ jk>− ½ f0ðk′Þ− f0ðkÞ�<k′ j ϕ̂ jk>: (7.127)

The qth Fourier component of ϕ is given by

ϕqðtÞ = 1
v

Z
e−iq

.r ϕðr, tÞ dr, (7.128)
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where

q = k′−k: (7.129)

We can express

ϕðr, tÞ =
ZZ

ϕðq,ωÞeiq.reiωteαt dq dω, (7.130)

where the term eαt has been multiplied so that the oscillation of frequency ω and wave vector
q� k′−k grows slowly with a time constant α. In the final result, α→ 0: Because δρ has the same
time dependence as ϕðr, tÞ, from Eqs. (7.127) and (7.128), we obtain for each Fourier component
(Problem 7.10)

½εðk+qÞ− εðkÞ− iħðiω+ αÞ�< k+ q jδ ρ̂ jk> = ½ f0ðk+qÞ− f0ðkÞ�ϕqðtÞ, (7.131)

where

ϕqðtÞ = ϕeqðtÞ+ϕiqðtÞ = ½ϕeðq,ωÞ+ϕiðq,ωÞ�eðiωt+αtÞ: (7.132)

From Eqs. (7.118), (7.128), and (7.132), we obtain

q2ϕiqðtÞ = 4πe2 δnq: (7.133)

It can be easily shown that the particle concentration δnðr0, tÞ is given by

δnðr0, tÞ = ∑
q
eiq

.r0 δnq. (7.134)

We can also express from Eqs. (7.121) and (7.125)

δnðr0, tÞ = tr½δðr− r0Þδρ� = ∑
kk′

<k jδðr− r0Þ> jk′><k′ jδρ jk>

= 1
v
∑
kk′

eiðk−k′Þ.r0<k′ jδρ jk>

= 1
v
∑
q
eiq

.r0∑
k
<k+q jδρ jk>:

(7.135)

From Eqs. (7.133) through (7.135), we obtain (taking v= 1)

ϕiqðtÞ = 4πe2

q2
∑
k
< k+ q jδρ jk>: (7.136)

From Eqs. (7.131), (7.132), and (7.136), we obtain

ϕiðq,ωÞ = ϕðq,ωÞ−ϕeðq,ωÞ

= 4πe2

q2
∑
k

f0ðk+ qÞ− f0ðkÞ
εðk+ qÞ− εðkÞ+ ħω− iħα

ϕðq,ωÞ:
(7.137)
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We obtain from Eq. (7.137),

ϕeðq,ωÞ = ϕðq,ωÞ 1− 4πe2

q2
∑
k

f0ðk+ qÞ− f0ðkÞ
εðk+ qÞ− εðkÞ+ ħω− iħα

� �
: (7.138)

If we define the dielectric constant as

∈ðq,ωÞ = ϕeðq,ωÞ
ϕðq,ωÞ , (7.139)

we obtain from Eqs. (7.138) and (7.139)

∈ðq, ωÞ = 1− 4πe2

q2
∑
k

f 0ðk+ qÞ− f 0ðkÞ
εðk+qÞ− εðkÞ+ ħω− iħα

: (7.140)

Eq. (7.140) is the Lindhard equation for the dielectric constant of the electron gas. We note that for
the case of static screening (ω = 0, α = 0Þ, Eq. (7.140) becomes identical to Eq. (7.76) derived by
using time-independent perturbation theory.

We can write

Lim 1
z− iα

= P 1
z

� �
+ iπδðzÞ: (7.141)

Thus, we obtain

∈ðq,ωÞ = ∈1ðq,ωÞ+ i∈2ðq,ωÞ, (7.142)

where

∈1ðq,ωÞ = 1− 4πe2

q2
P

"
∑
k

f 0ðk+qÞ− f 0ðkÞ
εðk+ qÞ− εðkÞ+ ħω

#
(7.143)

and

∈2ðq,ωÞ = 4π2e2

q2
∑
k
½ f 0ðk+qÞ− f 0ðkÞ�δðεðk+qÞ− εðkÞ− ħωÞ: (7.144)

The imaginary part ∈2ðq, ωÞ is related to the absorption constant of the electron gas and pair exci-
tations are involved in this absorption. The conservation of energy indicated by the δ− function
indicates that in Eq. (7.143), the denominator always has

ħω>½εðk+qÞ− εðkÞ� (7.145)

for each term. We divide the summation over k into two parts and introduce new summation
indices k+ q and −k into the first and second part, respectively. We bring the two parts together
and neglect all energy differences between states k + q and k.
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We obtain

∈1ðq, ωÞ = 1− 4πe2

q2
∑
k

f 0ðkÞ
εðkÞ− εðk−qÞ+ ħω

− ∑
−k

f 0ð−kÞ
εð−kÞ− εð−k+ qÞ− ħω


 �
, (7.146)

= 1+ 4πe2

q2
∑
k

2f 0ðkÞfεðkÞ− εðk− qÞg
ħ2ω2

: (7.147)

Here, we have rearranged the sum over k and neglected the energy differences in the denominator
because ħω≫ ½εðkÞ− εðk− qÞ� in the plasma oscillation region.

Expanding εðkÞ− εðk− qÞ in powers of q, the first term vanishes. We obtain

εðqÞ− εðk− qÞ≈ − ħ2q2

2m
(7.148)

and

∑
k
f 0ðkÞ = n: (7.149)

Substituting Eqs. (7.147) and (7.148) in Eq. (7.149), we obtain

∈1ðωÞ = 1− 4πne2

mω2
= 1−

ωp
2

ω2
, (7.150)

where ωp is the plasma frequency. Eq. (7.150) shows that when ω→ωp,∈1→ 0: However, from
Eq. (7.138),

ϕðq, ωÞ = ϕeðq, ωÞ
∈ðq, ωÞ →∞: (7.151)

An infinitesimal external field ϕeðq, ωÞ gives rise to an extremely large effective field. Thus, the
system is self-exciting. ωp is a natural mode of oscillation of the electron gas. It is called a plasma
mode.

We note that Eq. (7.140) is also known as Lindhard dielectric susceptibility.
Thus, if ϕeðr, tÞ is the actual external potential, the Fourier transformation is given by

ϕeðr, tÞ =
ZZ

ϕeðq, ωÞeiq.reiωtdq dω: (7.152)

The effective potential Uðr, tÞ seen by the electrons is given by

Uðr, tÞ =
ZZ

ϕeðq, ωÞ
∈Lðq, ωÞ e

iq.reiωtdq dω: (7.153)
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7.7 MOTT TRANSITION
The Mott transition is an example of a metal-insulator transition that has been actually observed in
transition metal oxides. This involves discussion of the Hubbard model, which we will consider
later. However, we will consider the basic argument for metal-insulator transition first proposed by
Mott. He argued that if one has a collection of hydrogen or other monovalent atoms, it is unlikely
that they will form a conductor even if they are far apart from each other. Individual hydrogen
atoms are insulators because the electron is bound to the parent atom. If, through some process, an
electron is taken out from one of the array of hydrogen (or any other group of monovalent) atoms,
it will leave behind a positively charged ion. However, the electron will still be attracted to
the positively charged ion and might even form a bound state. Thus, it would not be able to carry
current. The solid would still be an insulator. There has to be a certain criterion when such types of
insulators would become conductors (metals).

When many electrons are excited, the electron gas would screen the electron‒ion interaction.
The potential is of the form (because of screening of the ion)

VðrÞ = − e2

r
e−λr: (7.154)

If the density of ionized electrons is n, we have derived in Eq. (7.96) an expression for the
screening parameter λL, which can be written for small q values as

λ2 ≈ 4e2mkF
ħ2π

: (7.155)

Because kF = ð3π2nÞ1/3,

λ2 ≈ 4me2n
1
3

ħ2
: (7.156)

The radius of the ground state of a hydrogen atom is given by

ao =
ħ2

me2
: (7.157)

There cannot be any bound state if 1/λ< a0. The criterion that the ionized atom, of which the potential
is expressed in Eq. (7.154), is capable of recapturing the electron that has been removed from it is

λ< a−10 : (7.158)

From Eqs. (7.156) through (7.158), this condition can be expressed as

n−1/3 > 4a0: (7.159)

Thus, if the average spacing of the atoms is greater than 4 atomic units, the system would be an insu-
lator. As the atoms come closer, the transition from insulator to metal would be quite sharp. This is
known as a Mott transition.
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7.8 DENSITY FUNCTIONAL THEORY
7.8.1 General Formulation
Hohenberg and Kohn hypothesized that the electron density nðrÞ of a many-electron system at point
r has all the information about the many-electron wave function. In this case, nðrÞ is defined as

nðrÞ = <Ψ j∑
N

l=1
δðr− rlÞ jΨ>: (7.160)

Here, Ψðr1, r2,…, rNÞ is the many-electron wave function defined earlier both in the context of the
Hartree and Hartree–Fock approximations. Eq. (7.160) can be rewritten in the alternate form

nðrÞ = N

Z
dr1dr2… drN Ψ�ðr1, r2,…, rNÞ δðr− r1ÞΨðr1, r2,…, rNÞ: (7.161)

According to Hohenberg and Kohn, the electronic density nðrÞ determines the external potentials
UðrÞ and the number of electrons that are inside these potentials. If the kinetic energy of the
electrons is T, the ground-state energy is ε, the electrons that obey Schrodinger’s equation interact
via the Coulomb potentials Uee, and the potential due to the ions is U, one can write an expression
for the functional for the ground-state energy ε½n�,

ε½n� = T ½n�+U½n�+Uee½n�: (7.162)

If the functional ε½n� is found, the ground-state energy density nðrÞ minimizes it. However, there
is a constraint that the total number of electrons is

N =
Z

dr nðrÞ : (7.163)

Because U½n� depends only on the density, one can also write

U½n� =
Z

dr nðrÞUðrÞ: (7.164)

If we write

FHK ½n� = T ½n�+Uee½n�, (7.165)

it is a universal function for all systems of N particles. We obtain from Eqs. (7.162) and (7.165),

ε½n� = FHK ½n�+U½n�: (7.166)

We can also define a functional F½n�, which is the minimum over all wave functions producing
density nðrÞ of F:

F½n� �minΨ→n <Ψ jT +Uee jΨ>: (7.167)

In theory, after the universal function F½n� is found, any set of nuclei can be added to the many-
particle system through the potential UðrÞ. Then one has to find the function nðrÞ, which minimizes
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it to solve the Schrodinger equation. In practice, F½n� can be obtained by making appropriate
approximations such that the results would agree with the experimental results, and hence, the form
of F½n� varies with the nature of the experiment.

7.8.2 Local Density Approximation
Kohn and Sham introduced the local density approximation (LDA), in which they proposed to
express the electron density as a function of a set of N single-electron wave functions ψ iðrÞ instead
of a function of all material properties,

nðrÞ = ∑
N

i=1
jψ iðrÞj2. (7.168)

The kinetic energy term of the energy functional is written as

T ½n� = ∑
i

ħ2

2m
j∇ψ ij2. (7.169)

The rest of the quantities (including exchange) are obtained from the results of a homogeneous
electron gas. We derived (the second term in Eq. 7.43) that

εex = − 3
4
N
e2kF
π

, (7.170)

and we derived in Chapter 1 that

n =
k3F
3π2

, (7.171)

from which we obtain

εex½n� = − 3e2

4
3
π

� 	1/3Z
n4/3ðrÞdr: (7.172)

From Eqs. (7.169) and (7.172) and using standard expressions for Uee½n� andU½n�, we obtain

ε½n� = ∑
N

i=1

ħ2

2m
j∇ψ i j2 +

Z
drnðrÞUðrÞ+ 1

2

Z
dr dr′

e2nðrÞnðr′Þ
jr− r′ j − 3e2

4
3
π

� 	1/3Z
drn4/3ðrÞ: (7.173)

If we vary Eq. (7.173) with respect to ψ�
i (because we know the density as a functional of the wave

function from Eq. 7.168), we obtain

−ħ2
2m

∇2ψ iðrÞ+ UðrÞ+
Z

dr′ e
2nðr′Þ
jr− r′ j − e2 3

π
nðrÞ

� 	1/3
 �
ψ iðrÞ = εiψ iðrÞ: (7.174)
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In general, if one wants to add the correlation terms (any corrections to the exchange
terms because of the many-body nature of the N-electron system), one can rewrite Eq. (7.174) in
the alternate form

−ħ2
2m

∇2ψ iðrÞ+ UðrÞ+
Z

dr′ e
2nðr′Þ
jr− r′j +

∂εxcðnÞ
∂n


 �
ψ iðrÞ = εiψ iðrÞ: (7.175)

Here, εxcðnÞ is the exchange-correlation energy of the electron gas.
The approximation of the form (Eq. 7.175) is known as the local density approximation (LDA).

A variety of band calculations are based on the density functional theory in general and the LDA in
particular. The success of these band calculations primarily depends on the use of appropriate
exchange-correlation functions. In fact, the correlation functions are a consequence of many-body
theory and can be calculated only by using field-theoretical methods. In band calculations, one can
only make intelligent guesses of these functions depending on the available experimental results.
However, a variety of first principles calculations of the exchange functionals are available to
calculate the total energies of atoms. It has been shown that the recent calculations using these
functionals yield more accurate results for the energy of atoms than the results obtained by using
the Hartree–Fock approximation. In fact, Kohn was awarded the Nobel prize in chemistry for his
pioneering work on density functional theory.

7.9 FERMI LIQUID THEORY
7.9.1 Quasiparticles
The Fermi liquid theory was originally developed by Landau to explain the properties of liquid 3He.
However, it has also been applied to the theory of electron–electron interactions in metals. In parti-
cular, the Fermi liquid theory explains the success of the independent electron approximation even
though the electron–electron interactions are significant. The Fermi liquid theory also indicates how
the effect of electron–electron interactions can be qualitatively taken into account in the study of
the properties of metals in general and transport properties in particular.

In Landau’s argument, if one starts with a set of noninteracting electrons and gradually turns on
the interactions between electrons, there would be two types of effects. The energy of the one-electron
level would be modified, and it can be treated by the Hartree–Fock and other types of approximations
described earlier in this chapter. However, in the Hartree–Fock approximation, the one-electron levels
are stationary in spite of the interacting system. In contrast, when the interactions between the
electrons are turned on, the electrons would be scattered in and out of the single-electron levels,
which are no longer stationary. If the scattering is sufficiently low, one can introduce a relaxation
time and try to solve the problem by using a relaxation-time mechanism used to treat transport the-
ories. However, the electron–electron relaxation time is usually much larger than those used in other
transport theories. The basic idea of the Landau Fermi Liquid theory is to consider the excitations of
the strongly interacting system instead of concentrating on the nature of the ground state. The scatter-
ing rate of the fermions is considerably reduced due to the Pauli exclusion principle. In addition,
Landau termed the elementary excitations, which act like particles, as quasiparticles. These quasiparti-
cles interact with each other, but not as strongly as the particles from which they are constructed.
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To highlight Landau’s theory, we consider an N-electron state at T = 0 filling a Fermi sphere of
radius kF and energy εF . In addition, there is a single excited electron (quasiparticle) in a level
ε1 > εF . To be scattered, this electron can interact with an electron of energy ε2, but because only
electron levels of energy less than εF are occupied, ε2 < εF . Both of these electrons can scatter only
into energy states ε3 and ε4, which are unoccupied; i.e., these states are above the Fermi sphere.
Thus, ε3 > εF and ε4 > εF . These are schematically shown in Figure 7.5.

The law of conservation of energy requires that

ε1 + ε2 = ε3 + ε4: (7.176)

Because ε1 > εF at T = 0, some phase space is available for scattering, and ε2, ε3, and ε4 can vary
within a shell of which the thickness is on the order of jε1 − εF j near the Fermi surface. After
ε2 and ε3 are fixed within the shell jε1 − εF j , there cannot be any new choice for the value of ε4
because of Eq. (7.176). Thus, at T → 0, the scattering rate is given by

1
τ
jT=0 ≈ a1ðε1 − εFÞ2: (7.177)

If we consider the scattering at a temperature T, there would be partially occupied levels of width
kBT around εF . Thus, there will be an additional scattering rate proportional to ðkBT Þ2. The scatter-
ing rate near the Fermi surface at temperature T is given by

1
τ
≈ a1ðε1 − εFÞ2 + a2ðkBTÞ2: (7.178)

These derivations are the same as that for an independent N-electron system. However, we will
discuss Landau’s formulation of quasiparticles and his arguments that lead to a one-to-one correspon-
dence with the fermions in the N-electron system. We will first derive an approximate formula for the
temperature-dependent part of the relaxation time in Eq. (7.178). If ε1� εF , the first term in Eq. (7.178)
can be neglected compared to the second term; τ will essentially be proportional to 1/T2. We further
assume that the dependence of τ on the electron–electron interaction is through the Fourier transform of
the interaction potential, which can be estimated by the Thomas–Fermi screened potential defined in
Eq. (7.61). Because ∂n0

∂μ >1, according to Eq. (7.61), the Thomas–Fermi screened potential is everywhere

less than 4πe2

λ2TF

� 	
. Thus, neglecting the first term in Eq. (7.178), we assume that

1
τ
∝ 4πe2

λ2TF

 !
ðkBTÞ2: (7.179)

εF

ε4 ε3

ε2
εF

(a) (b)

ε1, k
→

FIGURE 7.5

(a) An excited state ε1 > εF of wave vector k: (b) ε2 < εF , ε3 > εF , ε4 > εF :
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From Eqs. (7.60), (7.91), and (7.179), we obtain

1
τ
∝ ħ2π2

mkF

� �2
ðkBTÞ2: (7.180)

The proportionality constant ‘a’ in Eq. (7.180) can be written as a dimensionless number by multiplying
Eq. (7.180) by m3/ħ7 such that 1τ has the dimensions of inverse time,

1
τ
=

aðkBTÞ2
ħεF

: (7.181)

It has been estimated that the range of the dimensionless number ‘a’ is between 1 and 100.
The empirical formula for scattering in the presence of electron–electron interaction, using the

Thomas–Fermi theory for screening, was derived essentially by turning on electron–electron interaction
on an N-particle independent electron system. Landau validated these arguments by using the concept
of quasiparticles, according to which the low-lying states of the strongly interacting N-electron system
evolve in a continuous way such that there is a one-to-one correspondence with the noninteracting
electron system. In a noninteracting electron system, if n electrons of wave vectors k1,…,kn above kF
have been excited from the states k′1,…, k′n below kF , the energy of the excited state is

E = Eg + εðk1Þ+ … + εðknÞ− εðk′1Þ− … −εðk′nÞ, (7.182)

where Eg is the ground-state energy, and for free electrons, εðkiÞ = ħ2k2i /2m. The quasiparticles are the
states of the interacting system where n quasiparticles have been excited out of levels with wave vectors
k′1,…, k′n below kF and the same number of excited quasiparticles with wave vectors k1,…, kn are pre-
sent above kF . In this case, we have the relation

E = Eg + εðk1Þ+ … + εðknÞ−εðk′1Þ− … −εðk′nÞ, (7.183)

but εðkiÞ are very different from the free electron energies. In fact, the quasiparticle relation
εðkiÞ versus ki is very difficult to determine because particles with the same spin have an interaction
that differs from the interaction between particles with a different spin. However, there is indeed a
one-to-one correspondence between the free electrons and quasiparticles. Landau showed, by using
Green’s function methods, that for all orders of perturbation theory, every interacting Fermi system is
normal in the sense that the quasiparticle representation is valid. Landau’s argument is very complex,
and we will not discuss his theory any further here.

The summary of Landau’s model of quasiparticles is that there exists a set of wave functions
that are in one-to-one correspondence with low-lying excited states of the noninteracting Fermi gas.
They behave under translations like noninteracting particles with index k. Similarly, states that cor-
respond to low-energy holes of the noninteracting electron gas can be constructed. Although these
states are not true eigenfunctions, they decay very slowly near the Fermi surface.

7.9.2 Energy Functional
Landau proposed a phenomenological description of a quantum state with a large number of quasi-
particles. Let nkσ describe the occupation number of state k. In the ground state, nkσ = 1 below the

7.9 Fermi Liquid Theory 227



Fermi surface and nkσ = 0 above it. The difference between the occupation of the state kσ and its
occupation in the ground state is given by δnkσ . Suppose that the energy of the quantum state can
be expanded in terms of the occupation number δnkσ by

ε½δn� = ε0 +∑
kσ

εð0Þk δnkσ +
1
2

∑
kσ,k′σ′

δnkσ f ðkσ,k′σ′Þδnk′σ′ + …, (7.184)

where δnkσ is the change in the occupation number of the quasiparticle mode of wave vector k and
spin σ in the ground state, and δnk′σ′ corresponds to the higher energy level. The function εð0Þk is
the energy of the noninteracting particles. For a metal, it is the energy of the Bloch electrons. The
f-function, which depends on the mutual spins of the two quasiparticles, describes interactions
between the quasiparticles. The exchange force favors parallel alignment of spin because the Pauli
exclusion principle keeps two electrons with the same spin away from the same point in space.
Thus, the correlation effect is enhanced while the mutual electrostatic potential energy is reduced.
However, in general, it is difficult to compute the f-function.

At zero temperature, the energy needed to add one quasiparticle δnkσ above the Fermi surface is

εkσ � ε
ð0Þ
kσ + ∑

k′σ′
f ðkσ, k′σ′Þδnk′σ′: (7.185)

Because the chemical potential μ increases when a quasiparticle is added, the system will be filled
with quasiparticles until the cost of adding them rises above μ. Similarly, the quasiparticle states
will empty out until μ = εkσ . At T = 0, μ = εF and the occupation numbers nkσ are

nð0Þkσ � θðεF − εkσÞ: (7.186)

The Fermi wave vector is defined by εkF = εF for an isotropic system. Because there is a one-to-
one correspondence between the quasiparticles and the free particles,

n = N
V

= 1
V
∑
kσ

fkσ =
k3F
3π2

. (7.187)

It can also be shown after some algebra that

δnkσ = nkσ − nð0Þkσ = 1
eβðεkσ−μÞ + 1

− nð0Þkσ : (7.188)

Eq. (7.188) indicates the probability that the quasiparticle states are occupied is given by an implicit
expression for the Fermi function with the value of energy given in Eq. (7.185).

The effective mass of the quasiparticles can be obtained from the relation

vF � 1
ħ
∂εk
∂k

j kF
����� ħkF

m� ,

���� (7.189)

where εk was defined in Eq. (7.185), from which it becomes obvious that the effective mass m� is
different from the free electron mass.

The effective mass can be computed by calculating the particle current of quasiparticles in two
different ways and then by equating them.
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Because the quasiparticle states are eigenfunctions of the momentum, the total flow of particles
JN is given by

JN = ∑
kσ

ħkσ
m

nkσ , (7.190)

which can be rewritten in the alternate form

JN = ∑
kσ

ħkσ
m

δnkσ (7.191)

because nð0Þkσ is spherically symmetric. The particle current can also be calculated by calculating the
change in energy when their momenta change by a small amount. It can be shown that

JN = ∑
kσ

vkσnkσ , (7.192)

where

vkσ = 1
ħ
∂εkσ
∂k

: (7.193)

From Eqs. (7.185), (7.192), and (7.193), we obtain

JN = 1
ħ
∑
kσ

∂εð0Þkσ

∂k
nkσ +

1
ħ

∑
kk′σσ′

nkσ
∂
∂k

½ f ðkσ,k′σ′Þδnk′σ′�: (7.194)

We can write Eq. (7.194) by using Eq. (7.188) in the alternate form

JN = 1
ħ
∑
kσ

∂εð0Þkσ

∂k
δnkσ +

1
ħ

∑
kk′σσ′

½δnkσ + n0kσ� ∂∂k ½ f ðkσ,k′σ′Þδnk′σ′�: (7.195)

Eq. (7.195) can be rewritten with the help of Eq. (7.185),

JN = ∑
kσ

vkσδnkσ +
1
ħ

∑
kk′σσ′

n0kσ
∂
∂k

½ f ðkσ, k′σ′Þδnk′σ′�: (7.196)

Integrating the second term by parts, we obtain

JN = ∑
kσ

vkσδnkσ − 1
ħ

∑
kk′σσ′

∂nð0Þkσ

∂k
f ðkσ,k′σ′Þδnk′σ′, (7.197)

which can be rewritten in the alternate form by interchanging kσ and k′σ′,

JN = ∑
kσ

vkσδnkσ + ∑
kk′σσ′

f ðkσ,k′σ′Þvk′σ′δðεð0Þk′σ′ − εFÞδnkσ : (7.198)
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Comparing Eqs. (7.190) and (7.198) for the case when one δnkσ is nonzero, we obtain

ħk
m

= vk + ∑
k′σ′

f ðkσ,k′σ′Þvk′σ′δðεð0Þk′σ′ − εFÞ: (7.199)

Using the definition of the effective mass from Eq. (7.189), we obtain

ħk
m

= ħk
m� + ∑

k′σ′
f ðkσ, k′σ′Þ ħk′

m� δðε
ð0Þ
k′σ′ − εFÞ: (7.200)

We take dot products on both sides with k and assume that the Fermi surface is spherical. In
addition, because the Fermi liquid theory is valid near the Fermi surface, the magnitudes of both k
and k′ are approximately kF . Thus, we can rewrite Eq. (7.200) in the alternate form

m�
m

≈ 1+ ∑
k′σ′

f ðkσ,k′σ′Þ k.k′
k2F

δðεð0Þk′σ′ − εFÞ: (7.201)

The summation over k′ can be converted as an integration, and we can write

m
m� = 1+V

Z
dk′k′2gðk′Þδðεð0Þk′σ′ − εFÞ

Zθ
0

Z2π
0

dθ sin θ dϕ fðkσ, k′σ′Þ cos θ, (7.202)

where θ is the angle between k̂ and k̂′. Because the density of states gðεÞ normally includes the
angular integral, dividing gðεÞ by 4π, we obtainZ

gðk′Þk′2δðε0k′ − εFÞdk′ = 1
4π

Z
gðεð0Þk′ Þδðεð0Þk′ − εFÞdε = gðεFÞ

4π
: (7.203)

Further, because f ðkσ,k′σ′Þ depends on the angle between k and k′ near the Fermi surface, we
obtain from Eqs. (7.202) and (7.203)

m�
m

= 1+ 1
2
VgðεFÞ

Z1
−1

dðcos θÞ f ðkσ,k′σ′Þ cos θ. (7.204)

We note that the effective mass depends on the weighted average of the interactions over the
Fermi surface, but the latter is not known for strongly correlated systems. We will now derive an
expression for the effective mass from Eq. (7.204) and the Fermi liquid parameters.

7.9.3 Fermi Liquid Parameters
If we assume that the particles with the same spin have the possibility of a different interaction
compared to the particles with different spin, we define

f ðk", k′"Þ = f ðk#, k′#Þ = f skk′ + f akk′, (7.205)

f ðk", k′#Þ = f ðk#, k′"Þ = f skk′ − f akk′, (7.206)
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where the symmetric and antisymmetric functions are represented by s and a. These formulae may
be inverted,

f skk′ = ∑
∞

l=0
f sl Plðcos θÞ (7.207)

and

f akk′ = ∑
∞

l=0
f al Plðcos θÞ, (7.208)

where Plðcos θÞ is the Legendre polynomial. We can invert Eqs. (7.207) and (7.208) to write

f sl = 2l+ 1
2

Z1
−1

dðcos θÞPlðcos θÞ f skk′ (7.209)

and

f al = 2l+ 1
2

Z1
−1

dðcos θÞPlðcos θÞ f akk′: (7.210)

We define the dimensionless Fermi liquid parameters

Fs
l � VgðεFÞf sl (7.211)

and

Fa
l � VgðεFÞf al : (7.212)

Here, VgðεFÞ is the density of energy states at the Fermi surface. Fs
l andF

a
l are known as Fermi

liquid parameters. For example, it can be shown that the effective mass defined in Eq. (7.204) and
the Fermi liquid parameters defined in Eqs. (7.205) and (7.206) have the form

m�
m

= 1+ 1
2
VgðεFÞ

Z1
−1

dðcos θÞP1ðcos θÞ
�
f ðk",k′"Þ+ f ðk",k′#Þ

2

�
: (7.213)

From Eqs. (7.209), (7.211), and (7.212), we obtain

m�
m

= 1+ 1
3
Fs
1: (7.214)

The effective mass equation is widely used in Fermi liquid theory, especially in highly correlated
systems.
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7.10 GREEN’S FUNCTION METHOD
7.10.1 General Formulation
The Green’s function method has been widely used in solving many-body problems that
go beyond the electron–electron interactions. It starts with the idea that amplitude for finding a
particle at site jR> at time t, when it was at site j0> at time 0, is given by

<R jĜðtÞ j0>=<R je−iĤt/ħ j0>: (7.215)

The Fourier transformation of ĜðtÞ is given by

ĜðξÞ = 1
iħ

Z∞
0

dt eiξt/ħĜðtÞ: (7.216)

Eq. (7.216) converges if ξ has a positive imaginary part, and hence, ξ varies in a complex plane.
In fact, the physical significance of the Green’s functions depends on the complex part of the
energy. From Eqs. (7.125) and (7.126), we obtain

ĜðξÞ = ðξ− ĤÞ−1: (7.217)

If the Hamiltonian is perturbed, we can write

Ĥ = Ĥ0 + Ĥ1: (7.218)

If we define

Ĝ0 = ðξ− Ĥ0Þ−1, (7.219)

we obtain from Eqs. (7.217) and (7.219)

Ĝ = ðξ− Ĥ0 − Ĥ1Þ−1 (7.220)

= ððε− Ĥ0Þð1− ðξ− Ĥ0Þ−1Ĥ1ÞÞ−1 (7.221)

= ð1− Ĝ0Ĥ1Þ−1Ĝ0 (7.222)

= Ĝ0 + Ĝ0Ĥ1Ĝ0 + Ĝ0Ĥ1Ĝ0Ĥ1Ĝ0 +… (7.223)

= Ĝ0 + Ĝ0Ĥ1Ĝ = ĜĤ1Ĝ0 � Ĝ0 + Ĝ0T̂Ĝ0. (7.224)

Here, the T̂ matrix is the operator that satisfies the equality in Eq. (7.224).
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7.10.2 Finite-Temperature Green’s Function Formalism for Interacting
Bloch Electrons

In the finite-temperature Green’s function formalism for an interacting system of Bloch electrons in
the presence of a periodic potential V(r), the one-particle propagator G satisfies the equation

ðξl −HÞGðr, r′, ξlÞ+
Z

dr′′Σðr, r′, ξlÞGðr′′, r′, ξlÞ = δðr− r′Þ, (7.225)

where Σ is the exact proper self-energy operator, ξl is the complex energy,

ξl = ð2l+ 1Þiπ/β+ μ, (7.226)

μ is the chemical potential, l = 0, ±1, ±2,…, and Ĥ is the one-particle Hamiltonian,

Ĥ =
p2

2m
+VðrÞ: (7.227)

Both G and Σ have the symmetry

Gðr+R, r′+R, ξlÞ = Gðr, r′, ξlÞ (7.228)

and

Σðr+R, r′+R, ξlÞ = Σðr, r′, ξlÞ: (7.229)

We can write the equation of motion in the Bloch representation, i.e., in terms of the basis
functions,

ϕnkρðrÞ = eik
.rUnkρðrÞ, (7.230)

where UnkρðrÞ is a periodic two-component function, n is the band index, k is the reduced wave
vector, and ρ is the spin index. Using the Bloch representation, we can rewrite Eq. (7.225) as

∑
n′′,ρ′′,k′,k′′

Z
dr dr′dr′′e−ik.rU�

nkρðrÞ ξl −
p2

2m
−VðrÞ

� �
eik′′

.ðr−r′′ÞUn′′k′′ρ′′ðrÞU�
n′′k′′ρ′′ðr′′Þ

×Gðr′′, r′, ξlÞUn′k′ρ′ðr′Þeik′.r′

+ ∑
n′′,ρ′′,k′,k′′

Z
drdr′dr′′dr′′′e−ik.rU�

nkρðrÞΣðr, r′′, ξlÞeik′′
.ðr′′−r′′′ÞUn′′k′′ρ′′ðr′′ÞU�

n′′k′′ρ′′ðr′′′Þ

×Gðr′′′, r′, ξlÞUn′k′ρ′ðr′Þeik′.r′ = δnn′δρρ′:

(7.231)

Eq. (7.231) can be rewritten in the alternate form (Problem 7.11)

∑
n′′,ρ′′

½ξl −Hðk′, ξlÞ�nkρ,n′′kρ′′Gn′′kρ′′,n′kρ′ðk′, ξlÞ jk′=k = δnn′δρρ′, (7.232)
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where

Hðk′, ξlÞ = 1
2m

ðp+ ħk′Þ2 +VðrÞ+Σðk′, ξlÞ, (7.233)

Σnkρ,n′′kρ′′ðk′, ξlÞ =
Z
drdr′U�

nkρðrÞe−ik′
.ðr−r′ÞΣðr, r′, ξlÞUn′′kρ′′ðr′Þ, (7.234)

and

Gn′′kρ′′,n′kρ′ðk′, ξlÞ =
Z
drdr′U�

n′′kρ′′ðrÞGðr, r′, ξlÞe−ik′
.ðr−r′ÞUn′kρ′ðr′Þ: (7.235)

Because the Unkρ’s form a complete set of periodic functions, Eq. (7.232) can be rewritten in the
alternate form

½ξl −Hðk, ξlÞ�Gðk, ξlÞ = I: (7.236)

Eq. (2.236) can also be rewritten as

Gðk, ξlÞ = 1
ξl −Hðk, ξlÞ

: (7.237)

7.10.3 Exchange Self-Energy in the Band Model
The exchange contribution to the self-energy is nonlocal in r space,

Σðr, r′, ξlÞ = − 1
β
∑
ξl

veff ðr, r′ÞGðr, r′, ξl − ξl′Þ, (7.238)

where a simple static screening approximation is made in obtaining veff ðr, r′Þ from vðr, r′Þ. In this
approximation, the self-energy is independent of ξl, and one can write

Σðr, r′Þ = − 1
β
∑
ξl

veff ðr, r′ÞGðr, r′, ξlÞ: (7.239)

Σ and G can be expanded in terms of Bloch states as follows:

Σðr, r′Þ = ∑
n,m,k,ρ,ρ′

Σnρ,mρ′ðkÞψnkρðrÞψ�
mkρ′ðr′Þ (7.240)

and

Gðr, r′Þ = ∑
n,m,k,ρ,ρ′

Gnρ,mρ′ðkÞψnkρðrÞψ�
mkρ′ðr′Þ: (7.241)
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Substituting Eqs. (7.240) and (7.241) in Eq. (7.239), we obtain

∑
n,m,ρ,ρ′

Σnρ,mρ′ðkÞψnkρðrÞψ�
mkρ′ðr′Þ

= − 1
β
∑
ξl

∑
p,q,k′,ρ,ρ′

veff ðr, r′ÞGpρ,qρ′ðk′Þψpk′ρðrÞψqk′ρ′ðr′Þ:
(7.242)

If the effective electron–electron interaction is spin independent, then ρ = ρ, ρ′ = ρ′, and we have

Σnρ,mρ′ðkÞ = − 1
β

∑
k′, ξl,p,q

< nm jveff ðk, k′Þ jpq> ρρ′Gpρ,qρ′ðk, ξlÞ, (7.243)

where

<nm jveff ðk,k′Þjpq>ρρ′ =
Z

ψ�
nkρðrÞψmkρ′ðr′Þ veff ðr, r′Þψpk′ρðrÞψ�

qk′ρ′ðr′Þdr dr′: (7.244)

Equation (7.243) is the expression for exchange self-energy in the band model. The problem of
exchange self-energy in the band model, which includes the effect of a magnetic field where the
self-energy has been expanded in different orders in the magnetic field, is discussed in more detail
in Chapter 12 (Section 12.4.5).

PROBLEMS
7.1. In Eq. (7.1), we obtained

HΨ = ∑
N

i=1
− ħ2

2me
∇2
i Ψ− ze2∑

l

1
jri −Rl j Ψ

� �
+ 1

2
∑
i≠ j

e2

jri − rj j Ψ: (1)

The Hamiltonian can be written as

H = ∑
i
Hi +

1
2
∑
i≠j

Vij, (2)

where Hi operates on the coordinate of the ith electron, and Vij operates on the two-body
coordinates of both i and j.

In Eq. (7.19), we showed that

Ψðr1s1… rNÞ = 1ffiffiffiffiffi
N!

p ∑
n
ð−1Þn∏

k
ψnkðrkskÞ: (3)

Show that the expectation value of the one-electron terms in the Hamiltonian <Hi> is

∑
s1:::sN

Z
dNr 1

N!
∑
nn′

ð−1Þn+n′
�
∏
k
ψ�
nkðrkskÞ

�
∑
i

−ħ2∇2
i

2m
−∑

l

ze2

jri −Rl j
� ��

∏
k′
ψn′k′ðrk′sk′Þ

�
: (4)

Because the ψ’s are orthonormal, only n = n′ terms survive the summation and

integration ∑
s1:::sN

Z
dNr. The sum over n results in a factor (N – 1)! for all indices other than i.
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Hence, show that Eq. (4) can be rewritten as

∑
i
∑
si

Z
dri

1
N!
∑
n
ψ�
ni
ðrisiÞ −ħ2∇2

i

2m
−∑

l

ze2

jri −Rl j
� �

ψniðrisiÞ: (5)

The sum over n results in a factor (N – 1)! for all indices other than i. However, si ranges
over all values that can be written as a sum over i′, and one can drop the dummy index i
when integrating over risi. Show that Eq. (5) can be rewritten as

∑
i
∑
s

Z
dr 1

N
∑
i′
ψ�
i′ðrsÞ −ħ2∇2

2m
−∑

l

ze2

jr−Rl j
� �

ψ i′ðrsÞ: (6)

Because ψ iðrisiÞ = ϕiðriÞχiðsiÞ, the sum over the spin index can be eliminated. The sum over
i yields a factor of N, and the sum over i′ can be rewritten as a sum over i. Show that Eq. (6)
can be expressed as

∑
N

i=1

Z
drϕ�

i ðrÞ −ħ2∇2

2m
−∑

l

−ze2
jr−Rl j

� �
ϕiðrÞ: (7)

The expectation value of the Coulomb interaction term in the Hamiltonian is obtained
from Eqs. (2) and (3) as

∑
s1 ::: sN

Z
dNr ∑

n,n′

1
N!

1
2
∑
i≠ j

e2ð−1Þn+n′
jri − rj j ∏

k,k′
ψ�
nkðrkskÞψn′k′ðrk′sk′Þ: (8)

Show that Eq. (8) can be rewritten in the alternate form

∑
s1…sN

Z
dNr ∑

n,n′

1
N!

1
2
∑
i≠ j

e2ð−1Þn+n′
jri − rj j

h
ψ�
niðriÞψ�

njðrjÞψn′iðriÞψn′jðrjÞ ∏
k,k′≠i,j

ψ�
nkðrkÞψn′k′ðrk′Þ

i
, (9)

where ψniðriÞ � ψniðri, siÞ etc: for brevity. Integrating over all the terms except ri and rj
(which leaves two permutations n′ for given n), show that Eq. (9) can be rewritten as

1
2
∑
i≠ j

∑
sisj

Z
dri drj∑

n

1
N!

e2

jri − rj j
h
jψniðriÞj2 jψnjðrjÞj2 −ψ�

niðriÞψ�
njðrjÞψniðrjÞψnjðriÞ

i
: (10)

Show that because the integrations can be performed over the dummy variables 1 and 2, the
sum over i≠ j yields a factor of N(N – 1). Hence, show that Eq. (10) can be rewritten as

∑
s1s2

Z
dr1dr2
2ðN − 2Þ!

e2

jr1 − r2 j ∑n
h
jψn1ðr1Þj2 jψn2ðr2Þj2 −ψ�

n1ðr1Þψ�
n2ðr2Þψn1ðr2Þψn2ðr1Þ

i
: (11)

236 CHAPTER 7 Electron–Electron Interaction



Summing over the permutations over n, show that Eq. (11) can be rewritten as

∑
s1s2

1
2

Z
e2dr1dr2
jr1 − r2 j ∑i≠ j

h
jψ iðr1Þj2 jψ jðr2Þj2 −ψ�

i ðr1Þψ�
j ðr2Þψ iðr2Þψ jðr1Þ

i
: (12)

Using Eq. (7.20), show that Eq. (12) can be rewritten as

1
2

Z
e2dr1dr2
jr1 − r2 j ∑i≠ j

h
jϕiðr1Þj2 j jϕjðr2Þj2 −ϕ�

i ðr1Þϕ�
j ðr2Þϕiðr2Þϕjðr1Þδχi, χj

i
: (13)

From Eqs. (7) and (13), we obtain

<H> = ∑
N

i=1

Z
drϕ�

i ðrÞ −ħ2∇2

2m
−∑

l

ze2

jr−Rl j
� �

ϕiðrÞ

+ 1
2

ZZ
e2dr1dr2
jr1 − r2 j ∑i≠ j

h
jϕiðr1Þj2 jϕjðr2Þj2 −ϕ�

i ðr1Þϕ�
j ðr2Þϕiðr2Þϕjðr1Þδχi, χj

i

= ∑
i

Z
ϕ�
i H1ϕidr+

1
2
∑
i≠ j

ZZ
dr1dr2ϕ

�
i ðr1Þϕ�

j ðr2ÞH12ϕiðr1Þϕjðr2Þ

− 1
2
∑
i≠ j

ZZ
dr1dr2ϕ�

i ðr1Þϕ�
j ðr2ÞH12ϕiðr2Þϕjðr1Þδχi, χj ,

where

H1 � −ħ2∇2

2m
−∑

l

ze2

jr−Rl j
� �

and

H12 � e2

jr1 − r2 j
.

Following a variational technique similar to that adopted in Eqs. (7.11) through (7.15), derive
the Hartree–Fock equation in Eq. (7.21).

7.2. We derived

UexϕiðrÞ = −e2ϕiðrÞ
ZkF

dk
8π3

4π
ðk2 + k2i − 2kki cos θÞ

= −e2ϕiðrÞ
ZkF
0

Zπ
0

k2dk sin θdθ
πðk2i + k2 − 2kki cos θÞ

:

(1)

First, integrate over dθ and then integrate over dk to obtain

UexϕiðrÞ = −e2ϕiðrÞ 1
2πki

ðk2F − k2i Þ ln
kF + ki
kF − ki

� �
+ 2kikF

� �
: (2)
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7.3. Show, by integration, that the total energy of N electrons

E = 2 ∑
k≤kF

ħ2k2

2m
− e2kF

π
∑
k≤kF

1+
k2F − k2

2kkF
ln

kF + k
kF − k

����
����

� �
(1)

= N 3
5
εF −

3
4
e2kF
π

� �
: (2)

The first term was evaluated in Chapter 1.

7.4. We derived in Eq. (7.43),

E = N 3
5
εF −

3
4
e2kF
π

� �
: (1)

Show that Eq. (1) can also be rewritten as

E
N

= e2

2a0
3
5
ðkFa0Þ2 − 3

2π
ðkFa0Þ

h i

= 2:21

ðrs/a0Þ2
− 0:916

ðrs/a0Þ

" #
Ry:

(2)

ð1Ry = e2/2a0 = 13:6 eVÞ:

7.5. Assume that a positively charged particle is placed at position r (an example is the
substitution of a Zn ion for a copper ion in a metal lattice), which creates a surplus of
negative charge, thereby screening its field. The electrostatic potential can be written as

ϕðrÞ = ϕeðrÞ+ϕiðrÞ: (1)

Here, ϕeðrÞ is potential due to the positively charged particle, and ϕiðrÞ arises due to the
induced charge density because of the presence of the positively charged particle. The Poisson’s
equation can be written as

−∇2ϕðrÞ = 4πρðrÞ, (2)

where the total charge density ρðrÞ can be expressed as

ρðrÞ = ρeðrÞ+ ρiðrÞ: (3)

Here, ρeðrÞ and ρiðrÞ are the external and induced charge densities, respectively.
Show that in a spatially uniform electron gas, ϕeðrÞ and ϕðrÞ are linearly related through

the difference between their position, in an equation of the form

ϕeðrÞ =
Z

dr′∈ðr− r′Þϕðr′Þ: (4)
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By making appropriate Fourier transformations,

∈ðqÞ =
Z

dr e−iq
.r ∈ðrÞ, (5)

ϕeðqÞ =
Z

dr e−iq
.rϕeðrÞ, (6)

and

ϕðr′Þ =
Z

dq

ð2πÞ3
eiq

.r′ϕðqÞ, (7)

show that

ϕeðqÞ = ϕðqÞ∈ðqÞ: (8)

Eq. (8) can be rewritten in the alternate form

ϕðqÞ = ϕeðqÞ
∈ðqÞ , (9)

where ∈ðqÞ is the dielectric constant of the metal.

7.6. If the external potential in a metal (in the jellium model) is due to a positive point charge Q
located at r, show that

ϕeðqÞ = 4πQ
q2

(1)

Hence, show from Eq. (7.61) that

ϕðqÞ = ϕeðqÞ
∈ðqÞ =

4πQ

q2 + λ2
: (2)

Using Fourier transformation, show that

ϕðrÞ =
Z

dq

ð2πÞ3
ϕðqÞeiq.r = Q

r
e−λr: (3)

7.7. Show that at T= 0, the integral

χðqÞ = −e2
Z

dk
4π3

f0ðkÞ− f0ðk+ qÞ
ħ2ðk .qÞ/m (1)

can be performed explicitly to give

χðqÞ = −e2 mkF
ħ2π2

� �
1
2
+ 1− x2

4x
ln

���� 1+ x
1− x

����
� �

, (2)
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where

x =
q
2kF

:

7.8. The expression for the dielectric constant for static screening in the Lindhard theory, derived
in Eq. (7.76), is given by

∈LðqÞ = 1− 4πe2

q2
∑
k

f 0ðkÞ− f 0ðk+qÞ
εðkÞ− εðk+ qÞ : (1)

By adjusting the summation over f 0ðk+ qÞ to f 0ðkÞ and converting the summation over k to
an integration by using polar coordinates, show that (Eq. 7.93)

∈LðqÞ = 1+ 4πe2

q2
mkF
ħ2π2

1
2
+

4k2F − q2

8kFq
ln

���� 2kF + q
2kF − q

����
� �

: (2)

7.9. If we define

f skk′ = ∑
∞

l=0
f sl Plðcos θÞ (1)

and

f akk′ = ∑
∞

l=0
f al Plðcos θÞ, (2)

by using the properties of the Legendre polynomial, show that

f sl = 2l+ 1
2

Z1
−1

dðcos θÞPlðcos θÞ f skk′ (3)

and

f al = 2l+ 1
2

Z1
−1

dðcos θÞPlðcos θÞf akk′: (4)

7.10. Derive from Eq. (7.127)

iħ< k′ jδ _ρ jk> = ½εðk′Þ− εðkÞ�<k′ jδρ jk>− ½ f0ðk′Þ− f0ðkÞ�< k′ jϕ jk>, (1)

and the fact that δρ has the same time dependence as ϕðr, tÞ in Eq. (7.130), show that

½εðk+qÞ− εðkÞ− iħðiω+ αÞ�<k+q jδρ jk>= ½f0ðk+ qÞ− f0ðkÞ�ϕqðtÞ, (2)
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where

ϕqðtÞ = ϕeqðtÞ+ϕiqðtÞ = ½ϕeðq, ωÞ+ϕiðq, ωÞ�eðiωt+αtÞ: (3)

7.11. We derived in Eq. (7.231)

∑
n′′,ρ′′,k′,k′′

Z
drdr′dr′′e−ik.rU�

nkρðrÞ ξl −
p2

2m
−VðrÞ

� �
eik′′

.ðr−r′′ÞUn′′k′′ρ′′ðrÞU�
n′′k′′ρ′′ðr′′Þ

×Gðr′′, r′, ξlÞUn′k′ρ′ðr′Þeik′.r′

+ ∑
n′′,ρ′′,k′,k′′

Z
drdr′dr′′dr′′′e−ik.rU�

nkρðrÞΣðr, r′′, ξlÞeik′′
.ðr′′−r′′′ÞUn′′k′′ρ′′ðr′′ÞU�

n′′k′′ρ′′ðr′′′Þ

×Gðr′′′, r′, ξlÞUn′k′ρ′ðr′Þeik′.r′ = δnn′δρρ′:

(1)

Show that Eq. (1) can be rewritten in the alternate form

∑
n′′,ρ′′

½ξl −Hðk′, ξlÞ�nkρ,n′′kρ′′Gn′′kρ′′,n′kρ′ðk′, ξlÞ jk′=k = δnn′δρρ′, (2)

where

Hðk′, ξlÞ = 1
2m

ðp+ ħk′Þ2 +VðrÞ+Σðk′, ξlÞ, (3)

Σnkρ,n′′kρ′′ðk′, ξlÞ =
Z

drdr′U�
nkρðrÞe−ik′

.ðr−r′ÞΣðr, r′, ξlÞUn′′kρ′′ðr′Þ, (4)

and

Gn′′kρ′′,n′kρ′ðk′, ξlÞ =
Z

drdr′U�
n′′kρ′′ðrÞGðr, r′, ξlÞe−ik′

.ðr−r′ÞUn′kρ′ðr′Þ: (5)

Because the Unkρ’s form a complete set of periodic functions, show that Eq. (5) can be
rewritten in the alternate form

½ξl −Hðk, ξlÞ�Gðk, ξlÞ = I: (6)
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8.1 SEMICLASSICAL MODEL
We determined in Chapter 4 (Eq. 4.45) that the eigenfunction of the Hamiltonian of an electron
moving in a crystalline solid with a periodic potential VðrÞ is a Bloch function ψnkðrÞ that can be
expressed as

ψnkðrÞ = eik
.runkðrÞ, (8.1)

where unkðrÞ is the periodic part of the Bloch function. Here, n is a band index, k is a vector in the first
Brillouin zone in the restricted zone scheme but extends to infinity in the periodic zone scheme, and
unkðrÞ has the unique property that it remains unchanged when translated by any direct lattice vector Ri

(Eq. 4.46), i.e.,

unkðr+RiÞ = unkðrÞ: (8.2)

Thus, the Schrodinger equation

HψnkðrÞ = εnðkÞψnkðrÞ (8.3)
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can be rewritten in the alternate form (Eq. 4.36)

HkunkðrÞ = εnðkÞunkðrÞ, (8.4)

where

Hk =
ħ2

2m
ð−i∇+ kÞ2 +VðrÞ

� �
: (8.5)

In this chapter, we have written Heff as Hk for convenience. Here, the boundary conditions for
unkðrÞ are specified in Eq. (8.2). In the periodic zone scheme, which will be used in the derivations that
follow, the eigenfunctions and eigenvalues are periodic functions of k in the reciprocal lattice, i.e.,

ψnkðrÞ = ψn, k+KðrÞ (8.6)

and

εnðkÞ = εnðk+KÞ: (8.7)

The set of electronic levels εnðkÞ, for each n, is known as the energy band because the band index n is a
constant of motion. In addition, the energy levels εnðkÞ vary continuously as k varies because k is
essentially a parameter in Eq. (8.5). Further, the size of the crystal is not a factor in Eq. (8.4), and as we
noted earlier, the Born–von Karman boundary condition (Eq. 3.31),

ψkðx+ L, y, zÞ = ψkðx, y, zÞ
ψkðx, y+L, zÞ = ψkðx, y, zÞ
ψkðx, y, z+LÞ = ψkðx, y, zÞ,

(8.8)

specifies that k is continuous when L ! ∞ (Eq. 3.14). We will use the property that k is a continuous
parameter in what follows. These same boundary conditions are also valid for the Bloch functions
ψnkðrÞ:

8.2 VELOCITY OPERATOR
For a crystal with inversion symmetry, the velocity operator

v = _r = − i
ħ
½r,H� (8.9)

can be rewritten in the alternate form

v = − iħ
m
∇: (8.10)

If we define the velocity operator using the effective Hamiltonian in Eq. (8.5),

vk = − i
ħ
½r,Hk�, (8.11)
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we obtain

vk =
ħ
m
ð−i∇+kÞ: (8.12)

We will use this relation for the velocity operator to obtain an expression for the velocity of the
Bloch electrons.

8.3 k · p PERTURBATION THEORY
We assume that k is increased by an infinitesimal amount Δk. When k ! k+Δk, Eq. (8.5) can be
rewritten in the form

Hk+Δk =
ħ2

2m
ð−i∇+ k+ΔkÞ2 +VðrÞ

� �
, (8.13)

which can be rewritten in the alternate form

Hk+Δk = Hk +
ħ2

m
ð−i∇+ kÞ .Δk+ ħ2

2m
ðΔkÞ2: (8.14)

We use nondegenerate second-order perturbation theory and write

Hk+Δk = Hk +H′k: (8.15)

The perturbation term H′k is obtained from Eqs. (8.14) and (8.15),

H′k =
ħ2

m
ð−i∇+ kÞ .Δk+ ħ2

2m
ðΔkÞ2: (8.16)

If we express the energy eigenvalue in different orders of ε as

εnðk+ΔkÞ = εnðkÞ+ εð1Þn ðkÞ+ εð2Þn ðkÞ+…, (8.17)

we obtain from second-order perturbation theory,

εnðkÞ = <unkjHkjunk> = <ψnkjHjψnk> (8.18)

and

εð1Þn ðkÞ = <unkjH′kjunk> = <unkj ħ
2

m
ð−i∇+kÞ .Δkjunk>, (8.19)

where the term ħ2
2m ð∇kÞ2, which is second order in ∇k, has been included in εð2Þn ðkÞ,

εð2Þn ðkÞ = ħ2

2m
ð∇kÞ2 + ∑

n′≠n

j<unkj ħ
2

m
Δk . ð−i∇+ kÞjun′k>j2

εnk − εn′k
: (8.20)
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If we also expand εnðk+ΔkÞ as

εnðk+ΔkÞ = εnðkÞ+∑
i

∂εnðkÞ
∂ki

Δki +
1
2
∑
ij

∂2εnðkÞ
∂ki∂kj

ΔkiΔkj +…, (8.21)

we obtain from Eqs. (8.12), (8.17), (8.19), and (8.21),

∂εnðkÞ
∂k

= ħ<unkjvkjunk>, (8.22)

which can be rewritten in the alternate form (Problem 8.2)

∂εnðkÞ
∂k

= ħ<ψnkjvjψnk> = ħvnk: (8.23)

Thus, the mean velocity of a Bloch electron is given by

vnk =
1
ħ
∂εnðkÞ
∂k

: (8.24)

It is interesting to note that one can derive a similar expression for the velocity of electrons in a
periodic potential and an external field. We will show by using quasiclassical dynamics that

vk =
ħk
m

= 1
ħ
∂εðkÞ
∂k

: (8.25)

It is also interesting to note that the group velocity of a wave packet moving freely in space is
given by the same expression as Eq. (8.25).

8.4 QUASICLASSICAL DYNAMICS
The classical Hamilton equations are expressed as11

_qk =
∂H
∂pk

, _pk = − ∂H
∂qk

, (8.26)

where H is the classical Hamiltonian function, and qk and pk are the generalized coordinates and
momenta, respectively. In the quantum mechanical formulation, the Hamiltonian operator is
obtained by replacing the classical momentum p by −iħ∇. In an external electrostatic field, the
Hamiltonian operator can be written as

Ĥ = Ĥ0 +UðrÞ = ε̂ð−i∇Þ+UðrÞ, (8.27)

where Ĥ0 is the Hamiltonian operator in the perfect lattice, UðrÞ is the perturbing potential of the
external field, and ε̂ð−i∇Þ is the equivalent Hamiltonian operator. If we reverse these steps by
replacing −i∇ by p/ħ, the classical Hamiltonian function is given by

Hðr,pÞ = εðp/ħÞ+UðrÞ: (8.28)
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From Eqs. (8.26) and (8.28), we obtain

_r = v = ∂H
∂p

=
∂εðp/ħÞ

∂p
= 1

ħ
∂εðkÞ
∂k

, (8.29)

where

p = ħk: (8.30)

It may be noted that ħk is the crystal momentum and not the actual momentum of an electron, as
was obtained in the Sommerfeld model for free electrons. This is a consequence of the fact that in
the Bloch formulation, the effect of the periodic potential has been already included.

The second Hamiltonian equation in Eq. (8.26) can be written as

_p = ħ _k = −∂H
∂r

= −∇UðrÞ: (8.31)

Because UðrÞ is the potential energy of the electron in an external field, ħ _k is essentially the force
F acting on the Bloch electron. According to Newton’s law,

F = mdv
dt

= ħ _k, (8.32)

where m is the mass of the electron.

8.5 EFFECTIVE MASS
It is often convenient to define an effective mass to describe the motion of Bloch electrons in an
external field. Later, we will use the same concept to describe the motion of electrons and holes in
a semiconductor. If we assume that the external field (electrostatic) acting on the electrons is weak
and the change in k is slow, we can write

d
dt
vnk = ∑

ij
∈̂i

∂vink
∂kj

∂kj
∂t
, (8.33)

where ∈̂i is one of the three unit vectors x̂, ŷ, and ẑ. We can also introduce the effective mass tensor
M−1

n ðkÞ (it is actually an inverse effective mass tensor) of the Bloch electrons (it is important to
note that the effect of the periodic potential of the lattice has already been included in the Bloch
formulation) in analogy with Eq. (8.32) as

d
dt
vnk = ħM−1

n ðkÞ . _k: (8.34)

From Eqs. (8.24), (8.33), and (8.34), we obtain

½M−1
n ðkÞ�ij = 1

ħ2
∂2εn
∂ki∂kj

: (8.35)
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We can derive an expression for the effective mass tensor from the results of the perturbation
theory. From Eqs. (8.20) and (8.21), we obtain

εð2Þn ðkÞ = ħ2

2m
ð∇kÞ2 + ∑

n′≠n

j<unkj ħ
2

m
Δk . ð−i∇+kÞjun′k>j2

εnðkÞ− εn′ðkÞ

= 1
2
∑
ij

∂2εnðkÞ
∂ki∂kj

ΔkiΔkj:

(8.36)

From Eqs. (8.35) and (8.36), we obtain (Problem 8.4)

½M−1
n ðkÞ�ij = 1

m
δij +

ħ2

m2
∑
n′≠n

<nkj−i∇ijn′k>< n′kj−i∇jjnk>+ c:c:

εnðkÞ− εn′ðkÞ : (8.37)

Here, the summation is over all band indices n′ except n: The inverse mass tensor plays an important
role in the formulation of dynamics of Bloch electrons. As we will see, the inverse effective mass
tensor can be either positive or negative. Because the concept of a negative effective mass associated
with the negatively charged Bloch electrons is contrary to our physical understanding, we will also
introduce the concept of “holes,” which are positively charged particles associated with positive
effective mass. The holes play a very important role in semiconductors. In addition, the mystery of a
positive charge in the Hall coefficient (in the free electron model, RH = −nec), in the measurement of
the Hall effect in certain metals such as aluminum in high magnetic fields, is also explained by the
concept of holes.

8.6 BLOCH ELECTRONS IN EXTERNAL FIELDS
In an external electric field E, the force acting on a free electron is given by

ħ _k = −eE: (8.38)

The effect of a magnetic field B is included by assuming that the Lorentz force equation is valid, i.e.,

ħ _k = −e E+ 1
c
V×B

� �
: (8.39)

The proof of an equivalent result for Bloch electrons is much more difficult for a magnetic field.
We will first derive an equivalent result for Bloch electrons in a static electric field and then general-
ize the results by using a more rigorous method. In a static electric field E, the general expression

Eðr, tÞ = − 1
c

∂Aðr, tÞ
∂t

−∇ϕðr, tÞ (8.40)

reduces to

E = −∇ϕðrÞ: (8.41)
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Here, A(r, t) is the vector potential, and ϕðrÞ is the scalar potential. We showed in Eq. (8.24) that for
Bloch electrons,

_r = vnðkÞ = 1
ħ
∂εnðkÞ
∂t

: (8.42)

The wave packet moves in such a way that the energy

ε = εnðkðtÞÞ− eϕðrðtÞÞ = constant: (8.43)

Because the energy ε of the wave packet is constant, we obtain, by taking the time derivative of the
energy,

∂ε
∂t

=
∂εnðkÞ
∂t

. _k − e∇ϕ . _r = 0: (8.44)

From Eqs. (8.42) and (8.44), we obtain

VnðkÞ . ½ħ _k − e∇ϕ� = 0: (8.45)

From Eq. (8.45), we obtain the desired result

ħ _k = e∇ϕ = −eE: (8.46)

However, there are problems associated in this derivation because the periodic boundary condi-
tions that were implicitly assumed in this derivation (by assuming that the eigenfunctions of the
Hamiltonian are the Bloch functions) are no longer valid. The electrostatic potential U(r), due to the
uniform electric field E, grows linearly in space because UðrÞ = −E . r: Therefore, when a metal is
placed in an electric field, the surface charges build up and cancel the interior field. Thus, the basic
assumption that the Bloch formulation is still valid is questionable, and the periodicity associated
with our formulation of the problem in a Brillouin zone with a band index n and crystal momentum
k is invalid. We will derive Eq. (8.46) by using a second method where the periodicity of the poten-
tial is not lost. However, we will first use the previous derivation to justify (in a hand-waving way)
the effect of a magnetic field.

It may be noted that the results of Eq. (8.45) are valid if any term perpendicular to VnðkÞ is
added in the square bracket. For example, anticipating that the Lorentz equations are valid, we can
rewrite Eq. (8.45) as

VnðkÞ . ½ħ _k − e∇ϕ+ e
c
VnðkÞ×B� = 0: (8.47)

Because e∇ϕ = −eE (from Eq. 8.46), Eq. (8.47) leads to the desired semiclassical expression for
the Bloch electron in an electric field E and magnetic field B,

ħ _k = −eE− e
c
VnðkÞ×B: (8.48)

We note that Eq. (8.48) is in no way a rigorous derivation of the motion of the Bloch electrons in
an electric and magnetic field.
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8.6.1 Time Evolution of Bloch Electrons
in an Electric Field

If we use the expression for the electric field E
through a time-dependent vector potential A that
increases linearly with time and set the scalar
potential ϕðrÞ to zero, i.e.,

A = −cEt, ϕðrÞ = 0, (8.49)

we verify that

E = − 1
c
∂A
∂t

−∇ϕ = E: (8.50)

Such a vector potential A, which allows the elec-
tric field E to coexist with the periodic boundary
conditions (in a ring-shaped crystal) is shown in
Figure 8.1.

The use of a time-dependent vector potential
instead of a scalar potential allows us to use the
periodic boundary conditions. We can generalize
this method to a Bloch state under the influence
of a time-dependent electric field, E(t), turned
on at t= 0.6

The time-dependent Schrodinger equation for
an electron in a Bloch state under the influence
of an electric field, E(t), turned on at t = 0, is
given by

Hψðr, tÞ =

�
p+ ðe/cÞA

�2
2m

+VðrÞ

2
64

3
75ψ = iħ

∂ψ
∂t

, (8.51)

where

A = −c
Zt
0

Eðt′Þdt′, (8.52)

V(r) is the lattice periodic potential, and the time-dependent electric field is included as a vector
potential, as described earlier. We can obtain ψðr, tÞ from ψðr, 0Þ by using eigenfunction expansion
of which the elements are �

p+ ðe/cÞA
�2

2m
+VðrÞ

2
64

3
75ϕ′i ðr, tÞ = εiðtÞϕ′i ðr, tÞ: (8.53)

E

R

FIGURE 8.1

The vector potential A = −cEt can be established in
a ring-shaped crystal by changing the magnetic flux
at a uniform rate Bz = 2πRcEtδðrÞ through an infinite
solenoid inside the ring.
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For each t, the Hamiltonian is invariant under a crystal lattice translation because A is independent
of r for a homogeneous electric field, and VðrÞ is periodic. If we substitute

ϕ′
iðr, tÞ = e−ieA

.r/ħcϕiðr, tÞ, (8.54)

in Eq. (8.53), we obtain

p2

2m
+VðrÞ

� �
ϕi = εiϕi: (8.55)

The solutions of Eq. (8.55) are the Bloch functions and energy band functions of the unperturbed
crystal,

ϕi = ϕnkðrÞ (8.56)

and

εi = εnðkÞ: (8.57)

From Eqs. (8.54) and (8.56), we obtain

ϕ′
iðr, tÞ = e−ieA

.r/ħcϕnkðrÞ: (8.58)

Because H is invariant under a lattice translation, the allowed values of k are defined using periodic
boundary conditions on the ϕ′

i. We obtain

k− eA
ħc

= ∑
i

ni
Ni

Ki, (8.59)

where Kiði = 1, 2, 3Þ are the primitive reciprocal-lattice translation vectors, Ni are the number of
cells in the i direction, and −Ni/2< ni ≤ Ni/2. For the periodic boundary condition to be satisfied,
k must be a function of t and

ħ _k = e
c
_A = e

c
ð−cEðtÞÞ = −eEðtÞ: (8.60)

From Eq. (8.59) and the time dependence of AðtÞ, it follows that the Brillouin zone describing the
allowed kðtÞ values is time dependent. The periodic boundary conditions that lead to Brillouin zone
boundaries move in time. Thus, the wave vector does not undergo an Umklapp process (or U-process)
back to the other side of the Brillouin zone, but continues with continuous values of kðtÞ in the
time-dependent zone. Having considered the general case of a time-dependent electric field, if we
restrict to a time-independent electric field,

ħ _k = −eE (8.61)

and

A = −cEt: (8.62)
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Thus, the k vectors are time dependent and should be written as kðtÞ: From Eqs. (8.55) and (8.56), we
also obtain the Bloch equation

ϕnkðtÞðrÞ = eikðtÞ
.runkðtÞðrÞ: (8.63)

The functions defined in (8.53) and (8.58) are also known as Houston functions. It may be noted that
the Houston functions are not exact solutions of the Schrodinger equation because the eigenvalues are
time dependent. The amplitude of Houston states with nearby k becomes nonzero and grows, a beha-
vior typical of wave packets. In addition, the electron can jump from one band to another, which is
known as Zener tunneling and which we will discuss later.

We note that if we use the Houston functions instead of the Bloch functions, we obtain expres-
sions for the effective Hamiltonians by a using a similar technique followed earlier (Problem 8.5).
The effective Hamiltonian for Unkðr,E, tÞ is

Heff =
1
2m

ð−iħ∇+ ħk− eEtÞ2 +VðrÞ: (8.64)

One important aspect to note is that the electric field E is incorporated through kðtÞ as described in
Eq. (8.61).

When the electron jumps from one band to another because of a strong electric field, it is
called electric breakdown or the Zener breakdown. It is easier for the electron to jump to a
neighboring band in a magnetic field. This is known as magnetic breakdown. We will discuss
these breakdowns later. We will describe the Zener breakdown after discussing an alternate (but
essentially flawed) derivation of the motion of Bloch electrons in an electric and magnetic field.
The controversy in this derivation is that one cannot use Bloch functions for Hamiltonians that
are not periodic.

8.6.2 Alternate Derivation for Bloch Functions in an External Electric
and Magnetic Field

The Hamiltonian in an electric and magnetic field can be written as

H = 1
2m

p + eA
c

� �2
+VðrÞ+ eE . r: (8.65)

In a small interval dt, the Bloch function ψ = ψnðk0, rÞ at t= 0 will change by

ψnðk, r, dtÞ = e−i/ħHdt ψnðk0, rÞ≈ 1− i
ħ
Hdt

� �
ψnðk0, rÞ: (8.66)

If we operate with the translation operator, with properties described in Eq. (4.47), we obtain

T̂ðRiÞψ = T̂ðRiÞ 1− i
ħ
Hdt

� �
ψnðk0, rÞ, (8.67)

which can be written as

T̂ðRiÞψ = 1− i
ħ
Hdt

� �
T̂ðRiÞψn −

i
ħ
dt½TðRiÞ,H�ψn: (8.68)
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It can be shown that (Problem 8.6)

½T̂ðRiÞ,H� =
�
ξ
! .Ri +

e2B2

2m
R2
ix

�
T̂ðRiÞ, (8.69)

where

ξ
!

= e
c
v×B+ eE+ e

c
_A: (8.70)

We neglect the last term in Eq. (8.69) in a weak magnetic field approximation and obtain

T̂ðRiÞψ = 1− i
ħ
ðH + ξ

! .RiÞdt
h i

T̂ðRiÞψn = ð…Þeik0 .Riψn = eik
.Riψ : (8.71)

Here,

k = k0−
ξ
!
ħ
dt (8.72)

or

ħ _k = − ξ
!
: (8.73)

If we neglect the last term in Eq. (8.70), we obtain

ħ _k = −e E+ v×B
c

� �
: (8.74)

Eq. (8.74) is the standard Lorentz force equation.

8.6.3 Motion in an Applied DC Field
Eq. (8.61) can be rewritten in the alternate form

kðtÞ = kð0Þ− eEt
ħ

, (8.75)

from which we obtain

vnðkðtÞÞ = vn kð0Þ− eEt
ħ

� �
: (8.76)

We note from Eq. (8.42) that vnðkÞ is periodic in
the reciprocal lattice vector K and when E kK,
Eq. (8.76) is oscillatory. This oscillatory behavior
in one dimension is shown in Figure 8.2. The velo-
city, which is linear in k near the band minimum,
reaches a maximum and then decreases to zero
at the Brillouin zone boundary. It is surprising
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FIGURE 8.2

v ðkÞ and εðkÞ versus k in one dimension.
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to note that in the region in which the velocity decreases with increasing k, the acceleration of the
electron is opposite to the external applied field.

We first note the periodic behavior of the εðkÞ versus k curve in Figure 8.2. The Bloch electrons
have positive effective masses at k = 0 and negative effective masses at k = ±π/a: The oscillatory
behavior of the velocity of the Bloch electron with k (and with time that is related to k through
Eq. 8.69) is a consequence of the effect of the periodic potential that exerts an additional force.
Hypothetically, the external DC electric field could induce alternating current, but collisions with pho-
nons and impurities present in a crystal do not allow any such possibility. In fact, in the absence of
damping, a perfect crystal with a periodic potential would not have any resistivity at zero temperature.

8.7 BLOCH OSCILLATIONS
The Bloch oscillations result from the fact that εnk is a periodic function of k. For example, we consider
the energy of a band in one dimension using the tight-binding method. From Eq. (5.13), we obtain
the expression for energy of a one-dimensional crystal of lattice constant a (in the x direction) as

εðkÞ = εa − β− 2γ cos ka, (8.77)

where the constants were defined in Eq. (5.13). When there is an external electric field E parallel to the
linear chain of the lattice (in the x direction), we have from Eq. (8.61)

ħ _k = −eE (8.78)

and

k = −eEt/ħ: (8.79)

From Eqs. (8.42), (8.77), and (8.79), we have

dr
dt

= _r = 1
ħ
∂ε
∂t

= − 2aγ
ħ

sin aeEt
ħ

� �
: (8.80)

Integrating with respect to t, we obtain

r =
2γ
eE

cos aeEt
ħ

� �
: (8.81)

Eq. (8.81) implies that when the external electric
field is very large, the Bloch electrons would
oscillate around a mean position. Instead of
being a good conductor, a metal would become
an insulator. However, it can be easily shown
that a small amount of damping can destroy this
oscillation.

The existence of such Bloch oscillations
was experimentally observed by Dahan et al
(Ref. 3). Dahan et al. prepared ultracold cesium
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FIGURE 8.3

Bloch oscillations of cesium atoms in an optical
periodic potential driven by a constant external force
observed experimentally. The negative values of Fta
were measured by changing the sign of F.

Reproduced from Dahan et al.3 with the permission of the

American Physical Society.
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atoms in the ground-state energy band of the potential induced by an optical standing wave. The
periodic potential results from the light shift of the ground state of cesium atoms illuminated by
a laser standing wave. The constant external force was mimicked by introducing a tunable fre-
quency difference δvðtÞ between two counter propagating laser waves creating the optical poten-
tial. The reference frame in which the optical potential is stationary moves with velocity δvðtÞλ/2.
For a linear variation of time in δvðtÞ, a constant inertial force F = −ma = −mλ d

dt δvðtÞ/2
is exerted on the atoms in this frame. They observed Bloch oscillations of the atoms driven
by this constant inertial force shown in Figure 8.3. The recoil velocity of the cesium atom
was 0.35 cm/s, and the acceleration was ±0:85m/s2: Figure 8.3 shows the results for potential
depth U0 = 4:4ER:

8.8 HOLES
We can write the expression for the contribution of all the electrons in a given band to the current
density as

j = −e
Z

occupied

dk
4π3

vðkÞ: (8.82)

Because the current in a completely filled band is zero, we can also write

j = e

Z
unoccupied

dk
4π3

vðkÞ: (8.83)

If only one electron is missing from the occupied band, the current is

j = evðkÞ: (8.84)

The absence of an electron in state k from an otherwise filled band is known as a “hole” in state k.
There are a couple of important physical properties to note about a hole:

1. The hole is a positive charge, as evidenced by Eq. (8.84).
2. The velocity of the “wave packet” of the hole will be the same as the velocity of the electrons in

either side of the hole, i.e.,

vnk =
1
ħ
∂εnðkÞ
∂k

: (8.85)

There are several ways in which a hole can be formed in a filled band. An electron can absorb a
photon and can be excited to the empty band above the filled band. Similarly, an electron can be
thermally excited at room temperature to the empty band above the filled band provided the energy
gap is small, as is the case for intrinsic semiconductors like Si or Ge. In fact, “holes” play a signif-
icant role in semiconductors, which is the topic of Chapter 9. The formation of a hole by the
absorption of a photon by an electron in state k to an empty band is shown in Figure 8.4.
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Because the unoccupied levels normally lie
near the top of the band and the band energy
εnðkÞ has its maximum value at km, we can
expand εnðkÞ about km assuming that k is suffi-
ciently close to km: We obtain (assuming that km

is a point of high symmetry)

εnðkÞ≈ εnðkmÞ+ aðk−kmÞ− bðk− kmÞ2 +…
(8.86)

However, the linear term on the right side will
vanish because εnðkmÞ is a maximum and the
coefficient of b will be negative. From Eqs.
(8.85) and (8.86), we obtain

vnðkÞ = − 2
ħ
bk (8.87)

and

d
dt
vnðkÞ = a = − 2

ħ
b _k: (8.88)

Comparing Eq. (8.88) with Eq. (8.34) for the
effective mass tensor, we obtain

ħM−1
n ðkÞ . _k = − 2

ħ
b _k = a: (8.89)

Thus, the inverse mass tensor is negative if k is
near a band maximum. Because a negative mass is
physically unacceptable, a hole can be considered
as a positive charge with a positive effective mass.

Thus, the general expression of the equation of motion can be written as

MnðkÞ . a = ħ _k: (8.90)

From Eqs. (8.74) and (8.90), we obtain

MnðkÞ . a =∓eðE+ 1
c
vnðkÞ×BÞ: (8.91)

It is easier to understand the motion of the electrons and holes if we consider only the electric field E.
In that case, Eq. (8.91) can be rewritten as

MnðkÞ . a =∓eE: (8.92)

Electron

Hole

ε

Empty band 

Filled band 

k
→

FIGURE 8.4

An electron of vector k absorbs a photon and is
excited to the empty band, leaving behind a
positively charged “hole” of the same vector k in the
filled band.
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As shown in Figure 8.5, the symbol ∘ indicates the position of the hole in k space. However, the
behavior of the hole, which is governed by its k vector, is marked ⊗: In an electric field, the electron
and hole states in the same band, which are marked ð.Þ and ð∘Þ, respectively, always move rigidly like
beads on a string. However, dk/dt for these two particles, which have opposite charges, are of opposite
signs. For the holes, dk/dt is always positive, and the points ⊗ move in the same direction as the
applied electric field. Because the electrons have negative charge, the electron state ð.Þ moves opposite
to the direction of the electric field.

The positive and negative effective mass (in units of mass of cesium atom) as a function of the
potential depth, when k = 0 and k = K, respectively (in a simulated periodic potential),
were demonstrated in the experiment described previously. The experimental results are shown in
Figure 8.6.

It is often convenient to describe the physical behavior in terms of the hole states, especially
when a Brillouin zone is nearly full. An example is shown in Figure 8.7, which shows a plane
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+
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k=K
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U0[ER]
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m
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FIGURE 8.6

Effective masses m� for k= 0 and k= K (in units of
cesium atomic mass) versus potential depth U0:

E
→

−π /a π /a

ε

−k
→

k
→

FIGURE 8.5

The electrons ð.Þ and hole ð∘Þ states always move
together under the action of an electric field E, as
shown by arrows. The behavior of the holes is
governed by its k vector and is marked ⊗.
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section perpendicular to (001) in a cubic zone
structure where the occupied states are only in
the first zone.

We note that the empty states of the nearly
filled zone are in the corners of the zone. These
empty states form spheres of hole states in the
repeated zone scheme in the three-dimensional k
space, a two-dimensional equivalent of which is
shown in Figure 8.8. It is much easier to deal with
these spheres of positive charges (holes) than the
electrons in the Brillouin zone. The Fermi surface
of divalent metals has small sections of holes in
the first Brillouin zone as a consequence of elec-
trons spilling over into the second Brillouin zone.
The electrons in the second zone are ellipses of
occupied states (ellipsoids in three dimensions), as
shown in Figure 8.9.

8.9 ZENER BREAKDOWN (APPROXIMATE METHOD)
We will consider the Zener breakdown (Ref. 12) in an electric field in two alternate ways. First, we
will consider a simple and traditional method that is very controversial because the fundamental
postulate on which the Bloch functions and the concept of the Brillouin zones have been built—
i.e., the potential is periodic and the crystal has symmetry in the sense that one can consider the
opposite ends to be equivalent—is lost in an external electric field. In fact, as we have seen, the
wave vector k becomes time dependent, and the Brillouin zone boundary keeps moving with time.
Nevertheless, we will first discuss the simple case neglecting these objections. Later, we will dis-
cuss the more rigorous theory of Zener breakdown (Ref. 12).

FIGURE 8.9

The electrons of the second zone in the Fermi
surface of a divalent metal in the repeated zone
scheme. The major portion of the first zone is filled
with electrons, but these states are replaced by the
hole states.

FIGURE 8.7

Occupied states in the first zone shown by a plane
section perpendicular to (001).

+ +

++

FIGURE 8.8

The circular areas of hole states at the zone corners
(in two dimensions). They are spheres in three
dimensions.
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When we consider the motion of a Bloch electron (in one dimension) in an external electric field
E along the x-axis, there are two ways in which we can represent the motion of the electron. The
motion along the k space is shown in Figure 8.10 in the repeated zone scheme. These are the famil-
iar Bloch oscillations in which the electron travels from 0 to A and then to B and C, and so on. The
zone boundaries A and C are equivalent, and one can describe the oscillatory motion of the electron
by stating that the electron has jumped from C to A.

However, the path of the electron in the external electric field in real space (in one dimension)
shown in Figure 8.11 appears very different. The electron slows down as it moves from 0 to A,
where it has a Bragg reflection. It cannot go forward because there is an energy gap at A, and the

electron is forbidden to move in that region. The
electron reverses direction until it reaches B and
then accelerates again until it reaches the zone
boundary at C.

In addition, in a strong electric field E, the
bands are tilted as shown in Figure 8.12.

An electron moving from P to Q will be
reflected back into the band, or it can move from
Q to R by crossing the energy gap εg if the elec-
tric field is strong enough to satisfy the condition
εg = eEd, where d = QR. Thus, we obtain

d≈
εg
eE

: (8.93)

It may be noted that QR is a forbidden region,
and the electron has to tunnel through this region.
This tunneling problem was originally solved by
Zener by using WKB approximation. However,
this is a semiclassical derivation with a lot of
controversies because the periodicity of the
Bloch functions is lost in an electric field. We
will first outline a brief derivation of tunneling

E
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ε (k)
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B0

C

FIGURE 8.10

Electron trajectory in k space.
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FIGURE 8.11

Path of electron in real space in an electric field E
along the x axis.

P

Q

eE
→

x

E
ne

rg
y 
ε

R

FIGURE 8.12

The energy bands in the ε− x diagram are tilted in an
applied electric field.
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using the WKB approximation and then derive
the effect of electric field on the Bloch func-
tions for derivation of a more rigorous formula.

The tunneling of an electron in a square
potential barrier is shown in Figure 8.13. This is
solved by the WKB approximation.4

The approximate solution of the Schrodin-
ger equation in the WKB approximation is

ψðxÞ = Ae
i/ħ
Rx

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðε−VÞ

p
: (8.94)

If V − ε = u, where u is positive, an electron wave function that starts on the left side of Figure 8.13
and travels distance d through the gap will have a transmission coefficient7

T = e−2d
ffiffiffiffiffiffiffiffiffiffi
2mu/ħ2

p
: (8.95)

However, in the case of a Bloch electron moving on an electric field, if εv and εc are the energies of
the valence and conduction bands, respectively, while ε− εv is negative in the energy gap,
εc − ε = 0 = εv − ε at the zone boundaries, and once the electron tunnels to the conduction band, εv − ε
is positive. If we include these specific conditions for tunneling through the bands, a rough estimate of
the Zener tunneling problem can be made by rewriting the WKB approximation, and the probability for
an electron to tunnel from one band to another is of the form

T = e
2i/ħ

Rd
0
dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðεc−εÞðεv−εÞ

pp
: (8.96)

Eq. (8.96) can be rewritten in the alternate form (in a very rough approximation)

T ≈ e
−2d

ffiffiffiffiffiffiffi
2mεg
ħ2

q
: (8.97)

From Eqs. (8.87) and (8.97), we obtain the expression for tunneling probability as

T ≈ e
−
2εg
eE

ffiffiffiffiffiffiffi
2mεg
ħ2

q
: (8.98)

The probability of the electron to tunnel through the barrier obtained in Eq. (8.98) is a very rough
estimate of the tunneling problem.

E

V

0 d x

FIGURE 8.13

Square potential barrier. Penetration of a barrier by a
wave function ψ(x) when V > d:
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8.10 RIGOROUS CALCULATION OF ZENER TUNNELING
We expanded ψðr, tÞ—in Eqs. (8.53) and (8.58)—in terms of the Houston states

ψðr, tÞ = ∑
i
aiðtÞϕ′iðr, tÞ, (8.99)

which can be rewritten in the alternate form from Eq. (8.58)

ψðr, tÞ = ∑
n′k′

an′k′ðtÞe−ieA.r/ħcϕn′k′ðtÞðrÞ, (8.100)

Hψðr, tÞ = ∑
n′k′

an′k′ðtÞεn′ðk′ðtÞÞeiðk′−eA/ħcÞ.rUn′k′ðtÞðrÞ: (8.101)

Here, we replaced aiðtÞ by an′k′ðtÞ and replaced the summation over i by n′k′ and expressed the
Houston functions as

ϕnkðtÞðrÞ = eik
.rUnkðtÞðrÞ: (8.102)

We also obtain

iħ ∂
∂t
ψðr, tÞ = iħ∑

n′k′

∂an′k′ðtÞ
∂t

eiðk′−
eA
ħcÞ.rUn′k′ðtÞðrÞ+ iħ∑

n′k′
an′k′ðtÞeiðk′−

eA
ħcÞ.r ∂

∂t
Un′k′ðrÞ: (8.103)

Here, we used the condition that k′− eA
ħc is time independent from Eq. (8.59).

Further,

∂
∂t
UnkðtÞðrÞ = ∂

∂kx
Unk

dkx
dt

= − eE
ħ

∂
∂kx

Unk: (8.104)

Substituting Eqs. (8.101) through (8.103) in Eq. (8.51), multiplying both sides by e−iðk−
eA
ħcÞ.rU�

nkðrÞ,
using E = îEðtÞ, integrating over the volume of the crystal, and using the orthonormal conditions of
the Bloch functions (Problem 8.9), we obtain

εnðk, tÞankðtÞ = iħ
∂ankðtÞ
∂t

− eEðtÞ∑
n′
Ann′ðkðtÞÞan′kðtÞ, (8.105)

where

Ann′ðkðtÞÞ�−i
Z

U�
nkðtÞ

∂
∂kx

Un′kðtÞdτ: (8.106)

From Eq. (8.105), it follows that the coefficients ankðtÞ are coupled only to an′kðtÞ, i.e., coupled to the
same k. Therefore, for a given k, we can write

ankðtÞ = αnðtÞe
− i
ħ

Rt
0
εnðkðt′Þdt′

: (8.107)
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Substituting Eq. (8.107) in Eq. (8.105), we obtain

_α nðtÞ = ieEðtÞ
ħ

∑
n′
αn′ðtÞAnn′ðkðtÞÞ exp i

ħ

Zt
0

½εnðkðt′ÞÞ− εn′ðkðt′ÞÞ�dt′
2
4

3
5: (8.108)

This general expression can be used for derivation of Wannier–Stark ladders for time-dependent E as
well as for Zener tunneling between the valence and conduction bands.

At t = 0, before the field E is turned on, kðtÞ= kðt = 0Þ, the electron state can be described by a
Bloch wave in band n with kðtÞ= kðt = 0Þ; then at t= 0,

αn′ = δnn′: (8.109)

After a time T = − ħK
eE, where T is the period of one Bloch oscillation, which is a sufficiently short

time so that αn′ ≪ 1, n′≠ n, we can substitute Eq. (8.109) in Eq. (8.108) to obtain

αn′ðtÞ =
Zt
0

ieEðt′Þ
ħ

An′nðkðt′ÞÞ exp i
ħ

Zt′
0

½εn′ðkðt″ÞÞ− εnðkðt″ÞÞ�dt″
2
4

3
5dt′: (8.110)

We consider the case in which E is constant and is in the direction of the reciprocal-lattice vector K
(which is along the x axis) and use ħ _k = −eE to change the variables

dt = − ħ
eE

dk: (8.111)

From Eqs. (8.110) and (8.111), it can be shown that the transmission probability per period T,

Pnn′ = jαn′ðTÞj2 =
ZK/2
−K/2

An′nðkÞ exp − i
eE

Zkx
0

½εn′ðk′x,k⊥Þ− εnðk′x, k⊥Þ�dk′x

2
4

3
5dkx

						
						
2

: (8.112)

Any calculation of Pnn′ requires actual band calculations for the particular metal or the semiconduc-
tor to calculate An′nðkÞ, and evaluation of the integrals requires the use of a computer. However, in
what follows, we will make several drastic approximations to derive an expression for the Zener
tunneling between a valence band and a conduction band. In the process, we will explain why the
Zener tunneling between the two bands is much easier for semiconductors than for metals.

To be able to consider Zener tunneling, we consider two parabolic bands that are of the form

ε1k = εv −
ħ2k2

2m�
v

(8.113)

and

ε2k = εc +
ħ2k2

2m�
c

: (8.114)
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Thus,

ε2k − ε1k = εg +
ħ2k2

2m� , (8.115)

where εg = εc − εv, and m∗ is the reduced mass defined by

1
m� = 1

m�
v

+ 1
m�

c

: (8.116)

With these conditions, Eq. (8.105) can be rewritten as

ε1kðtÞa1kðtÞ = iħ
∂a1kðtÞ
∂t

, (8.117)

from which we obtain

a1kðtÞ = exp − i
ħ

Zt
0

dt′ε1kðt′Þ
2
4

3
5: (8.118)

If the time interval is short such that αn′ ≪ 1, n′≠ n, we can substitute Eq. (8.118) in Eq. (8.108) to
obtain an expression for the rate of tunneling from band 1 to band 2 after time t as

α2ðtÞ =
Zt
0

ieE
ħ

A21ðkðt′ÞÞexp i
ħ

Zt′
0

½ε2kðt″Þ − ε1kðt″Þ�dt″
2
4

3
5dt′: (8.119)

For a linear lattice, it can be shown that apart from the oscillatory terms in k, iA21 ≈ a, where a is
the lattice constant. Further, if τ is the time needed for k to move by a reciprocal lattice vector
K = 2π/a,

α2ðτÞ≈ a

Z2π/a
0

dk exp

�
−i
eE

Zk
0

dk′ðε2k′ − ε1k′Þ
�
: (8.120)

Here, we used the relation ħ _k = −eE to change the variables dt = − ħ
eE dk. From Eqs. (8.115) and

(8.120), we obtain

α2ðτÞ≈ a

Z2π/a
0

dk exp −i
eE

Zk
0

dk′
�
εg +

ħ2k′2
2m�

�2
4

3
5: (8.121)

The integral is impossible to perform exactly, but an approximate result achieved by using the
method of steepest descent yields the expression for the rate of tunneling:

α2ðτÞ≈ a exp −
2ε3/2g

3eE

ffiffiffiffiffiffiffiffi
2m�

ħ2

r" #
: (8.122)
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The probability of tunneling, which is given by jα2ðτÞj2, is much smaller in metals than in
semiconductors because both the band gaps and the effective masses are much smaller for
semiconductors.

8.11 ELECTRON–PHONON INTERACTION
The electron–phonon interaction process is basically the absorption (annihilation) or emission of a
phonon ðq, λÞ with a simultaneous change of the electron states from jk, σ > to jk±q, σ >: Here,
σ is the spin index and λ = x, y, z directions. These two processes are shown as (a) and (b) in
Figure 8.14 (the spin index σ and λ are not shown).
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FIGURE 8.14

Graphs for various types of electron–phonon interaction. The Umklapp process is not shown here.
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Process (a) is called phonon emission, and process (b) is called phonon absorption. In processes
(c) and (d), the time axis runs from left to right. The electrons are assumed to run backward in
time, and holes run forward in time. Process (c) describes the recombination of an electron-hole
pair where a phonon is emitted. Process (d) describes the generation of an electron-hole pair by a
phonon. One can describe processes (a) through (d) by using first-order perturbation theory. The
conservation laws for the sum of the wave vectors (momentum) and energy are obeyed.

Processes (e) through (g) are due to contributions of perturbation calculations of higher order.
Process (e) describes the emission and reabsorption of a virtual phonon. Process (f) describes the
emission and reabsorption of a virtual electron-hole pair. Process (g) describes the electron–electron
interaction of a virtual phonon. In these graphs, the intermediate states are not stationary states of
the system. The laws of conservation of energy do not apply to these intermediate states because
these processes occur in a very short time. The uncertainty relation between energy and time holds
for these virtual states. The electron–electron interaction by exchange of virtual phonons will be
neglected in the following discussions.

The Hamiltonian of a crystal can be written as

Hc = Hel +Hion +Hel−ion: (8.123)

Here, the contribution due to exchange is neglected. Using the Born–Oppenheimer (adiabatic)
approximation discussed in Chapter 7, we can separate the movement of the electrons in a station-
ary lattice and the movement of the ions in a uniform space of electrons. The Hamiltonian Hion

is considered separately and is used to study lattice dynamics, which we considered in Chapter 2.
We write

Hel−ion = H0
el−ion +Hel−ph, (8.124)

where H0
el−ion describes the electron interaction with the periodic potential in the one-electron band

model.
We express

He = Hel +H0
el−ion: (8.125)

Thus, we can write the Schrodinger equation for the electrons—from Eqs. (8.123) through
(8.125)—as

Hψ = ðHe +Hel−phÞψ = Eψ : (8.126)

We also note that we can write

Hel−ion = ∑
j,i,α

Vðrj −RiαðtÞÞ, (8.127)

where rj is the position of an electron, and RiαðtÞ = Ri + dα +uαiðtÞ (see Figure 2.1 in Chapter 2). Here,
the position vector of the ion is the sum of the equilibrium position of the αth ion in the ith Wigner–
Seitz cell, and uαiðtÞ is the instantaneous deviation of the αth ion from the equilibrium position.
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We assume that the interaction potential depends only on the electron–ion separation (Nordheim’s
rigid ion model). We can expand the potential

Vαðrj −Riα − uαiÞ≈Vαðrj −RiαÞ−∑
αij
uαi

.∇Vαðrj −RiαÞ: (8.128)

From Eqs. (8.22), (8.127), and (8.128), we obtain

Hel−ph = −∑
αij
uαi

.∇Vαðrj −RiαÞ: (8.129)

In Eq. (2.159), we also derived (note that we have changed the notation from k to q because we will
use k for electrons and generalized to a lattice with a basis, and from n to α)

uαi =
1ffiffiffiffiffiffiffiffiffiffi
MαN

p ∑
qλ
∈̂αλðqÞQ̂qλe

iq.Ri , (8.130)

where the expression for the normal coordinate Qqλ was derived in Eq. (2.182) as

Q̂qλ = ħ
2ωqλ

� �1
2ðâqλ + â†−qλÞ: (8.131)

From Eqs. (8.129) through (8.131), we obtain

Hel−ph = −∑
αij

1ffiffiffiffiffiffiffiffiffiffi
MαN

p ∑
qλ
Q̂qλe

iq.Ri∈̂αλðqÞ .∇Vαðrj −RiαÞ: (8.132)

We will now convert quantum mechanical equations for He from the r-representation into the
occupation number representation. We assume that the Hamiltonian is a sum of one-electron operators

Ĥ = ∑
i
Ĥðri, siÞ: (8.133)

We recall that, for fermions, we derived in Chapter 2 (Eq. 2.110) that

ĉ†kĉk = nk (8.134)

(In this chapter, we use ĉ†k and ĉk for creation and annihilation operators for electrons to distinguish
from the phonon operators.)

Similarly, from Eqs. (2.99) through (2.101) and (2.109), we derived

½ck, c†k�+ = δk, k′, (8.135)

c†kjn1, n2,…, nk …, > =
ffiffiffiffiffiffiffiffiffiffiffiffi
1− nk

p
ð−1Þmjn1, n2,…, nk + 1,…,> (8.136)

and

ckjn1, n2,…, nk …, > =
ffiffiffiffiffi
nk

p ð−1Þmjn1, n2,…, nk − 1,…,>, (8.137)
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where

m = ∑
j<k

ni: (8.138)

We also showed in Chapter 7 (Eq. 7.18) that the wave function is a Slater determinant, which can
be written in the form

Ψðr1s1, r2s2,…, rNsNÞ = 1ffiffiffiffiffi
N!

p ∑
n
ð−1Þnψn1ðr1s1Þψn2ðr2s2Þ…ψnNðrNsNÞ, (8.139)

where the sum n is over all permutations n of 1… N.
We can rewrite Eq. (8.139) in the alternate form

Ψ = 1ffiffiffiffiffi
N!

p ∑
P
Pð−1ÞPψαðr1s1Þψβðr2s2Þ…ψωðrNsNÞ, (8.140)

where the sum P is over all permutations of the indices α, β,…, etc.
From Eq. (8.140), we can write

HΨðr1s1, r2s2,…, rNsNÞ = 1ffiffiffiffiffi
N!

p H∑
P
Pð−1ÞPψαðr1s1Þψβðr2s2Þ…ψωðrNsNÞ: (8.141)

From Eqs. (8.133) and (8.141), we obtain

HΨ = 1ffiffiffiffiffi
N!

p ∑
i
∑
P
Pð−1ÞPψαðr1s1Þψβðr2s2Þ…HðrisiÞψλðrisiÞ…ψωðrNsNÞ: (8.142)

If the Hamiltonian does not involve the spin explicitly (Eq. 7.20),Z
ψ�

λðrisiÞHðriÞψλ′ðris′iÞ =
Z

ϕ�
λðriÞHðriÞϕλ′ðriÞδsi , s′i (8.143)

because

ψλðrjsjÞ = ϕλðrjÞχλðsjÞ: (8.144)

We can write the Hamiltonian as a sum of operators on single particles,

H = ∑
i
HðrisiÞ�∑

i
Hi: (8.145)

Because ψλ forms a complete set, we can rewrite Eq. (8.145) in a more convenient way by writing

Ĥ = ∑
iλλ′
jψλ′ðiÞ><ψλ′ðiÞjĤijψλðiÞ>j<ψλðiÞj: (8.146)

The one-particle equivalent of Eq. (8.146) is

HðrisiÞψλðrisiÞ = ∑
λ′
ψλ′ðrisiÞ< λ′jHijλ>, (8.147)
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which has i-independent matrix elements. Here, the spin index s is dropped from λ because the
Hamiltonian H does not explicitly contain spin terms, whereas the summation over λ′ explicitly contains
spin summation.

We define the operator

Âλ′λ = ∑
i
jψλ′ðiÞ><ψλðiÞj: (8.148)

The operator Âλ′λ searches for each electron (one at a time) in state ψλ and moves it to ψλ′. From
Eqs. (8.146) and (8.148), we obtain

Ĥ = ∑
λλ′

Âλ′λ <ψλ′ð1ÞjĤ1jψλð1Þ>, (8.149)

where the label 1 is used instead of i because the matrix elements of a one-particle operator do not
depend on which particle is involved.

We first consider a wave function Ψ and wish to evaluate

∑
N

i=1
<Ψajψλ′ðiÞ><ψλðiÞjΨb >: (8.150)

We consider one term

<Ψajψλ′ð1Þ><ψλð1ÞjΨb >: (8.151)

This term is nonzero only if in jΨb >, ψλ is unoccupied and ψλ′ is occupied while in jΨa >, ψλ

is unoccupied and ψλ′ is occupied, and otherwise Ψa and Ψb are identical: Thus, one has to permute
ψλ′ past all the states in the ordering to obtain jψλ′ð1Þ>, and one obtains a factor of ð−1Þmλ′ . Similarly,
one obtains a factor ð−1Þmλ to permute ψλ past all the states below it to obtain jψλð1Þ>. Here,

mλ = ∑
i<λ

ni and mλ′ = ∑
i<λ′

ni: (8.152)

Thus, we obtain

∑
N

i=1
<Ψajψλ′ðiÞ><ψλðiÞjΨb > = ð−1Þmλ+mλ′ , (8.153)

if it is not zero. Thus, in the occupation number representation,

Âλ′λjn1, n2, nλ′… nλ′…> = ð−1Þmλ′ð−1Þmλ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− nλ′Þnλ

p
jn1, n2,…, nλ′+1 … nλ−1 …>: (8.154)

From Eqs. (8.149) and (8.154), we obtain (Problem 8.11)

Ĥjn1, n2,…, n1, n2,…, nλ′,…, nλ,…>

= ∑
λ, λ′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nλð1− nλ′Þ

p
ð−1Þmλ+m

′
λ′< λ′jH1jλ>jn1, n2,…, nλ′+1,…, nλ−1,…> if λ≠ λ′, (8.155)

= ∑
λ
nλ < λjH1jλ>jn1, n2,…, nλ…>, if λ = λ′: (8.156)
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Here, the terms ∑
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nλð1− nλÞ

p
and nλ occur due to the property of the fermions that nλ can be

either zero or 1.
From Eqs. (8.152) through (8.154), the operator

Âλ′λ = ĉ†λ′ ĉλ, (8.157)

where the creation and annihilation operators for fermions were defined in Eqs. (8.136) and (8.137).
From Eqs. (8.149), (8.153), and (8.155) through (8.157), we obtain by replacing λ and λ′ by ks and k′s,

Hjn1, n2,…, nk …> = ∑
kk′s

< k′sjH1ðrÞjks> c†k′scksjn1, n2,…, nk′ … nk …>: (8.158)

The Hamiltonian H in the occupation number representation becomes

H = ∑
k,k′,s

<k′sjH1ðrÞjks> c†k′scks, (8.159)

where

<k′sjH1ðrÞjks> =
Z

ψ�
k′sðrÞH1ðrÞψksðrÞdr: (8.160)

Here, we dropped the index i in ri: We note that because spin is conserved in k ! k′ transition, we
have to carry out only one spin summation. The matrix elements on the right side of Eq. (8.160) are
formed from the Bloch functions.

To calculate Hel−ph from Eqs. (8.132) and (8.160), we expand Vαðr−RiαÞ in a Fourier series

Vαðr−RiÞ = ∑
κ!
ei κ
!.ðr−RiÞVακ!, (8.161)

from which we obtain

< k′sj∇Vαjks> = ∑
κ!
e−iκ

!.R
!

iVακ!i κ
!<k′sjeiκ!. r!jks>: (8.162)

From Eqs. (8.132) and (8.162), the sum over i contains the factor

∑
i
eið q
!−κ!Þ.R

!
i = N∑

K
!

l

δ
κ!, q!+K

!
l

: (8.163)

Thus, in the sum over κ! in Eq. (8.162), only the term κ! = q!+ K
!

l survives. If we write the Bloch
functions jk> � eik

.runkðrÞ (note that we have also used bold letters as vectors) in Eq. (8.162), the
integrand I contains the term

I =
Z

dr eiðk+q+Kl−k′Þ.ru�n′k′ðrÞunkðrÞ: (8.164)
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Because u�n′k′ðrÞunkðrÞ is a periodic function inR,

I =
Z

dr u�n′k′ðrÞunkðrÞδk′, k+q+Kl
: (8.165)

From Eqs. (8.132), (8.159), and (8.162) through (8.165), and letting n′ = n (because the electron
remains in the same band n = n′ when making the transition k to k′ except for the U-process to be
discussed later), we obtain

Hel−ph = − ∑
kKlqαλs

i

ffiffiffiffiffiffi
N
Mα

r
Vα, q+Kl

ðq+KlÞ . ∈̂αλ
ħ

2ωqλ

� �

×
Z

u�n, q+Kl+kðrÞunkðrÞdr ðâ†−qλ + âqλÞĉ†k+q+Kl,s
ck,s:

(8.166)

We note that if k and q are added vectorially, the resultant vector can lie outside the first Brillouin
zone (where k,k′,q, and q′ lie in the reduced zone schemeÞ in the repeated zone scheme, so that
k′ = k+ q+Kl: The sum over Kl in Eq. (8.164) is thus reduced to one term. If Kl = 0, the transi-
tion is called a normal process (N-process) while if Kl ≠ 0, the transition is called the Umklapp
process (U-process). (Umklapp is a German word for “flopping over.”)

To simplify further, we assume that we restrict ourselves to Bravais lattices so that there is only
one atom in the Wigner–Seitz cell. Thus, we can omit the index α and λ and count the different acous-
tic branches since the optical branches do not exist. We also restrict the derivation to the N-process
such that Kl = 0. We also assume that phonons are either longitudinal or transverse so that ∈̂λ is
either parallel or perpendicular to q. With these assumptions, Eq. (8.166) can be written as

Hel−ph = −∑
kqλs

i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ħN

2Mωqλ

r
Vqq . ∈̂λ ×

Z
dr u�n,k+qðrÞunkðrÞ ðâ†−qλ + âqλÞĉ†k+q, sck, s: (8.167)

Because ∈̂λ ⊥q for transverse phonons, ∈̂λ
.q = 0. Thus, only longitudinal acoustic phonons are

coupled to the electrons. Eq. (8.167) can be rewritten in the alternate form

Hel−ph = ∑
kqs

Bkqðâ†−q + âqÞĉ†k+q, sĉk,s: (8.168)

We can calculate the probability of transition of an electron from state | k > into state jk+ q>.
Because the spin is unchanged in this transition, it can be ignored.

From Fermi’s “golden rule” (originally derived by Dirac from perturbation theory), the transition
probability

Pði ! f Þ = 2π
ħ
j< f jHel−phji>j2 δðεf − εiÞ: (8.169)

Here, the initial states are ji> and the final states j f > are characterized by the occupation numbers
nk and nk+q of the electron state and nq and n−q of the phonon states involved in the transition

jnk+q, nk; nq, n−q>: (8.170)
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If we consider the transition involving the absorption of a phonon, we apply the operator ĉ†k+qĉkaq
to Eq. (8.170). It can be shown that (Problem 8.12)

< nk+q + 1, nk−1; nq−1jĉ†k+qĉkâqjnk+q, nk; nq> =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− nk+qÞnknq

q
: (8.171)

The matrix elements vanish for all cases except when nk = 1; nk+q = 0 . The energy relations for the
absorption of a phonon are

εf − εi = εðk+ qÞ− εðkÞ− ħωq: (8.172)

Similarly, the transitions involving emission of phonons can be written as (Problem 8.13)

< nk+q + 1, nk−1; n−q + 1jĉ†k+qĉkâ†−qjnk+q, nk; n−q > =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−nk+qÞnkðn−q + 1Þ

q
, (8.173)

and

εf − εi = εðk+ qÞ− εðkÞ+ ħωq: (8.174)

From Eqs. (8.168) through (8.174), we obtain

Pðk ! k+ qÞ = 2π
ħ
jBkqj2nkð1− nk+qÞfnqδðεðk+ qÞ− εðkÞ− ħωqÞ

+ ðn−q + 1Þδðεðk+ qÞ− εðkÞ+ ħωqÞg:
(8.175)

In this case, nk = 1, nk+q = 0, and the matrix element vanishes in all other cases. However, the factor
ð1− nk+qÞnk is retained because if and when we consider a large number of states instead of the
transition probability from one occupied state to one empty state, the Fermi and Bose distributions
have to be used for electrons and phonons if the system is in equilibrium.

PROBLEMS
8.1. Derive Eqs. (8.19) and (8.20) from Eq. (8.16).

8.2. We can write

ð−i∇+ kÞunkðrÞ = ð−i∇+kÞe−ik.rψnkðrÞ: (1)

Show that

ð−i∇+kÞe−k.rψnkðrÞ = e−k
.rð−i∇ÞψnkðrÞ: (2)

Hence, show that

< unkjð−i∇+kÞjunk > = <ψnkj−i∇jψnk >: (3)
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8.3. Show that the inverse effective mass tensor can be written as

½M−1
n ðkÞ�ij = 1

ħ2
∂2εn
∂ki∂kj

: (1)

8.4. Using Eqs. (8.35) and (8.36), show that

½M−1
n ðkÞ�ij = 1

m
δij +

ħ2

m2
∑
n′≠n

< nkj−i∇ijn′k>< n′kj−i∇jjnk>+ c:c:

εnðkÞ− εn′ðkÞ : (1)

8.5. Show that if in Eq. (8.53), we can write

ϕ′
iðr, tÞ = eik

.runkðr,E, tÞ, (1)

the effective Hamiltonian for unkðr,E, tÞ is

1
2m

ð−iħ∇+ ħk− eEtÞ2 +VðrÞ: (2)

8.6. Show that

½T̂ðRiÞ,H� = ð ξ! .Ri +
e2B2

2m
R2
ixÞT̂ðRiÞ: (1)

8.7. The eigenfunction εnðkÞ is periodic in k space and can be expanded as

εnðkÞ = ∑
m
Cnme

ik.Rm : (1)

If k is replaced by −i∇, show that

εnð−i∇Þψnðk, rÞ = ∑
m
Cnme

iRm
.∇ψnðk, rÞ = εnðkÞψnðk, rÞ: (2)

If we write the time-dependent Schrodinger equation as

− ħ2

2m
∇2 +VðrÞ− eϕ

� �
ψ = iħ _ψ , (3)

and represent the electron as a wave packet constructed from all the Bloch states of all bands,

ψ = ∑
nk
Anðk, tÞψnðk, rÞ, (4)

show that

½Enð−i∇Þ− eϕ�ψ = iħ _ψ : (5)
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8.8. If we substitute ϕ′
iðr, tÞ = eieA

.r/ħcϕiðr, tÞ in
�
p+ ðe/cÞA

�2

2m
+VðrÞ

2
64

3
75ϕ′

iðr, tÞ = εiðtÞϕ′
iðr, tÞ, (1)

show that Eq. (1) reduces to

p2

2m
+VðrÞ

� �
ϕi = εiϕi: (2)

8.9. Derive the expression

εnðk, tÞankðtÞ = iħ
∂ankðtÞ
∂t

− eEðtÞ∑
n′
Ann′ðkðtÞÞan′kðtÞ: (1)

8.10. Use the expression

_α nðtÞ = ieEðtÞ
ħ

∑
n′
αn′ðtÞAnn′ðkðtÞÞexp i

ħ

Zt
0

½εnðkðt′ÞÞ− εn′ðkðt′ÞÞ�dt′
2
4

3
5, (1)

which is a general expression used for derivation of Wannier–Stark ladders for time-dependent
E as well as for Zener tunneling between the valence and conduction bands.
At t= 0, before the field E is turned on, kðtÞ= kðt = 0Þ, the electron state can be described

by a Bloch wave in band n with kðtÞ= kðt = 0Þ, then at t= 0,

αn′ = δnn′: (2)

After a time T = − ħK
eE , where T is the period of one Bloch oscillation, which is a sufficiently

short time so that αn′ ≪ 1, n′≠ n, show that we can substitute Eq. (2) in Eq. (1) to obtain

αn′ðtÞ =
Zt
0

ieEðt′Þ
ħ

An′nðkðt′ÞÞ exp i
ħ

Zt′
0

½εn′ðkðt″ÞÞ− εnðkðt″ÞÞ�dt″
2
4

3
5dt′: (3)

8.11. Using Eqs. (8.149) and (8.154), show that

Ĥjn1, n2,…, n1, n2,…, nλ′,…, nλ,…>

= ∑
λ, λ′

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nλð1− nλ′Þ

p
ð−1Þmλ+m

′
λ′< λ′jH1jλ>jn1, n2,…, nλ′+1,… nλ−1,…> if λ≠ λ′,

(1)

= ∑
λ
nλ < λjH1jλ>jn1, n2,…, nλ…>, if λ = λ′: (2)
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8.12. By using the expressions derived in Eqs. (2.75) and (2.76) for bosons,

a†qjn1, n2,…, nq,…> =
ffiffiffiffiffiffiffiffiffiffiffiffi
nq + 1

p jn1, n2,…, nq + 1,…>, (1)

aqjn1, n2,…, nq,…> =
ffiffiffiffiffi
nq

p jn1, n2,…, nq − 1,…>, (2)

and from Eqs. (8.133) through (8.136) for fermions, show that

< nk+q + 1, nk − 1; nq − 1>jĉ†k+qĉkaqjnk+q, nk; nq > =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− nk+qÞnknq

q
: (3)

8.13. Using the properties of the creation and annihilation operators for bosons and fermions
outlined in Problem 8.12, show that

< nk+q + 1, nk − 1; n−q + 1jĉ†k+qĉkâ†−qjnk+q, nk; n−q > =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1− nk+qÞnkðn−q + 1Þ

q
: (1)
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9.1 INTRODUCTION
In Chapter 4 (section 4.9), we discussed that by using elementary band theory, crystalline solids can be
divided into three major categories: metals, insulators, and homogeneous semiconductors. The metals
are good conductors (with the exception of the divalent metals) because either the conduction band is
half-filled (monovalent or trivalent metals), or there is significant overlap between the valence and con-
duction band (divalent metals). The crystalline solids with four valence electrons per unit cell can either
be an insulator or a homogeneous semiconductor, depending on the energy gap between the valence
band and the conduction band. The energy gap Eg is defined as the energy between the bottom of the
lowest-filled band(s) and the top of the highest-filled bands(s). In the case of both insulators and semi-
conductors, the lowest unoccupied band is known as the conduction band, and the highest occupied
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band is known as the valence band. A schematic
diagram of the valence and conduction bands,
which are the energy bands in the reduced zone
scheme, is shown in Figure 9.1.

At T = 0, the valence band is full, and the
conduction band is empty for both insulators
and semiconductors. Thus, the conductivity of
both types of solids is zero because no carriers
would be available in either of the bands to be
excited by an external electric field unless the
electric field (DC) is sufficiently large to cause
Zener tunneling (Chapter 8) or the frequency
ω of the AC electric field is such that ħω>Eg.
At T ≠ 0, a few electrons would be thermally
excited to the conduction band, leaving behind
a few positively charged holes in the valence
band (as we will show, the probability of such

transition is e−Eg/2KBT ). If the energy gap is large so that very few electrons are thermally excited
from the valence band to the conduction band at the room temperature, a negligible number of car-
riers in either of the bands would be available to conduct electricity, and essentially no current
would be generated. This type of solid, which carries no current in an electric field, is known as an
insulator. However, if the energy gap is small enough, a significant number of electrons are ther-
mally excited at room temperature to the conduction band(s), leaving an equal number of positively
charged “holes” at the top of the valence band(s). Thus, there are both “positively” charged carriers
in the valence band and “negatively” charged carriers in the conduction band to conduct electricity
and generate a perceptible current when an external field is applied. These solids are known as
homogeneous semiconductors. The homogeneous semiconductors are also known as intrinsic semi-
conductors to distinguish them from impurity (doped) semiconductors. Thus, the distinction between
the semiconductors and insulators depends essentially on the magnitude of the energy gap, and as a
rule of the thumb, solids with Eg < 2 eV are semiconductors, whereas solids with Eg > 2 eV are insu-
lators. However, most semiconductors have a much smaller energy gap.

There are two types of homogeneous semiconductors: the semiconducting elements and the semi-
conducting compounds. The most popular and widely used semiconducting elements are Si and Ge,
both of which belong to column IV of the periodic table and crystallize in the diamond structure. The
Bravais lattice of the diamond structure has a basis of two atoms, each of which has 8 sp electron states,
but only 4 of these are occupied by electrons. The Brillouin zones have to accommodate 16 electron
states, but only 8 electrons (from the two atoms) fill them. Therefore, the band structure has 8 sub-
bands, 4 of which are completely filled and the other 4 are completely empty at 0°K. The energy gap
of Si is 1.11 eV and that of Ge is 0.74 eV. These are also known as indirect semiconductors because
the bottom of the conduction band does not lie directly above the top of the valence band, and thus,
they have an indirect energy gap. The absorption of a photon creates an electron-hole pair, in which
both the energy and momentum have to be conserved, but the momentum of a photon is negligible
compared to that of the electrons. Thus, neither Si nor Ge is a good material for most optical applica-
tions because the two bands are not directly above each other. However, Si and Ge are extensively used
in electronics because they can be easily doped with impurities. The other elemental semiconductors

Eg

E

Conduction band

Valence band

FIGURE 9.1

Schematic diagram of the valence and conduction
bands.
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from column IV of the periodic table are gray tin,
which has a very small energy gap (0.1 eV), red
phosphorus, boron (1.5 eV), selenium, and tellur-
ium (0.35 eV), which are solids with complex
crystal structures. These semiconductors are
neither used in optical applications nor in electro-
nics. An example of the compound semiconduc-
tors of column IV of the periodic table is SiC,
which has an indirect energy gap of 2.2 eV.

An example of the calculated and experimen-
tal bandwidth for the homopolar materials Si,
Ge (both semiconductors), and diamond (insula-
tor) is shown in Table 9.1.

The III–V semiconductors are crystals com-
posed from columns III and V of the periodic
table and have zincblende structure with predomi-
nantly covalent bonding. In the III–V zincblende
semiconductors such as GaAs and InSb, Ga and
In have three outer electrons, whereas As and Sb
have five outer electrons. Ga or In occupies all the
A sites in the diamond structure, whereas As or
Sb occupies all the B sites (see Figure 6.4 in
Chapter 6). The most popular of these is GaAs,
which has a direct energy gap of 1.43 eV and thus
facilitates the absorption of photons creating elec-
tron-hole pairs. GaAs is therefore widely used in
optical applications. InSb has a direct energy gap
of 0.18 eV. The other III–V semiconductors are
GaN, GaSb, InP, and InAs, which have direct
energy gaps of 3.44 eV, 0.7 eV, 1.34 eV, and
0.36 eV, respectively.

The essential features of the band structure
of Ge are shown in Figure 9.2. In Ge, which

Table 9.1 Comparison of Calculated Bandwidth with Photoemission Data for the
Homopolar Materials (Energy in eV)

Quasiparticle Theory Expt.

Diamond 23.0 24.2 ± 1
Si 12.0 12.5 ± 0.6
Ge 12.8 12.9 ± 0.2

Reproduced from Louie8 with the permission of Elsevier.
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Calculated quasiparticle energies of Ge versus
direct (°) and inverse (♢) photoemission data.

Reproduced from Louie8 with permission of Elsevier.

9.1 Introduction 277



has an indirect energy gap, the top of the valence band is at Γ, but the bottom of the conduction
band is at L. In contrast, GaAs (not shown in the figure), which has a direct energy gap, both the
top of the valence band and the bottom of the conduction band are at Γ:

9.2 ELECTRONS AND HOLES
In an intrinsic semiconductor at room temperature, the carriers are the electrons excited to the bottom
of the conduction band from the top of the valence band. Because the filled valence band has no net
charge (there are as many electrons as positively charged ions), the absence of an electron creates
a net positive charge in the band. In addition, we consider the effective inverse mass tensor of an
electron introduced in Eq. (8.35):

½M−1
n ðkÞ�ij = 1

ħ2
∂2εn
∂ki∂kj

: (9.1)

We also derived an expression for the mass tensor in Eq. (8.37) by using perturbation theory,

½M−1
n ðkÞ�ij = 1

m
δij +

ħ2

m2
∑
n′≠n

< nkj−i∇ijn′k>< n′kj−i∇jjnk>+ c:c:

εnðkÞ− εn′ðkÞ : (9.2)

At the top of the valence band, the inverse effective mass tensor can either be positive or negative.
Because the concept of a negative mass is contrary to our physical understanding, the empty state at the
top of the valence band can be considered as a positively charged “hole” with a positive effective mass.
This concept of the positively charged holes is very important in formulating a theory for the semicon-
ductors. We introduce the general definition of the effective mass tensor for both electrons and holes,

½M−1
n ðkÞ�ij = ± 1

ħ2
∂2εn
∂ki∂kj

, (9.3)

where the positive sign is for electrons and the negative sign is for holes. Because the bottom of
the conduction band is at εc and the top of the valence band is at εv, we can express the energy of the
electrons ðεeðkÞÞ and holes ðεhðkÞÞ as

εeðkÞ = εc +
ħ2

2
∑
ij
kiðM−1

e Þijkj (9.4)

and

εhðkÞ = εv −
ħ2

2
∑
ij
kiðM−1

h Þijkj: (9.5)

However, there are two types of effective hole masses (light holes and heavy holes) for Si, Ge, and
GaAs. At the valence band maximum, there are two degenerate bands at Γ, while the third band (there
are three degenerate bands in the absence of spin) is lowered due to spin-orbit interaction. The band
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with the low curvature results in holes with large effective mass (heavy holes), whereas the band with
the high curvature has holes with small effective mass (light holes), which is evident from Eq. (9.3).

One can write the effective mass tensor in terms of a set of orthogonal principal axes,

εeðkÞ = εc +
ħ2

2
∑
i
ðM−1

e Þiik2i (9.6)

and

εhðkÞ = εv −
ħ2

2
∑
i
ðM−1

h Þiik2i : (9.7)

We can redefine the electron and hole masses by rewriting Eqs. (9.6) and (9.7) as

εeðkÞ = εc +
ħ2

2
∑
3

i=1

1
me

i

k2i (9.8)

and

εhðkÞ = εv −
ħ2

2
∑
3

i=1

1
mh

i

k2i : (9.9)

9.3 ELECTRON AND HOLE DENSITIES IN EQUILIBRIUM
To determine the number of carriers in each band in a semiconductor, we will modify the expres-
sion between the electron density and the density of states derived in Eq. (3.59), which was
obtained for free electrons,

n =
Z ∞

−∞
gðεÞf ðεÞdε: (9.10)

Here, f ðεÞ is the Fermi distribution function, which for electrons is

feðεÞ = 1
eðε−μÞ/kBT + 1

: (9.11)

In the case of free electrons, the chemical potential μ at T = 0 is equal to the Fermi energy εF ,
which is defined as the energy at the boundary between the filled and the empty states. In the case
of semiconductors, the filled and empty states are separated by an energy gap Eg: Thus, we can
argue that the chemical potential μ, known as the Fermi level in the case of semiconductors, lies
somewhere between the energy gap. Later, we will show that for an intrinsic semiconductor, the
Fermi level lies exactly at the middle of the gap at T = 0. In addition, we are considering the den-
sity of electrons in the conduction band for which Eq. (9.10) is modified as

ncðTÞ =
Z ∞

εc

gcðεÞfeðεÞdε, (9.12)
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where gcðεÞ is the density of states of the electrons in the conduction band. We can write a similar
expression for the holes in the valence band except that the distribution function for a hole can be
written as

fhðεÞ = 1− 1
eðε−μÞ/kBT + 1

= 1
eðμ−εÞ/kBT + 1

: (9.13)

In addition, the density of states for holes lies below the valence band edge. Thus, the density of
holes in the valence band can be written as

pvðTÞ =
Zεv
−∞

gvðεÞfhðεÞdε, (9.14)

where gvðεÞ is the density of states of the holes in the valence band. For semiconductors, the
conduction bands are nearly empty, and the valence bands are nearly full. We assume that the
band shapes are nearly parabolic as in the case of free electrons. Therefore, we use the expression
for the density of states for a free electron gas derived in Eq. (3.56) and suitably modify it
for semiconductors by substituting effective masses m�

n and m�
p for the free electron mass m,

and the fact that the energy of the electrons is ε≥ εc and the energy of the holes is jεj≤ εv (we
note that the energy of the holes is negative),

gcðεÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�3

n ε′
p
π2ħ3

ηc, ε′> εc

= 0, ε′≤ εc,

(9.15)

where

ε′� ε− εc, (9.16)

and

gvðεÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�3

p jε″j
q

π2ħ3
, jε″j> εv

= 0, jε″j≤ εv,

(9.17)

where

jε″j � jε− εvj: (9.18)

Here, ηc is the number of symmetrically equivalent minima in the conduction band (six for Si and eight
for Ge). m�

n and m�
p are the effective mass of electrons and holes that are obtained from the relation

m�
n = ðme

1m
e
2m

e
3Þ1/2 (9.19)

and

m�3/2
p = ðm�

plÞ3/2 + ðm�
phÞ3/2, (9.20)
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where

m�
pl = ðmlh

1 m
lh
2 m

lh
3 Þ1/2 (9.21)

and

m�
ph = ðmhh

1 m
hh
2 mhh

3 Þ1/2: (9.22)

Here, m�
pl and m�

ph are the effective masses of the light and heavy holes defined in Eqs. (9.15) and
(9.17), respectively. We note that in Eq. (9.17), the energy of the holes is zero at the valence band and
negative downwards.

For most semiconductors, the following approximations can be easily made:

εc − μ≫ kBT (9.23)

and

μ− εv ≫ kBT : (9.24)

The semiconductors for which the approximations (9.23) and (9.24) are valid are known as non-
degenerate semiconductors, whereas those for which these approximations are not valid are known
as degenerate semiconductors and one has to use Eqs. (9.11) and (9.13) for feðεÞ and fhðεÞ, respec-
tively. For nondegenerate semiconductors, we can rewrite Eqs. (9.11) and (9.13) as

feðεÞ≈ e−ðε−μÞ/kBT ≈ e½−εc−ðε′−μÞ�/kBT ≈ e−εc/kBT feðε′Þ (9.25)

and

fhðεÞ≈ eðε−μÞ/kBT ≈ e½εv+ðjε−εvj−μÞ�/kBT ≈ eεv /kBT fhðjε″jÞ: (9.26)

The density of carriers (in the conduction and valence bands) is obtained from the relations,

ncðTÞ =
Z ∞

0
gcðε′Þfeðε′Þdε′ (9.27)

and

pvðTÞ =
Z ∞

0
gvðjε″jÞ fhðjε″jÞdjε″j: (9.28)

From Eqs. (9.15), (9.25), and (9.27), the expression for ncðTÞ is obtained as

ncðTÞ = ηc

ffiffiffiffiffiffiffiffiffiffi
2m�3

n

p
π2ħ3

eðμ−εcÞ/kBT
Z∞
0

ε′1/2e−ε′/kBTdε′: (9.29)

From Eqs. (9.17), (9.26), and (9.28), the expression for pvðTÞ is obtained as

pvðTÞ =

ffiffiffiffiffiffiffiffiffiffi
2m�3

p

q
π2ħ3

eðεv−μÞ/kBT
Z∞
0

jε″j1/2e−jε″j/kBTdjε″j: (9.30)
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It can be easily shown that Z∞
0

ε1/2 e−ε/kBTdε = 1
2
ðkBTÞ3/2π1/2: (9.31)

From Eqs. (9.29) and (9.31), we obtain

ncðTÞ = ℵcðTÞeðμ−εcÞ/kBT (9.32)

where

ℵcðTÞ = 2ηc
m�

nkBT

2πħ2

� �3/2
: (9.33)

ℵcðTÞ can be expressed numerically as

ℵcðTÞ = 2:51ηc
m�

n

m

� �3/2
T

300 K

� �3/2
× 1019cm−3: (9.34)

Similarly, from Eqs. (9.30) and (9.31), we obtain

pvðTÞ = ℘vðTÞ eðεv−μÞ/kBT , (9.35)

where

℘vðTÞ = 2
m�

pkBT

2πħ2

� �3/2
: (9.36)

℘vðTÞ can be expressed numerically as

℘vðTÞ = 2:51
m�

p

m

� �3/2
T

300 K

� �3/2
1019cm−3: (9.37)

From Eqs. (9.32) and (9.35), we obtain

ncðTÞpvðTÞ = ℵcðTÞ℘vðTÞe−Eg/kBT , (9.38)

where Eg is the energy gap between the conduction and valence band,

Eg = εc − εv: (9.39)

Eq. (9.38) is known as the law of mass action. It states that at a given temperature, one can obtain
the density of one type of carrier if one knows the density of the other type of carrier, the effective
masses of both carriers (including that of light and heavy holes), the number of symmetrically
equivalent minima in the conduction band, and the energy gap of the semiconductor.

We note that Eqs. (9.32) and (9.35) are valid for both intrinsic (pure) and extrinsic (semiconduc-
tors with natural or doped impurities) semiconductors. We will first consider the case of intrinsic
semiconductors.
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9.4 INTRINSIC SEMICONDUCTORS
In an intrinsic semiconductor, because the number of electrons ncðTÞ in the conduction band is
equal to the number of holes pvðTÞ in the valence band, we can express ni, the number of carriers
in each band from Eq. (9.38), as

niðTÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ncðTÞpvðTÞ

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℵcðTÞ℘vðTÞ

p
e−Eg/2kBT : (9.40)

From Eqs. (9.34), (9.37), and (9.40), we obtain

niðTÞ = 2:51η1/2c

m�
nm

�
p

m2

� �3/4
T

300 K

� �3/2
e−Eg/2kBT1019 cm−1: (9.41)

The chemical potential of an intrinsic semiconductor is obtained from the equality relation

niðTÞ = ncðTÞ = pvðTÞ, (9.42)

and from Eqs. (9.32) and (9.35),

ℵcðTÞeðμi−εcÞ/kBT = ℘vðTÞeðεv−μiÞ/kBT (9.43)

or

μ = μi = εv +
1
2
Eg +

1
2
kBT ln

℘vðTÞ
ℵcðTÞ : (9.44)

From Eqs. (9.33), (9.36), and (9.44), we obtain

μi = εv +
1
2
Eg +

3
4
kBT ln

m�
p

m�
n

� �
− 1

2
kBT lnηc:

(9.45)

From Eq. (9.45), at T= 0, μi has a simple form,

μi = εv +
1
2
Eg, (9.46)

which is precisely at the center of the energy
gap. Even at reasonable temperatures, because
m�

p ≈m�
n for most semiconductors, μi is close to

the center of the energy gap. This is shown in
Figure 9.3.

From Eq. (9.32) and in analogy with the free
electron model, we can write the conductivity σi
of an intrinsic semiconductor as

σi =
nie

2τe
m�

n

+
pie

2τh
m�

p

, (9.47)

1
2

ε

εc

εv

εv + Eg Eg >> kBT

εc−μ

μ− εv

μ

FIGURE 9.3

The chemical potential for an intrinsic semiconductor
lies within the energy gap at T≠ 0.
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where τe and τh are the relaxation times for electrons and holes. Eq. (9.47) can be rewritten in the
alternate and more familiar form

σi = nieμe + pieμh, (9.48)

where μe and μh are the mobility of the electrons and holes, which is the velocity (always defined as
positive) of the carriers in unit electric field.

9.5 EXTRINSIC SEMICONDUCTORS
If there are impurities present in a semiconductor, which contribute a significant number of elec-
trons to the conduction band or holes to the valence band, the semiconductor is known as an extrin-
sic semiconductor. This can be obtained either by doping (which is the base of modern electronics)
or by contamination. In either case,

ΔnðTÞ = ncðTÞ− pvðTÞ≠ 0: (9.49)

From Eqs. (9.38) and (9.40), we have

ncðTÞpvðTÞ = niðTÞ2, (9.50)

which can be rewritten in the alternate form (dropping the T in the bracket),

ðpv +ΔnÞpv = n2i , (9.51)

or

p2v +Δnpv − n2i = 0: (9.52)

Solving the quadratic equation, we have

pv = − 1
2
Δn+ 1

2

h
ðΔnÞ2 + 4n2i

i1
2
: (9.53)

Following a similar procedure, we obtain

nc =
1
2
Δn+ 1

2

h
ðΔnÞ2 + 4n2i

i1
2
: (9.54)

We dropped the negative sign before the square root in Eqs. (9.53) and (9.54) because both pv and
nc are positive. We also obtain from Eqs. (9.32), (9.35), and (9.42),

nc = ni e
ðμ−μiÞ/kBT (9.55)

and

pv = pi e
−ðμ−μiÞ/kBT = ni e

−ðμ−μiÞ/kBT : (9.56)
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From Eqs. (9.49), (9.55), and (9.56), we have

nc − pv = ni½eðμ−μiÞ/kBT− e−ðμ−μiÞ/kBT � = 2ni sinh½ðμ− μiÞ/kBT�: (9.57)

From Eqs. (9.49) and (9.57), we obtain

Δn
ni

= 2 sinh½ðμ− μiÞ/kBT�, (9.58)

which can be expressed in the alternate form

μ = μi + kBT sinh−1 Δn
2ni

� �
: (9.59)

Because μi is at the center of the energy gap, Δn must exceed ni by many orders of magnitude
before the chemical potential μ violates the condition of “nondegeneracy” stated earlier (Eqs. 9.23
and 9.24). The exception is in a region of “extreme extrinsic behavior.”

We also note from Eqs. (9.53) and (9.54), if jΔnj≫ ni, and if Δn is positive,

nc ≈Δn and pv ≈ nc
ni
Δn

� �2
, (9.60)

in which case, nc ≫ pv and the semiconductor is called n-type. If Δn is negative,

pv ≈ jΔnj and nc ≈ pv
ni

jΔnj
� �2

, (9.61)

in which case, pv ≫ nc and the semiconductor is called p-type. These types of semiconductors are
known as doped semiconductors and are the base on which modern electronics is built.

9.6 DOPED SEMICONDUCTORS
Doped impurities, which contribute additional electrons to the conduction band such that the semicon-
ductor becomes n-type, are known as donors, whereas those that contribute holes to the valence band to
make the semiconductor p-type are known as acceptors. The simplest example is that when in a group
IV semiconductor such as a crystal of pure Si, an Si atom is replaced with a P atom, and there is an
extra electron (because phosphorous has five valence electrons) that does not participate in the covalent
bonds of Si. A deliberate substitution of quite a large number of P in Si is called doping, and because
the excess electrons that are originally bound to their parent phosphorus atoms eventually end up in the
conduction band at room temperature (because, as we will show, this binding energy is small), the semi-
conductor is called the n-type. A schematic diagram of this type of doping is shown in Figure 9.4.

The problem of the substitutional impurity can be simplified by ignoring the structural difference
between silicon and phosphorus ion cores. In addition, as shown in Figure 9.5, the extra electron, which
is bound to the parent phosphorus atom, can essentially be considered as a particle of charge
−e and mass m� moving in the presence of an attractive center of charge e in a medium of dielectric
constant ∈. This problem is equivalent to that of the ground state of a hydrogen atom with two modi-
fications: the dielectric constant ∈0 of a vacuum (in a hydrogen atom) is replaced by the dielectric
constant ∈ of the semiconductor, and the free electron mass (me) is replaced by the effective mass m�

e :
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The binding energy of the donor electron is given by

ε = −
m�

ee
4

2ð4π ∈ ħÞ2
, (9.62)

and the radius of the first Bohr orbit is given by

r = m
m�

e

∈ a0, (9.63)

where a0 is the first Bohr radius and m is the free electron mass. Because the dielectric constant ∈
is large ð�20Þ and the effective mass m�

e is small ð�0:1 mÞ, r � 100 A°. This justifies the use of a
semiclassical model, and the binding energy is obtained from the expression

ε≈
m�

e

m
1
∈2

× 13:6 eV: (9.64)

Using the same arguments, one can easily show that the binding energy of the donor electron
is �−0:01 5 eV. The bound impurity level is formed relative to the energy of the conduction band,
and hence, the binding energy, which is much smaller than the energy gap (ðEg ≈ 1:14 eV for SiÞ, is
measured relative to these levels. At room temperature, the donor impurity is ionized, and the elec-
tron jumps to the conduction band. When a large number of such extra electrons are introduced in
the conduction band by doping Si with P (or other elements from group V), the crystal is known as
an n-type semiconductor.

It is easy to make the same argument for acceptor impurities by substituting an Si atom with an
element from group III in a silicon crystal. An example of substituting an Si atom with an Al atom
in a silicon crystal is shown in Figure 9.6.

As shown in Figure 9.6, there is a deficiency of one electron in the formation of a covalent bond
that requires four electrons while aluminum has only three valence electrons. Thus, a hole is created

Si Si Si Si

Si P Si Si

−

Si Si Si Si

FIGURE 9.4

Phosphorus atom in a pure silicon crystal (donor
impurity).

−e
−4e

−10e
+15e

(a) (b)

−e

+e

FIGURE 9.5

(a) The electrons in a phosphorus impurity. (b) The
10 inner electrons and the 4 valence electrons,
which participate in the covalent bonding, screen the
nucleus, which has an effective attractive charge e.

286 CHAPTER 9 Semiconductors



that is initially bound to the parent aluminum atom. This bound state is known as an acceptor state
with a role reversal of a hydrogen-like atom in the sense that there is a net charge of ‘−e’ and mass
m at the center and hole with charge ‘e’ and effective mass m�

h orbiting around it. One can easily
show that the radius of the first Bohr orbit is given by

rh =
m
m�

h

∈ a0: (9.65)

The binding energy of the ground state is
nearly the same for both electrons and holes, i.e.,
on the order of −0:015 eV: However, the binding
energy of the donor levels is measured relative to
the conduction band, and the binding energy of
the acceptor levels is measured relative to the
valence band (the zero of the valence band is at
the top of the band, and the energy of the holes is
measured positive downwards). Thus, both the
donor and the acceptor levels are formed in the
energy gap, as shown in Figure 9.7.

However, at room temperature, the thermal
energy is sufficient for both the electrons and
holes to fall into the conduction and valence
bands, respectively.

(a) (b)

Donor levels

E

0

Acceptor levels

E

0

FIGURE 9.7

Donor and acceptor levels for (a) n-type and (b) p-type semiconductors.

Si Si Si Si

Si Al Si Si

Si Si Si Si

FIGURE 9.6

An example of acceptor impurity: aluminum atom in
a silicon crystal.
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9.7 STATISTICS OF IMPURITY LEVELS IN THERMAL EQUILIBRIUM
9.7.1 Donor Levels
For simplicity, we consider a semiconductor with donor states that have a binding energy εd located
just below the bottom of the conduction band. Ignoring electron–electron interaction, the three pos-
sibilities for the donor level are either the level could be empty, or the donor could trap one elec-
tron of either spin (up or down). The donor level cannot bind two electrons of opposite spin at the
same time. Using the Fermi statistics (in a grand canonical ensemble), we obtain fd, the mean num-
ber of electrons in the donor level,

fd =
∑
i
nie

−βðεi−μNiÞ

∑
i
e−βðεi−μNiÞ , (9.66)

which can be written in the form

fd =
0+ 2e−βðεd−μÞ

1+ 2e−βðεd−μÞ
: (9.67)

A more appropriate way to write Eq. (9.67) is

fd =
1

1+ 1
2
eβðεd−μÞ

: (9.68)

If the density of donors per unit volume is Nd, we can express nd, the number density of electrons
bound to the donor sites ðnd = NdfdÞ, as

nd =
Nd

1+ 1
2
eβðεd−μÞ

: (9.69)

9.7.2 Acceptor Levels
The statistics of the holes can be simplified by considering the holes as the “absence” of electrons.
An acceptor level, which is placed at an energy εa above the valence band, can be either singly or
doubly occupied but cannot be empty. An acceptor impurity is essentially a fixed, negatively
charged ð−eÞ attractive center superimposed on an unaltered host atom, which can weakly bind one
hole. The binding energy of the hole is εa − εv, and a second electron moves into the acceptor level
when the hole is “ionized.” There is little probability that two holes would be localized in the pre-
sence of the acceptor impurity because the Coulomb repulsion between two holes would be very
large. This scenario corresponds to no electrons in the acceptor level. In addition, we must account
for the fact that the valence maximum is four-fold degenerate (including spin degeneracy). Thus,
we obtain an expression for fd′, the occupation probability of electrons in the acceptor level,

fd′ = 4eβμ + 2e−βðεa−2μÞ

4eβμ + e−βðεa−2μÞ
=

1+ 1
2
eβðμ−εaÞ

1+ 1
4
eβðμ−εaÞ

: (9.70)
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The average number of holes in the acceptor level is the difference between the maximum number
of electrons the level can hold (two) and the mean number of electrons in the level, which can be
rewritten in the alternate form (for the mean number of holes)

fa = 2− fd′ = 2−
1+ 1

2
eβðμ−εaÞ

1+ 1
4
eβðμ−εaÞ

= 1

1+ 1
4
eβðμ−εaÞ

: (9.71)

If the semiconductor is doped with Na acceptor impurities per unit volume, paðpa = NafaÞ, the num-
ber of holes in the acceptor levels is

pa =
Na

1+ 1
4
eβðμ−εaÞ

: (9.72)

9.7.3 Doped Semiconductors
We assume that a semiconductor is doped with Nd donor impurities and Na acceptor impurities (per
unit volume) and assume that Nd ≥Na. Thus, Na of the Nd electrons, which are supplied by the
donor atoms, will drop from the donor levels into the acceptor levels. The eventual scenario is that
in the ground state (T = 0), both the valence band and the acceptor levels are filled. In addition,
Nd −Na of the donor levels are filled, but the conduction bands are empty. However, at finite tem-
perature, the number of empty (electron) levels is pa + pv in the valence band and the acceptor
levels. So, we can write

Nd −Na = nc + nd − pv − pa, (9.73)

where nc and nd are the number of electrons in the conduction band and donor levels. To simplify
the formulation, we assume (known as the conditions of nondegeneracy) that

εd − μ≫ kBT (9.74)

and

μ− εa ≫ kBT : (9.75)

From Eqs. (9.69), (9.70), (9.74), and (9.75), we conclude that the impurities are essentially ionized
and hence nd ≪Nd and pa ≪Na: Therefore, Eq. (9.74) can be approximated as

Nd −Na ≈ nc − pv ≈Δn: (9.76)

From Eqs. (9.53), (9.54), and (9.76), we obtain

nc =
1
2
½ðNd −NaÞ�+ 1

2
½ðNd −NaÞ2 + 4n2i �

1
2 (9.77)

and

pv =
1
2
½ðNa −NdÞ�+ 1

2
½ðNd −NaÞ2 + 4n2i �

1
2: (9.78)
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In addition, Eq. (9.59) can be rewritten in the alternate form

μ = μi + kBT sinh−1ðjNd −Naj/2niÞ: (9.79)

Thus, jNd −Naj must exceed ni by many orders of magnitude before the conditions of nondegene-
racy outlined in Eqs. (9.74) and (9.75) are violated. From Eqs. (9.69) and (9.72), we obtain nd ≈Nd

and pa ≈Na, thereby ensuring that most of the impurities are fully ionized. From Eq. (9.77), we
obtain in the extrinsic regime ðni ≪ jNd −NajÞ, when Nd ≫Na,

nc ≈Nd −Na (9.80)

and

pv ≈
n2i

Nd −Na
: (9.81)

Eqs. (9.80) and (9.81) state that the number of donors is essentially equal to the number of mobile
electrons while the number of holes in the valence band is very small. In the other extrinsic regime,
when Na ≫Nd, we obtain from Eq. (9.78),

pv ≈Na −Nd (9.82)

and

nc ≈
n2i

Na −Nd
: (9.83)

Eqs. (9.82) and (9.83) state that the number of acceptors is essentially equal to the number of mobile
holes in the valence band while the number of electrons in the conduction band is very small.

9.8 DILUTED MAGNETIC SEMICONDUCTORS
9.8.1 Introduction
The diluted magnetic semiconductors (DMSs), which are ternary or quaternary alloys, in which a part of
the nonmagnetic cations of the host material has been substituted by magnetic ions, have attracted con-
siderable attention in recent years. In theory, any semiconductor with a fraction of its constituent ions
replaced by ions bearing a net magnetic moment is considered as a DMS. However, in practice, the
majority of DMS involve Mn2+ ions embedded in various AIIBVI or AIVBVI hosts because Mn2+ can be
incorporated in the host without affecting the crystallographic quality of the resulting material. In addi-
tion, Mn2+ possesses a relatively large magnetic moment characteristic of a half-filled d-shell (S= 5/2).
Further, because Mn2+ is electrically neutral in AIIBVI or AIVBVI hosts, it does not have accepting or
donating centers. The Mn containing IV–VI DMSs can be divided into two groups, according to their
carrier concentrations. The magnetic behavior of the first group (charge–carrier concentration, or p-type,
range 1017−1019cm−3Þ can be ascribed to antiferromagnetic interactions of the superexchange type
between the Mn ions. This group has a spin-glass phase at low temperatures. The magnetic behavior of
the second group (charge-carrier concentration, or p, of 1021cm−3) has a ferromagnetic ordering,
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induced by RKKY interactions (an indirect
exchange mechanism in which the interaction
between the magnetic ions is mediated by the itin-
erant charge carriers, or p) at low temperatures.

The magnetic properties of Sn1−xMnxTe and
Pb0:28−xSn0:72MnxTe (which can be considered as
partly like semimetals and partly like semiconduc-
tors) are very diverse. The ferromagnetic, spin-
glass (SG) and reentrant-spin-glass phases have
been observed, but the transition to a paramagnetic
phase has not been observed at T > 1:5K: The
occurrence of these magnetic phases depends
not only on the Mn concentration but also on
the concentration of free carriers. The significance
of carrier-mediated magnetism in a DMS
is mainly due to the search for materials suitable
for information processing and storage (in
the light of developments in the rapidly emerging
area of spintronics, which will be discussed in
Chapter 11).

Some experimental results of the three-
dimensional (T, x, p) magnetic phase diagram for
Sn1−xMnxTe are shown in Figure 9.8.

In subsequent experiments, the magnetic phase
of the samples included magnetization, AC sus-
ceptibility, specific heat, and neutron diffraction. In Figure 9.9, the magnetic phase is displayed as a
function of both the Mn concentration and the carrier concentration. The carrier concentration (the theo-
retical calculation of which is described later) has a significant effect on the magnetic phase of the mate-
rial. At a carrier concentration of pc = 3× 1020 cm−3 (T > 1.5 K), there is an abrupt change from the
paramagnetic to ferromagnetic phase. At high carrier concentrations ðp≫ pcÞ, there is a gradual transi-
tion to an intermediate reentrant-spin-glass phase and eventually to the spin-glass state. The location of
these transitions is shifted to higher carrier concentrations if the Mn concentration is increased.

9.8.2 Magnetization in Zero External Magnetic Field in a DMS
Another interesting property of some DMSs is that magnetization in a zero external magnetic field
can be induced by optically excited carriers in Hg1−xMnxTe and Cd1−xMnxTe: The observed magne-
tization is due to the orientation of the Mn ions caused by the spin dynamics of the magnetic
response on a picosecond time scale and is the result of spin-polarized electrons. This can be calcu-
lated by the spin-EPR shift, of which the theory is briefly described.

9.8.3 Electron Paramagnetic Resonance Shift
The electron paramagnetic resonance (EPR) shift is a measure of the internal field created at the
magnetic ion site in magnetic materials or materials with magnetic impurities by the partial
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F= ferromagnetic phase; P= paramagnetic phase;
SG= spin-glass phase.

Reproduced from Vennix et al.,18 with the permission of the

American Physical Society.
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polarization of electrons and/or carriers in an applied magnetic field. It can be shown that the contri-
bution to the spin-EPR shift at the Mn2+ ion on the jth site of a DMS ðPμv

j Þ is given by the expression

Pμv
j = − ∂2Ω

∂Bμ∂Mv
j

			
B
!

!0,M
!

j
!!0

, (9.84)

where Ω is the thermodynamic potential and is given by

Ω = 1
β
Tr ln ð−eGξlÞ: (9.85)

Here, M
!

j is the local moment at the jth site, and eG is related to the one-particle Green’s function
(Eq. 7.219) in the presence of a periodic potential Vð r!Þ, spin-orbit interaction, applied magnetic
field B

!
, and local magnetic moment. Tr involves summation of over both imaginary frequencies and

one-particle states, forming a complete orthonormal set. The one-particle Green’s function

Gð r!, r′!, B
!
,M
!

j, ξlÞ satisfies the equation
ðξl −HÞGð r!, r′!, B

!
,M
!

j, ξlÞ = δð r!−r′!Þ, (9.86)

where the complex energy

ξl =
ð2l+ 1Þiπ

β
+ μ, l = 0,±1,±2,…, (9.87)

and in a symmetric gauge,

Gð r!, r!, B
!
,M
!

j, ξlÞ = ei h
!

. r!× r′!eGð r!, r′!, B
!
,M
!

j, ξlÞ, (9.88)
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where

h
!

= eB
!
2ħc

: (9.89)

Here, eG is the Green’s function that satisfies the lattice translational symmetry, and ei h
!

. r!× r′! is the
Peierls phase factor. The phase factor has the effect of translating the origin of the vector potential.

Recently, Trellakis16 used a singular gauge transformation based on a lattice of magnetic flux
lines, an equivalent quantum system with a periodic vector potential. However, his theory is beyond
the scope of this book. The one-particle Hamiltonian is

Ĥ = 1
2m

ð p!+ e
c
A
!Þ2 +Vð r!Þ+ ħ

4m2c2
σ! . ∇!V × ð p!+ e

c
A
!Þ+ 1

2
g0μ0 B

! . σ!+ ĤI , (9.90)

where

ĤI =
1

2gJμ0
∑
j
!
M
!

j
. σ!ℑð r!− R

!
jÞ: (9.91)

Here, A
!

is the magnetic vector potential, ℑð r!− R
!

jÞ is the strength of the exchange interaction
between the conduction electrons and/or the carriers and the local moment at the jth site, and the
other symbols have their usual meaning. One can write the equation of motion in a representation
defined by the periodic part u

k
!
ρ
ð r!Þ of the Bloch function ψ

k
!
ρ
ð r!Þ, where k

!
is the reduced

wave vector and ρ is the spin index.
It has been shown (Misra et al.,11 p. 1903) that in this representation, Eqs. (9.86), (9.88), (9.90),

and (9.91) can be rewritten as

½ξl −Hð κ!Þ�eGð k!, ξlÞ = I, (9.92)

where

Hð κ!Þ = H0ð k!Þ+H′ð κ!Þ, (9.93)

H0ð k!Þ = 1
2m

ð p!+ ħ k
!Þ2 +V + ħ2

4m2c2
σ!:∇!V × ð p!+ ħ k

!Þ, (9.94)

H′ð κ!Þ = −i ħ
m
hαβπ

α∇β
k +

1
2
g0μ0σ

μHμ + 1
2μ0

∑
j

1
gj
Mv

j σ
vℑ, (9.95)

κ! = k
!

+ i h
!

× ∇!k, (9.96)

π! = p!+ ħ
4mc2

σ!× ∇!V , (9.97)

hαβ = ∈αβμh
μ, where ∈αβμ is the antisymmetric tensor of the third rank, and we follow Einstein sum-

mation convention. It may be noted that κ! (Eq. 9.96) is the Misra–Roth operator. Eq. (9.85) can be
further simplified by writing the frequency summation as

Ω = − 1
2πi

tr

I
c

ϕðξÞeGðξÞdξ, (9.98)
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where

ϕðξÞ = − 1
β
ln½1+ e−βðμ−ξÞ� (9.99)

and the contour c encircles the imaginary axis in a counterclockwise direction. Eq. (9.92) can be
solved by using a perturbation expansion of eGð k!, ξÞ,

eGð k!, ξÞ = eG0ð k!, ξÞ+ eG0ð k!, ξÞH′eG0ð k!, ξÞ+ eG0ð k!, ξÞH′eG0ð k!, ξÞH′eG0ð k!, ξÞ: (9.100)

Here, the terms only up to second order are retained because the EPR shift independent of the
applied field and the local moment is calculated. In Eq. (9.100), eG0ð k!, ξÞ satisfies the equation

½ξ−H0ð k!Þ�eG0ð k!, ξÞ = I (9.101)

and is diagonal in the basis u
k
!
ρ
ð r!Þ: Using the identity in Eq. (9.100),

∇α
k
eG0ð k!, ξÞ = ħ

m
eG0ð k!, ξÞπαeG0ð k!, ξÞ, (9.102)

we obtain

eGð k!, ξÞ = ∑
j
Mv

j B
μ 1
2gj

ðeG0σ
μeG0σ

vℑeG0 + eG0σ
vℑeG0σ

μeG0Þ
− i
m
εαβμðeG0π

αeG0π
βeG0σ

vℑeG0 + eG0σ
vℑeG0π

αeG0π
βeG0Þ

" #
: (9.103)

Here, eG0 is the compact form of eG0ð k!, ξÞ. Eq. (9.98) is evaluated by using Eqs. (9.99) and (9.103).
Expressing the contributions of the two terms in Eq. (9.103) to Ω as

Ω = Ω1 +Ω2, (9.104)

we obtain

Ω1 = ∑
j
HμMv

j ∑
n, k
!
,ρ,ρ′

1
2gj

σvℑ

� �
nρ,nρ′

σμnρ′:nρf ′
�
E
n k
!
ρ

�
(9.105)

and

Ω2 = ∑
j
HμMv

j ∑
n,m,k

!
,ρ,ρ′,ρ″m≠ n

i
m
εαβμ

1
2gj

σvℑ

� �
nρ,nρ′

παnρ′,mρ″π
β
mρ″,nρ

Emn
f ′
�
E
n k
!
ρ

�
, (9.106)

where

Emn � E
m k
!−E

n k
! (9.107)

and

H0un k!ρ
ð r!Þ = E

n k
!u

n k
!
ρ
ð r!Þ: (9.108)
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The matrix elements are of the type

Anρ,nρ′ �
Z

u�
n k
!
ρ
ð r!ÞAu

n k
!
ρ
ð r!Þd r!, (9.109)

and f ′ðE
n k
!Þ is the first derivative of the Fermi function. The expressions for Ω1 and Ω2 derived in

Eqs. (9.105) and (9.106) are substituted in Eq. (9.84), and the complex spin-orbit terms are
neglected. After considerable algebra, we obtain the expression for the spin contribution to the EPR
shift at the jth site,

Pvμ
js = − 1

2
∑

n k
!
ρρ′

1
2gj

σvℑ

� �
nρ,nρ′

gμnnð k
!Þσμnρ′,nρ f ′

�
E
n k
!
�
, (9.110)

where the effective g factor gμnnð k
!Þ is defined as

gμnnð k
!Þσμnρ′,nρ = g0σ

μ
nρ′,nρ +

2i
m
∈αβμ ∑

m≠ n,ρ″

παnρ′,mρ″π
β
mρ″,nρ

Emn
: (9.111)

Eq. (9.110) can be used to calculate the EPR shift of any diluted magnetic semiconductor of which
the band structure is known.

A brief discussion of the calculation of the EPR shift from Eq. (9.110) by using the k
! . π!

model is explained in the next section.

9.8.4 k
! . π! Model

The k
! . p!model of Luttinger and Kohn9 (p. 869) was modified by Tripathi et al.17 (p. 3091) to include

the effect of magnetic fields. Their method of calculation is known as the k
! . π! model.

In the Luttinger–Kohn ð k! . p!Þ model, a complete orthonormal set of functions,

χjð k
!
, r!Þ = eið k

!
− k
!

0Þ. r!ψ jð k
!

0, r
!Þ, (9.112)

is defined, where k
!

0 is a reference point in the Brillouin zone at which the energy bands and wave
functions ψ jð k

!
0, r
!Þ have been determined. The unknown wave function is expanded as

ψnð k
!
, r!Þ = ∑

j
Anjð k!Þχjð k

!
, r!Þ: (9.113)

In the k
! . π! model, the effective equation of motion is

∑
j

Ejð k!0Þ−Enð k!Þ+ ħ2ðk2 − k20Þ
2m

� �
δjl +

ħ
m
ð k!− k

!
0Þ . π!lj

� �
Anjð k!Þ = 0, (9.114)

where

π!lj =
ð2πÞ3
Ωc

Z
cell

d3r u�l ð k
!

0, r
!Þ π! ujð k!0, r

!Þ: (9.115)
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There is one equation for each value of the band index l, and the condition for this infinite set of
simultaneous, linear, and homogeneous equations to have a nontrivial solution is that the determinant
of the coefficients should vanish. A general element of the determinant has the form Hjl −Eð k!Þδjl, with

Hjl = Ejð k!0Þ+ ħ2

2m
ðk2 − k20Þ

� �
δjl +

ħ
m
ð k!− k

!
0Þ . π!lj: (9.116)

One can use Eq. (9.116) to determine the spin contribution to the EPR shift ðPsÞ of any diluted mag-
netic semiconductor. An example of using this method to determine the EPR shift of Pb1−xMnxTe as a
function of carrier concentration can be found in Das et al.4

9.9 ZINC OXIDE
The semiconductor ZnO has attracted widespread attention in recent years for its optoelectronic
properties and, more recently, for the possibility of finding room-temperature ferromagnetism when
doped with magnetic and nonmagnetic impurities. The electronic structure of ZnO has been studied
for the past 50 years. However, in spite of extensive energy band calculations, there still exists a
controversy with regard to the valence band ordering in ZnO. The wurtzite ZnO conduction band is
mainly constructed from the s-like state having Γ7 symmetry, whereas the valence band is p-like,
which is split into three bands due to the crystal field and spin-orbit interactions. A schematic pic-
ture of the band diagram is given in Figure 9.10. By treating the wurtzite energy levels as a pertur-
bation over those of the zincblende, a formula has been derived for the valence band mixing, the
extent of which is controlled by the relative magnitudes of the spin-orbit and crystal field splittings.

No satisfactory theory has yet been proposed for the possibility of finding room-temperature fer-
romagnetism in ZnO, when doped with magnetic and nonmagnetic impurities. Some of the fascinat-
ing theoretical models include the k · p+U formalism, where U is the many-body Hubbard term.

9.10 AMORPHOUS
SEMICONDUCTORS

9.10.1 Introduction
In recent years, amorphous semiconductors have
attracted considerable attention. The amorphous
structures can be obtained by rapid cooling from
the melt or by evaporation onto a cooled sub-
strate. They can also be obtained by sputtering
the components on to a cooled substrate. The
evaporation or sputtering of Si or Ge onto sub-
strates held below 300°C produces amorphous
films, which are stable up to 425°C: In the
amorphous (a) state, the sp3 covalent bonds are
strong in Si and Ge. However, although these
bonds exist between nearest neighbors, the

Γ9v  A
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Γ7v  B

Γ7v  C

Γ7c

FIGURE 9.10

Schematic picture of valence band ordering for the
wurtzite ZnO.
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bonding is not perfect. There is four-fold coordination over small regions of the solid, but the
tetrahedral symmetry is lost over extended regions. The bond angles are distorted from the ideal
value, and many atoms can have only three neighbors. One can consider the system as a random
network of imperfectly bonded atoms in which even small voids can exist.

Recent experiments of amorphous semiconductors exhibit many interesting properties. Tetrahe-
dral and quasitetrahedral materials exhibit an unusual enhancement of diamagnetic susceptibility, χ
(450% for Si, 270% for Ge, and 150% for CdGeAs2) in the amorphous (a) phase relative to the
crystalline (c) phase but no change in dielectric susceptibility ðχeÞ. In contrast, in chalcogenides,
there is very little change in χ in either phase but appreciable reduction of χe in the (a) phase.
These unusual properties are related to the nature of the chemical bonding and the presence or
absence of long-range order. The chemical bond approach to the study of electronic properties of
solids is much simpler than the band theory; emphasizes the bond aspect of the crystal structure;
and is valuable in studying chemical trends such as covalency, polarity, and metallicity. This
approach has a certain degree of flexibility and is well suited to the study of amorphous as well as
periodic ones. In the chemical bond approach, each atom in the amorphous system has four nearest
neighbors, but the bonds are distorted in bond lengths and directions. Thus, one starts with a crys-
talline phase and considers the covalent bonds that give rise to bonding and antibonding orbitals,
leading to valence and conduction bands. Then distortion in both bond lengths and angles is intro-
duced, and the random network model of Polk13 (p. 365) is used to derive appropriate expressions
for physical properties of amorphous structures.

The electron energy levels of amorphous systems can be derived from a modified bond orbital
(LCH) theory typical of the crystalline phase. Even if they are randomly arranged, the covalent
bonds give rise to some system of bonding and antibonding levels, which leads to valence and con-
duction bands. However, due to distortion of the bonds, the bands become broader. We first con-
sider a linear combination of hybrids (LCH) model for tetrahedral semiconductors.

9.10.2 Linear Combination of Hybrids Model for Tetrahedral Semiconductors
We describe a linear combination of hybrids (LCH) model for a chemical bond approach to tetrahe-
dral semiconductors (Sahu and Misra,14 p. 6795). In this model, the basis set for the valence bands
is a linear combination of sp3 hybrids forming a bond, in which their relative phase factors, which
have been neglected in the usual chemical bond models, adapted from the bond orbital models for
molecules (Sukhatme and Wolff,15 p. 1369; Chadi et al.,2 p. 1372), have been included properly.
A basis set for the conduction bands, which are orthogonal to the valence band functions, has also
been constructed. It can be shown that the basic assumption of the earlier chemical bond models—
i.e., that the localized functions have the character of chemical bonds—is equivalent to ignoring the
relative Bloch phase factor eik

.dj (where dj is a bond length) between the hybrids forming a bond.
However, because dj −dj′ð j≠ j′Þ is a lattice vector, these relative phase factors play an important
role in solids, unlike the case of molecules where it can be neglected.

We will now discuss the LCH model in detail. In the zincblende structure, each atom is sur-
rounded tetrahedrally by four identical atoms, which may be of the second type. The primitive cell
contains two basic atoms at site i, with four sp3 hybrids h1j ðr−RiÞ pointing from atom I to the nearest
neighbors (atom II) along the directions j( j= 1,…, 4) and four other sp3 hybrids h2j ðr−Ri − djÞ
pointing from these nearest neighbors to atom I. Here, Ri is a lattice vector for site i and locates
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atoms of type I (one of the atomic sites I is chosen as the origin) and dj is a nearest-neighbor vector
joining atom I with atom II. The hybrids can be expressed as

h1j ðr−RiÞ = 1
2
½s1 +

ffiffiffi
3

p
ðξxj px1 + ξyj py1 + ξzj pz1Þ� (9.117)

and

h2j ðr−Ri − djÞ = 1
2
½s2 −

ffiffiffi
3

p
ðξxj px2 + ξyj py2 + ξzj pz2Þ�, (9.118)

where ξ
!

1 = 1ffiffi
3

p ð1, 1, 1Þ; ξ!2 = 1ffiffi
3

p ð1, 1, 1Þ; ξ!3 = 1ffiffi
3

p ð1, 1, 1Þ; and ξ
!

4 = 1ffiffi
3

p ð1, 1, 1Þ are the atomic orbi-

tals at sites I and II, respectively. The Bloch-type tight-binding sums for valence-band basis functions
are constructed by taking a linear combination of the hybrids forming a bond

χvj ðr, kÞ = ∑
i
f vj ðkÞeik

.Ri ½h1j ðr−RiÞ+ λh2j ðr−Ri −djÞeik.dj �, (9.119)

where

f vj ðkÞ = ½Nð1+ λ2 + 2λS cos k . djÞ�−1/2: (9.120)

Here, S is the overlap integral, and λ2/ð1+ λ2Þ is the probability of the electron being around atom II for
III–V semiconductors and is related to Coulson’s ionicity (Coulson et al.,3 p. 357; Nucho et al.,12

p. 1843) by the expression

fc =
ð1− SÞ1/2ð1− λ2Þ
ð1+ λ2 + 2λSÞ : (9.121)

We note that the LCH model discussed here is different from the usual bond-orbital model12 in the
sense that a relative phase factor eik

.dj between the two hybrids forming a bond has been included to
properly account for the origin.

The basis functions for the conduction band χcj ðr,kÞ are obtained by constructing functions
orthogonal to χvj ðr, kÞ:

χcj ðr, kÞ = ∑
i
f cj ðkÞeik

.Ri ½ðλ+ Seik
.djÞh1j ðr−RiÞ−ðλS+ eik

.djÞh2j ðr−Ri − djÞ�, (9.122)

where

f cj ðkÞ = λ+ Se−ik
.dj

Nð1− S2Þð1+ λ2 + 2λS cos k . djÞðλ+ Seik.djÞ

" #1/2
: (9.123)

The Bloch eigenfunctions for the valence and conduction bands are

ψnðr,kÞ = ∑
j
αvjnðkÞχvj ðr, kÞ (9.124)

and

ψmðr,kÞ = ∑
j
αcjmðkÞχcj ðr,kÞ, (9.125)
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where

∑
n
αv
jnðkÞαv†nj′ðkÞ = δjj′ (9.126)

and

∑
m
αcjmðkÞαc†mj′ðkÞ = δjj′: (9.127)

The conduction and valence bands for the tetrahedral semiconductors as well as the expression for
the energy gap can be obtained by using these Bloch functions in the same way they were derived
earlier in Chapter 4.

The physical properties of model amorphous semiconductors (a-phase), such as magnetic sus-
ceptibility and dielectric constant, are obtained by introducing disorder in the bond angles and the
bond lengths. The nearest-neighbor coordina-
tions of the a-phase are not supposed to change
appreciably from the c-phase. However, the
bands become broader due to distortion of the
bonds. In addition, the disorder causes a spread
of the energy levels into the energy gap region.
These are known as tail states, which arise due
to the distorted bonds. These tail states are non-
conducting and localized. A schematic picture of
these tail states is shown in Figure 9.11.

In addition, an amorphous tetrahedral semi-
conductor has imperfectly coordinated atoms,
and thereby, the bonds are uncompensated.
These are known as “dangling” bonds, each of
which has limited degeneracy. A dangling bond
has an empty state and an electron associated
with it. Because these bonds are uncompensated,
both the electron and the empty state are loca-
lized at 0°K. Thus, the immobile states are sepa-
rate but overlapping, and the distributions are
obtained within the energy gap. In fact, the con-
centration of the dangling bonds is on the order
of 1025 m−3. Due to this unusually high concen-
tration of the dangling bonds, each of which pro-
duces a localized electron and a localized empty
state, the Fermi level ðμÞ is at the center of the
energy gap. Thus, the amorphous semiconductors
essentially become insensitive to doping. The
“band” picture of an amorphous tetrahedral semi-
conductor is shown in Figure 9.12.

Eg

E

FIGURE 9.11

The nonconducting tail states in a distorted
tetrahedral semiconductor arise from the distorted
bonds.
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PROBLEMS
9.1. The effective mass of electrons and holes in a semiconductor can be expressed as

½M−1
n ðkÞ�ij = ± 1

ħ2
∂2εn
∂ki∂kj

, (1)

where the positive sign is for electrons and the negative sign is for holes. Because the bottom
of the conduction band is at εc and the top of the valence band is at εv, show that the energy
of the electrons ðεeðkÞÞ and holes ðεhðkÞÞ can be written as

εeðkÞ = εc +
ħ2

2
∑
ij
kiðM−1

e Þijkj (2)

and

εhðkÞ = εv −
ħ2

2
∑
ij
kiðM−1

h Þijkj: (3)

9.2. Show that the density of states in the conduction and valence bands can be expressed as

gcðεÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�3

n ε′
p
π2ħ3

ηc, ε> εc

= 0, ε≤ εc,

(1)

μ

E

FIGURE 9.12

The band picture of amorphous tetrahedral semiconductors including tail states.
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where

ε′ � ε− εc (2)

and

gvðεÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�3/2

p jε″j
q

π2ħ3
, jε″j> εv

= 0, jε″j≤ εv,

(3)

where

jε″j � jε− εvj: (4)

Here, ηc is the number of symmetrically equivalent minima in the conduction band (six for Si
and eight for Ge). m�

n and m�
p are the density of states’ effective mass of electrons and holes

that are obtained from the relation

m�
n = ðme

1m
e
2m

e
3Þ1/2 (5)

and

m�3/2
p = ðm�

plÞ3/2 + ðm�
phÞ3/2, (6)

where

m�
pl = ðmlh

1 m
lh
2 m

lh
3 Þ1/2 (7)

and

m�
ph = ðmhh

1 mhh
2 mhh

3 Þ1/2: (8)

Here, m�
pl and m

�
ph are the effective masses of the light and heavy holes.

9.3. From Eq. (9.32) and in analogy with the free electron model, one can write the conductivity
σi of an intrinsic semiconductor as

σi =
nie

2τe
m�

n

+
pie

2τh
m�

p

, (1)

where τe and τh are the relaxation times for electrons and holes. Show that Eq. (9.48) can be
written in the alternate and more familiar form

σi = nieμe + pieμh, (2)

where μe and μh are the mobility of the electrons and holes, which is the velocity (always
defined as positive) of the carriers in a unit electric field.

9.4. We have derived an expression for the valence band

pvðTÞ =

ffiffiffiffiffiffiffiffiffiffi
2m�3

p

q
π2ħ3

eðεv−μÞ/kBT
Z∞
0

jε″j1/2e−jε″j/kBTdjε″j: (1)
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It can be easily shown that

Z∞
0

ε1/2e−ε/kBTdε = 1
2
ðkBTÞ3/2π1/2: (2)

From Eqs. (1) and (2), show that

pvðTÞ = ℘vðTÞeðεv−μÞ/kBT , (3)

where

℘vðTÞ = 2
m�

pkBT

2πħ2

� �3/2
: (4)

℘vðTÞ can be expressed numerically as

℘vðTÞ = 2:51
m�

p

m

� �3/2
T

300 K

� �3/2
1019 cm−3: (5)

9.5. Substitute the expressions for Ω1 and Ω2 derived in Eqs. (9.105) and (9.106) in Eq. (9.84) and
neglect the complex spin-orbit terms. Show that the expression for the spin contribution to the
EPR shift at the jth site is

Pvμ
js = − 1

2
∑

n k
!
ρρ′

1
2gj

σvℑ

� �
nρ,nρ′

gμnnð k
!Þσμnρ′,nρ f ′ðEn k

!Þ, (1)

where the effective g factor gμnnð k
!Þ is defined as

gμnnð k
!Þσμnρ′,nρ= g0σ

μ
nρ′,nρ +

2i
m
∈αβμ ∑

m≠ n,ρ″

παnρ′,mρ″π
β
mρ″,nρ

Emn
: (2)

9.6. If the Bloch-type tight-binding sums for valence-band basis functions are constructed by
taking a linear combination of the hybrids forming a bond

χvj ðr, kÞ = ∑
i
f vj ðkÞeik

.Ri ½h1j ðr−RiÞ+ λh2j ðr−Ri −djÞeik.dj �, (1)

where

f vj ðkÞ = ½Nð1+ λ2 + 2λS cos k .djÞ�−1/2, (2)

show that the basis functions for the conduction band χcj ðr,kÞ are obtained by constructing
functions orthogonal to χvj ðr,kÞ:

χcj ðr,kÞ = ∑
i
f cj ðkÞeik

.Ri ½ðλ+ Seik
.djÞh1j ðr−RiÞ− ðλS+ eik

.djÞh2j ðr−Ri − djÞ�, (3)

where

f cj ðkÞ = λ+ Se−ik
.dj

Nð1− S2Þð1+ λ2 + 2λS cos k .djÞðλ+ Seik.djÞ

" #1/2
: (4)
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9.7. Show that the Bloch eigenfunctions for the valence and conduction bands

ψnðr, kÞ = ∑
j
αvjnðkÞχvj ðr,kÞ (1)

and

ψmðr, kÞ = ∑
j
αcjmðkÞχcj ðr, kÞ (2)

are orthonormal. Here, α’s are elements of (4× 4Þ unitary matrices

∑
n
αv
jnðkÞαv†nj′ðkÞ = δjj′ (3)

and

∑
m
αcjmðkÞαc†mj′ðkÞ = δjj′: (4)
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10.1 INTRODUCTION
The importance of semiconductors is due to their use in modern electronics. The original semicon-
ductor device was the Schottky diode, constructed from a metal-semiconductor interface, which was
used instead of a thermoionic diode for rectification. The Schottky diode was constructed by placing
a metal whisker against an n-doped semiconductor crystal (the p-doped semiconductor-metal contact
does not have any rectifying properties). The work function of the semiconductor is less than that of
the metal. Because of the higher chemical potential, the electrons rush from the semiconductor to
the metal, and the voltage of the metal is lowered until further motion of charges is prevented by
electrostatic forces. The increase in voltage ð−eVðxÞÞ of the semiconductor compensates for the
difference in the chemical potential μ, which is equal to the Fermi energy εF of the metal. This also
adds an electrostatic potential −eVðxÞ to the conduction and valence band levels, which are bent by
the potentials formed across the junction. This scenario is shown in Figure 10.1.
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The effect of an external voltage VA (which can be positive or negative) can be understood in a
simple manner. When VA is positive, the electrons flow from the semiconductor into the metal because
the barrier is lowered. However, when VA is negative, there is no change in the barrier, and hence, the
current does not flow. This rectifying effect of the Schottky diode is shown in Figure 10.2.

In practice, it is difficult to construct an ideal Schottky diode because semiconductor surfaces
acquire oxide layers after cleaving, and it is virtually impossible to produce atomic flat surfaces.
The age of modern electronics was started with the creation of the p-n junction in a semiconductor.

10.2 p-n JUNCTION
10.2.1 Introduction
A simple p-n junction is fabricated by taking a single intrinsic semiconductor such as Si in which donor
impurities are introduced in one region and acceptor impurities are introduced into another. It is easier
to visualize the p-n junction as equivalent to two Si crystals doped with donor (n-type) and acceptor
(p-type) impurities joined together with polished surfaces. In practice, this is not a good idea because
the surface effects would interfere with the properties of the semiconductor. These semiconductors have
different chemical potentials, μðnÞ and μðpÞ, respectively. Initially, most of the conduction electrons are
at the n-type, and the holes are at the p-type semiconductor. This scenario is shown in Figure 10.3a.
However, when the two materials are joined together, some of the conduction electrons will diffuse to
the p-type material while some of the holes will diffuse to the n-type material. When an electron

Metal n-doped Semiconductor

εc− eV(x)
μ = εF
ευ − eV(x)

FIGURE 10.1

The charges move from the n-doped semiconductor to the metal, and both the valence and conduction
bands are increased by −eV ðxÞ: The electrons flow to the metal when the voltage of the metal is raised
relative to the semiconductor by eVA:

Metal

φb

φb− (εc− εF) − eVA

μ = εF
ευ − eV(x)

εc− eV(x)

FIGURE 10.2

There is no flow of current when VA is lowered. The height of the barrier is ϕb :
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diffuses to the p-type layer, it will recombine with a hole due to the large concentration of holes in that
layer. A similar situation will arise when a hole diffuses to the n-type layer. As more and more electrons
and holes diffuse to the p- and n-type layers, the number of carriers in the junction will be greatly
reduced. Thus, the layer on either side of the junction has much lower concentration of carriers than the
rest of the semiconductor. This is known as the depletion layer, which is shown in Figure 10.3b and
usually has an approximate length of 102 A° : We note that the donor and acceptor ions are much too
heavy to diffuse like the electrons and holes. Thus, the p-n junction is formed in the semiconductor
with a common chemical potential μ: This is shown in Figure 10.3c.

10.2.2 p-n Junction in Equilibrium
We assume that the impurity concentration varies along the x-axis only in a small region around
x = 0. If the “abrupt junction,” which is defined as the region about x = 0 where the impurity

(a)

(b)
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FIGURE 10.3

(a) The electrons (solids) and holes (open circles) in p- and n-type semiconductors. (b) When the p- and
n-type regions are in contact, there are practically no carriers in the depletion region. The acceptor and donor
ions are represented by − and + and electrons and holes are represented by circles with ⊖ and⊕ signs.
(c) The distribution of charge at a p-n junction produces a contact potential ϕðxÞ across the junction.
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concentrations change, is narrow compared with
the “depletion layer” in which the carrier densities
are not uniform, the donor impurities dominate at
positive x, and the acceptor impurities dominate
at negative x (see Figure 10.4).

The depletion layer, which extends from
xp to xn, is shown in Figure 10.5. The abrupt
junction is at x = 0. The region to the left of xp is
the p-doped mobile holes, and the region to right
of xn is the n-doped mobile electrons (note that
xp is negative). In the beginning, when the p-n
junction is formed, the carrier concentration
would be such that there would be charge neu-
trality everywhere in the crystal. However, the
concentration of the electrons in the n-side would
be very high and that of the holes in the p-side
would be very low. Thus, the electrons would
diffuse to the p-side, and the holes would diffuse
to the n-side. The charge transfer will eventually
build up an electric field that will prevent further
diffusion. In fact, the effect of the field cancels
the effect of the diffusion.

To derive expressions for the carrier densities
at a position x at temperature T in the presence of a potential ϕðxÞ, one can use Eqs. (9.32) and
(9.35) subject to the semiclassical condition that each one-electron energy level is shifted by
−eϕðxÞ: Thus, one obtains

εc → εc − eϕðxÞ (10.1)

and

εv → εv − eϕðxÞ: (10.2)

From Eqs. (9.32) and (10.1), we obtain

ncðxÞ = ℵcðTÞe−βðεc−eϕðxÞ−μÞ, (10.3)

and from Eqs. (9.35) and (10.2), we obtain

pvðxÞ = ℘vðTÞeβðεv−eϕðxÞ−μÞ, (10.4)

where β� 1/kBT: If we define the electrochemical potential μeðxÞ as
μeðxÞ = μ+ eϕðxÞ, (10.5)
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Nd

x
x = 0

−
−
− − − − −

− −
+

+ + + +

+ + + +

+ +

+ + +− −− − −

n-type

Impurity density

FIGURE 10.4

“Abrupt” p-n junction in which the impurity-
concentration change is narrow compared with the
depletion layer shown in Figure 10.5.
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FIGURE 10.5

The depletion layer has length between
102 A° and 104 A° extending from xp to xn:
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Eqs. (10.3) and (10.4) can be rewritten in the alternate form,

ncðxÞ = ℵcðTÞe−βðεc−μeðxÞÞ (10.6)

and

pvðxÞ = ℘vðTÞeβðεv−μeðxÞÞ: (10.7)

The total charge density must vanish in both the limits x→−∞ and x→∞, which requires that
Nd = ncð∞Þ and Na = pvð−∞Þ: From Eqs. (10.3) through (10.5), one can also derive (Problem 10.1)

μeð∞Þ− μeð−∞Þ = eΔϕ = Eg +
1
β
ln

NdNa

ℵcðTÞ℘vðTÞ
� �

, (10.8)

where

Δϕ�ϕð∞Þ−ϕð−∞Þ: (10.9)

The effect of the internal potential ϕðxÞ on the electron and hole densities of a p-n junction is shown
in Figure 10.6, in which the electrochemical potential μeðxÞ is plotted along the p-n junction. The
carrier densities at a point x are obtained by using μeðxÞ as the equivalent chemical potential.

The alternate method of representing the carrier densities at any point x is shown in Figure 10.7.
Here, εdðxÞ = εd − eϕðxÞ εaðxÞ = εa − eϕðxÞ and μ is the constant chemical potential.

To calculate ϕðxÞ, one uses the Poisson’s
equation in one dimension,

∂2ϕ
∂x2

= −
4πρðxÞ

∈
, (10.10)

where the charge density ρðxÞ is obtained from

ρðxÞ = NdðxÞ−ncðxÞ−NaðxÞ+ pvðxÞ, (10.11)

and ∈ is the dielectric constant. It can be easily
shown that (Problem 10.2)

ncðxÞ = Nde
−eβ½ϕð∞Þ−ϕðxÞ� (10.12)

and

pvðxÞ = Nae
eβ½ϕð−∞Þ−ϕðxÞ�: (10.13)

It can also be shown that (Problem 10.3; except
at the boundaries of the depletion layer), outside
the depletion layer,

ρðxÞ = 0, (10.14)

εd

εv
εa

εc
μe(x)

FIGURE 10.6

εc and εv are conduction and valence bands; εd and
εa are donor and acceptor levels.

εv(x)

εd(x)

εa(x)

εc(x)
μ

FIGURE 10.7

Carrier densities at a point x obtained by using a
fixed chemical potential μ:
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and inside the depletion layer,

ρðxÞ = e½NdðxÞ−NaðxÞ�: (10.15)

The solution for ϕðxÞ is obtained in Problem 10.4,

ϕðxÞ =

ϕð−∞Þ, x< xp

ϕð−∞Þ+ 2πeNa

∈

� �
ðx− xpÞ2, 0> x> xp

ϕð∞Þ− 2πeNd

∈

� �
ðx− xnÞ2, 0< x< xn

ϕð∞Þ, x> xn

8>>>><
>>>>:

9>>>>=
>>>>;
: (10.16)

In addition, both ϕðxÞ and ϕ′ðxÞ must be continuous at x = 0. From the condition ϕðxÞjx=−∈ =
ϕðxÞjx=∈, where ∈→ 0, we obtain

ϕð0Þ = ϕð∞Þ− 2πeNd

∈
x2n = ϕð−∞Þ+ 2πeNa

∈
x2p, (10.17)

which can be rewritten in the alternate form

Δϕ =
2πeðNax

2
p +Ndx

2
nÞ

∈
: (10.18)

From the condition ϕ′ðxÞjx=−∈ = ϕ′ðxÞjx=∈, we obtain

Ndxn = −Naxp: (10.19)

From Eqs. (10.18) and (10.19), we obtain expressions for the lengths xn and xp,

xn,pð0Þ = ±
∈ðNa/NdÞ±1Δϕ
2πeðNa +NdÞ

" #1/2
, (10.20)

where xn,pð0Þ denotes the values of xn and xp
when the external potential V = 0: Because
Na and Nd are of the order of 1018 cm−3 and eΔϕ
is of the order of 0.1 eV, the depletion layer is
of the order of 102 to 104 A° : It is important to
note that because the depletion layer has no
mobile charges, the resistance of this region is
considerably higher than that of the doped
regions. It is equivalent to a series circuit in
which a high resistance is sandwiched between
two low resistances. When there is no external
potential (V = 0), the p-n junction is known as
the unbiased junction. The potential ϕðxÞ for the
unbiased junction is plotted versus the position x
in Figure 10.8.

xp xn
x

φ (x)

p n

φ (∞) = φ (0) + Nd x
2
n

2πe
∈

φ (−∞) = φ (0) − 2πe Na x
2
φ∈

FIGURE 10.8

The potential for the unbiased junction ϕðxÞ plotted
against position x. The depletion layer is from
x = xp to x = xn ðnote that xp is negativeÞ:
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10.3 RECTIFICATION BY A p-n Junction
10.3.1 Equilibrium Case
When the external potential V = 0, the change in potential from the p-side to the n-side of the
depletion layer is given by Δϕ, the expression for which is obtained in Eq. (10.8). When the external
potential V ≠ 0, the potential drop (or gain) Δϕ′ will occur mostly across the high-resistance region,
which is the depletion layer. Thus, Δϕ′ is given by

Δϕ′ = Δϕ−V : (10.21)

The size of the layer, which extends from xp to xn, would accordingly change because in Eq. (10.20),
Δϕ would be replaced by Δϕ′ in the expressions for xn and xp: From Eqs. (10.20) and (10.21), we
obtain

xn,pðVÞ = ±
∈ðNa/NdÞ±1Δϕ′
2πeðNa +NdÞ

" #1/2
: (10.22)

Eq. (10.22) can be rewritten in the alternate form, by using the expressions for xn,pð0Þ and Δϕ′ from
Eqs. (10.20) and (10.21),

xn,pðVÞ = xn,pð0Þ 1− V
Δϕ

� �1/2
: (10.23)

This scenario is shown in Figures 10.9 and 10.10.
We will first discuss the scenario when there is no external potential ðV = 0Þ in the p-n junction.

Due to the thermal excitation of electrons in the valence band on the n-side of the depletion layer,
holes that move at random are generated. These holes are the “minority carriers” in the n-side com-
pared to the electrons that are the “majority carriers,” but they play an important role. The holes are
swept away from the n-side to the p-side as soon as they wander into the depletion layer because
there is a strong electric field Δϕ across the layer. The current due to the motion of the holes from
the n-side to the p-side is known as the hole generation current, jhgð0Þ: In addition, the holes

+

φ(x)

x

p n

xnxp

−

FIGURE 10.9

The potential ϕðxÞ versus x when V > 0 (forward
bias). Δϕ′ = ϕð∞Þ−ϕð−∞Þ− V :

−

p n

+

φ(x)

xxnxp

FIGURE 10.10

The potential ϕðxÞ versus x when V< 0 (reverse
bias). Δϕ′ = ϕð∞Þ−ϕð−∞Þ+ V :
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that are thermally generated and are the majority carriers in the p-side flow to the n-side of the
junction. The motion of these holes, which are positively charged, is opposed by the electric field
of the depletion layer, but those holes of which the thermal energy is greater than the potential bar-
rier would reach the n-side and would recombine with the electrons. The current due to the motion
of the holes from the p-side to the n-side of the depletion layer is known as the hole recombination
current, jhrð0Þ: Because there is no external potential, the sum of the two currents is zero. Thus,
we obtain

jhgð0Þ+ jhrð0Þ = 0: (10.24)

If we write jhg = eℵhg and jhr = eℵhr, where ℵhg and ℵhr are the number density of holes generated in
the n-side and the p-side of the depletion layer, respectively, it follows that at V = 0,ℵhgð0Þ = ℵhrð0Þ
and Eq. (10.24) is satisfied because the positively charged holes flow in opposite directions. We also
note that ℵhr is approximately the same as Na: Therefore, when an external potential V is applied
across the p-n junction,

ℵhr ∝ e−eβϕ′: (10.25)

From Eqs. (10.21) and (10.25), we obtain

ℵhrðVÞ = ℵhrð0Þ eβeV : (10.26)

In contrast, the external potential V would have no effect on the number of holes crossing the
depletion layer. Thus, we obtain

ℵhgðVÞ = ℵhgð0Þ = ℵhg: (10.27)

The net number of holes moving across the depletion layer is given by

ℵhðVÞ = ℵhrðVÞ+ℵhgðVÞ: (10.28)

The expression for the hole current density, jh = eℵhðVÞ, is obtained from Eqs. (10.26) through (10.28),

jh = jhr − jhg = eℵhgðeβeV − 1Þ: (10.29a)

We can make a similar argument for the motion of the electrons that are the majority carriers in the
n-side and the minority carriers in the p-side. However, the electrons are negatively charged particles,
and therefore, only those electrons that have enough thermal energy to cross the potential barrier can
move from the n-side to the p-side. The current produced by the motion of the negatively charged elec-
trons is known as the electron generation current jegð0Þ. In contrast, the electrons that reach the edge of
the p-side of the p-n junction will be swept across the depletion layer and will eventually recombine
with the holes in the n-side. This is known as the electron recombination current, jerð0Þ: We can write

jegð0Þ+ jerð0Þ = 0: (10.29b)

If we write jeg = −eℵeg and jer = −eℵer, where ℵeg and ℵer are the number current density of electrons
generated in the p-side and the n-side, respectively, it follows that at V = 0, ℵegð0Þ = ℵerð0Þ and
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Eq. (10.25) is satisfied because the electrons flow
in opposite directions. We also note that ℵer is
approximately the same as Nd: Therefore, we can
express

ℵerðVÞ = ℵerð0ÞeβeV : (10.30)

However, the external potential does not make any
difference in the motion of the electrons generated
in the p-side and moving across the depletion
layer to the n-side. Thus, we obtain

ℵegðVÞ = ℵegð0Þ = ℵeg: (10.31)

The net number of electrons moving across the
depletion layer is given by

ℵeðVÞ = ℵerðVÞ+ℵegðVÞ: (10.32)

From Eqs. (10.30) through (10.32), we obtain

jeðVÞ = jerðVÞ− jegðVÞ = eℵegðeβeV − 1Þ: (10.33)

The total electrical current density is obtained from Eqs. (10.29) and (10.33),

jðVÞ = jhðVÞ+ jeðVÞ = eðℵhg +ℵegÞðeβeV − 1Þ: (10.34)

Eq. (10.34) is the characteristic property of rectifiers and is at the heart of modern transistors.
A schematic diagram of the jðVÞ characteristic for the p-n junction is shown in Figure 10.11.

10.3.2 Nonequilibrium Case (V≠ 0)
In the preceding discussion, we considered the equilibrium case ðV = 0Þ and then introduced the
external potential V in an ad hoc manner to explain the elementary theory of rectification by a p-n
junction. We will now consider the nonequilibrium problem ðV ≠ 0Þ: The nonequilibrium problem
is the direct generalization of the equilibrium problem ðV = 0Þ: When V ≠ 0, one has to solve the
Boltzmann equation for semiconductors. In the relaxation-time approximation, the Boltzmann equa-
tion for semiconductors is different from that of metals because of the presence of electrons and
holes. In the relaxation-time approximation, the Boltzmann equation for electrons can be written as
(in analogy with Eqs. 6.73 and 6.74)

∂g
∂t

= − _r .
∂g
∂r

− _k . ∂g
∂k

− g− f
τn

, (10.35)

where g is the density of particles at position r. In the presence of weak applied fields, g is replaced
by grkðtÞ, which is the occupation number of electrons at position r, which have a wave vector k at
time t. It can be easily shown from Eq. (6.83) that at constant temperature

grk ≈ frk − eτn
∂f
∂μ

vk .E: (10.36)

j

V

FIGURE 10.11

The j (V ) characteristic of the p-n junction.
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The electron density nc at position r in the conduction band can be written as

nc =
1
4π3

Z
grkdk, (10.37)

while the equilibrium density of electrons in the conduction band can be written as

n0c =
1
4π3

Z
f dk: (10.38)

Integrating Eq. (10.35) over dk, we obtain from Eqs. (10.35) through (10.38) (see Problem 10.6)

∂nc
∂t

= − ∂
∂r

. < _r>+
n0c − nc
τn

: (10.39)

Here, n0c is the equilibrium density of the electrons in the conduction band, and < _r> is vk averaged
over the Brillouin zone,

< _r> = 1
4π3nc

Z
dk grkvk =

1
4π3nc

Z
dk f − τnvk . eE

∂f
∂μ

+
∂f
∂r

� �� �
vk: (10.40)

Because
R
fdk vanishes by symmetry, ∂f /∂μ = βf and f ≈ g, Eq. (10.40) can be rewritten as

< _r>≈ 1
4π3nc

Z
dk −τnvk . eEβg+

∂g
∂r

� �� �
vk: (10.41)

We define the mobility μn and the diffusion constant Dn as

μn =
eβ
3
<τnv2k> (10.42)

and

Dn =
1
3
<τnv2k> =

μn
eβ

: (10.43)

From Eqs. (10.41) through (10.43), we obtain

< _r> = −μnE− Dn

nc

∂nc
∂r

: (10.44)

The electron current is given by

je = −enc< _r> = encμnE+ eDn∇
!

nc: (10.45)

Similarly, the hole current can be obtained as

jh = epvμpE− eDp∇
!

pv: (10.46)

From Eq. (10.39) and its analogous equations for holes, Eqs. (10.45) and (10.46), we obtain

∂nc
∂t

= 1
e
∇! . je +

n0c − nc
τn

(10.47)
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and

∂pv
∂t

= − 1
e
∇! . jh +

p0v − pv
τp

: (10.48)

Because we have assumed that the carriers in the doped semiconductor primarily move in the
x direction, Eqs. (10.45) and (10.46) can be rewritten as

je = encμnE+ eDn
dnc
dx

(10.49)

and

jh = epvμpE− eDp
dpv
dx

: (10.50)

Similarly, Eqs. (10.47) and (10.48) can be rewritten as

∂nc
∂t

= 1
e
∂je
∂x

+
n0c − nc
τn

(10.51)

and

∂pv
∂t

= − 1
e
∂jh
∂x

+
p0v − pv
τp

: (10.52)

We note that

n2i = n0cpv = p0vnc: (10.53)

In the steady state, ∂nc∂t = ∂pv
∂t = 0: Thus, in the steady state, we can rewrite Eqs. (10.51) and (10.52) as

1
e
∂je
∂x

+
n0c − nc
τn

= 0 (10.54)

and

− 1
e
∂jh
∂x

+
p0v − pv
τp

= 0: (10.55)

In the regions, where E→ 0, the majority carrier density is constant. In these regions, from Eqs. (10.49)
and (10.50), we obtain

jeðxpÞ≈ eDn
dnc
dx

jx=xp
(10.56)

and

jhðxnÞ≈−eDp
dpv
dx

jx=xn
: (10.57)
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Eqs. (10.56) and (10.57) essentially state that in the steady state, the minority carrier drift current can be
ignored compared to the minority carrier diffusion current. From Eqs. (10.54) through (10.57), we obtain

Dn
d2nc
dx2

+
n0c − nc
τn

= 0 (10.58)

and

Dp
d2pv
dx2

+
p0v − pv
τp

= 0: (10.59)

It can be easily shown (Problem 10.7) that in the n-side of the depletion layer, for x≥ xn,

pvðxÞ− pvð∞Þ = ½pvðxnÞ− pvð∞Þ�e−ðx−xnÞ/dp , (10.60)

and in the p-side of the depletion layer, for x≤ xp,

ncðxÞ− ncð−∞Þ = ½ncðxpÞ− ncð−∞Þ�eðx−xpÞ/dn , (10.61)

where the diffusion lengths for holes in the n-doped region and electrons in the p-doped region are
defined as

dp = ðDpτpÞ1/2 and dn = ðDnτnÞ1/2: (10.62)

In fact, we can define two diffusion regions, which extend over a distance of the order of the diffusion
length in either side of the depletion layer, sandwiched between the depletion layer and the homogeneous
regions. The diffusion regions do not exist when V = 0:

Thus, we have three regions when V ≠ 0: The difference between the three regions is that in the
depletion layer, the electric field, the space charge, and the carrier density gradients are large
(Eq. 10.23), but there is no current in the equilibrium case ðV = 0Þ because the drift and the diffu-
sion currents are equal and opposite for both electrons and holes. When V ≠ 0, there is a net current
in the depletion layer due to the difference between the drift and diffusion currents of each carrier
type, which are large. In the diffusion regions, the drift current of the majority carrier density is
quite large, whereas that of the minority carrier is small. However, the diffusion current due to both
the carriers is appreciable. In contrast, the only current in the homogeneous regions is the majority
carrier drift current. These regions are shown in Figure 10.12.

We will now calculate the total current j flowing in the p-n junction for a given value of V : We
make the assumption that the passage of carriers across the depletion layer is so swift that the gen-
eration and recombination of electrons and holes within the layer are negligible. In the steady state,
the total current j = je + jh of electrons and holes will be constant. Thus, je and jh can be evaluated
separately at any arbitrary point in the depletion layer. The electron current je can easily be calcu-
lated at the boundary between the depletion layer and the diffusion region on the p-side ðxpÞ, and
the hole current jh can easily be calculated at the boundary between the two regions on the n-side
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ðxnÞ in Figure 10.12. From Eq. (10.60) and Problem 10.4, we obtain the solution of the diffusion
equations

pvðxÞ =
n2i
Nd

+ ½pvðxnÞ−
n2i
Nd

�e−ðx−xnÞ/dp , x≥ xn (10.63)

and

ncðxÞ =
n2i
Na

+ ncðxpÞ−
n2i
Nd

� �
eðx−xpÞ/dn , x≤ xp: (10.64)

Note that both x and xp are negative in Eq. (10.64). From Eqs. (10.56), (10.57), (10.63), and
(10.64), we obtain expressions for the minority carrier currents at the edges of the depletion layer
(x = xn and x = xp),

jeðxpÞ = eDn

dn
ncðxpÞ−

n2i
Na

� �
(10.65)

and

jhðxnÞ =
eDp

dp
pvðxnÞ−

n2i
Nd

� �
: (10.66)

From Problem 10.8,

ncðxÞ≈Nde
eβ½VðxÞ−VðxnÞ� (10.67)

and

pvðxÞ≈Nae
−eβ½VðxÞ−VðxpÞ�: (10.68)

Homogeneous
region

Homogeneous
region

Diffusion
region

Diffusion
region

Depletion
layer

O
x

xn xn+ dnxp+ dp xp
nc(−∞) = ni

2

Na
pv(∞) = ni

2

Nd

FIGURE 10.12

The depletion layer, the two diffusion and homogeneous regions when V ≠ 0:
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From Eqs. (10.67), (10.68), and Problem 10.9,

ncðxpÞ = Nde
eβðV−ΔϕÞ =

n2i
Na

eeβV (10.69)

and

pvðxnÞ = Nae
eβðV−ΔϕÞ =

n2i
Nd

eeβV : (10.70)

From Eqs. (10.65) and (10.69),

jeðxpÞ = en2i
Dn

dnNa
ðeeβV − 1Þ, (10.71)

and from Eqs. (10.66) and (10.70),

jhðxnÞ = en2i
Dp

dpNd
ðeeβV − 1Þ: (10.72)

The total current, j = jeðxpÞ+ jhðxnÞ, is the sum of Eqs. (10.71) and (10.72),

j = en2i
Dn

dnNa
+

Dp

dpNd

� 	
ðeeβV − 1Þ: (10.73)

Eq. (10.73) is the ideal diode, or Shockley, equation. We note that because Na and Nd appear in the
denominator, the heavily doped side acts as a short circuit, whereas the current flow is in the lightly
doped side.

10.4 TRANSISTORS
10.4.1 Bipolar Transistors
In the bipolar transistor, three alternately doped
layers of semiconductor (n-p-n or p-n-p) are
sandwiched. We will discuss the n-p-n bipolar
transistor in the following section. The middle
layer (p) is the base that is very narrow, and the
other two layers (n) are known as the emitter and
the collector. Energy band diagrams of an n-p-n
bipolar transistor with no applied voltage and
with an applied voltage, which makes the emitter
negative with respect to the collector, are shown
in Figure 10.13.

In Figure 10.13b, a voltage is applied such
that the emitter is negative with respect to
the collector. In such a scenario, the emitter-
base junction is forward biased, whereas the

Forward
bias Reverse

bias

n np

−
+

(a)

(b)

Emitter

Base

Collector

n np

μ

FIGURE 10.13

(a) An n-p-n bipolar transistor with no applied
voltage. (b) The same transistor with the emitter
negative with respect to the collector.
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base-collector junction is reverse biased. In a p-n junction, each time an electron recombines with
a hole in the base region, an acceptor ion is left behind that accumulates as more electrons flow
through the junction and ultimately inhibits the flow of electrons. However, in a transistor, due
to the contact with the base region, a current of holes flows into the base. The base remains
electrically neutral because the number of holes drawn into the base compensates those that are
lost due to recombination. The way in which a bipolar transistor acts as an amplifier is shown in
Figure 10.14.

When a small input of hole current iB is supplied to the base of the transistor, the base is
positively charged, due to which the potential barrier between the base and the emitter is low-
ered. This results in an increase in the flow of electrons from the emitter to the base. Even if
only a small percentage of the conduction elec-
trons (from the emitter) recombine with the
holes in the base while most of them flow into
the collector, iE ≫ iB, so that base remains neu-
tral. Thus, the flow of current due to the elec-
trons in the collector, iC, is nearly equal to iE,
and the current gain in the amplifier, α, which
is defined as the ratio of change in the output
current ΔiC to the change in the input current
ΔiB, is given by

α =
ΔiC
ΔiB

: (10.74)

Thus, a signal can be easily amplified by the
bipolar transistor because a small change in the
base current produces a very large change in
the collector current.

10.4.2 Field-Effect Transistor
The most common field-effect transistor (FET)
is the metal-oxide-semiconductor FET, or the
MOSFET. The structure of an n-type MOSFET
is shown in Figure 10.15. In a MOSFET, a
metal contact above the gate region is separated
from the p-type semiconductor (Si) substrate by
a thin oxide layer (usually SiO2), which is an
insulator.

When a positive voltage is applied to the
metal contact above the gate region, the holes in
the p-type semiconductor are repelled from the
surface, whereas the electrons, which are the
minority carriers, are attracted to the surface.
This scenario is shown in Figure 10.16.

iE iC

iB

n np

FIGURE 10.14

Amplification of current in a bipolar transistor.

Oxide

Metal
Gate

DrainSource

n n
p

FIGURE 10.15

The structure of an n-type MOSFET.
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FIGURE 10.16

Electrons are attracted to the surface when a positive
voltage is applied to the gate.
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As the voltage is increased, more and more
electrons, which are the minority carriers in the
p-type semiconductor, are attracted to the sur-
face. When the voltage increases beyond a
threshold value, the number of electrons
becomes greater than the number of holes near
the surface even though it is a p-type semicon-
ductor. This is known as the inversion layer,
and the semiconductor behaves as if it is an
n-type. This scenario is shown in Figure 10.17.

Figure 10.17 explains how the MOSFET
acts as a switch. The inversion layer allows the
conduction electrons to flow from the source to the drain. The device is on when the current flows
and off when the flow of current is stopped by decreasing the gate voltage below the threshold vol-
tage. In such a situation, there is no inversion layer. An explanation of how the inversion layer is
obtained is shown in Figure 10.18.

The Fermi energy is close to the valence band edge in the p-type semiconductor when it is well
below the interface with the oxide layer. However, the electron energies are lowered near the sur-
face of the semiconductor because there is a positive charge on the other side of the oxide layer,
and both the conduction and valence bands are bent. If the Fermi energy is closer to the conduction
band than to the valence band in this region, as shown in Figure 10.18, the n-type behavior is
restricted to this region. Because the semiconductor displays n-type behavior, the probability of
inversion depends on the degree of band bending.

The switching time of a transistor is defined as the minimum time period over which a tran-
sistor can be switched from off to on and again to the off position. The most important factor in
designing integrated circuits is that a transistor must be in the on state until an electron (or hole)
moves from the source to the drain. If it does not reach the drain before the transistor reaches
the off position, no current will reach the drain, and the electronic device would not be switched
on for any length of time. The MOSFET is eminently suitable to reduce the switching time in a
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FIGURE 10.17

Inversion layer near the surface, when the gate
voltage is greater than the threshold voltage.
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FIGURE 10.18

The band picture of the inversion layer in the MOSFET.
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transistor. It may be noted that there are p-type MOSFETs, but because the mobility of the holes is
much less than the mobility of the conduction electrons, the n-type MOSFETs can switch much
faster than the p-type.

10.4.3 Single-Electron Transistor
As we have noted, a MOSFET is essentially a parallel-plate capacitor, one plate of which is a metal
and the other of which is silicon, a semiconductor. SiO2 is the insulator of the capacitor. Kastner
et al.7 designed a single-electron transistor (SET) that had two metal gates. A schematic diagram of
their device is shown in Figure 10.19.

The electron gas, which is formed in the p-type Si by the positively biased upper gate, which is
continuous as in the conventional MOSFET, is confined by the lower gate, which has a narrow gap of
about 70 nm width. The narrow channel is approximately 20 nm wide and 1–10 μm long. The surface
electrons are isolated from the bulk by the p-n junctions. The electron-rich region is called an inver-
sion layer. When the voltage in the upper gate is positive with respect to the semiconductor while the
bottom gate is neutral or negative, electrons are added to the semiconductor only under the gap in the
bottom gate. Figure 10.19b shows how the electron gas is confined to move in one direction.

If Vg is the gate voltage, it can be easily shown that

eΔðN/LÞ = ðC/LÞΔVg, (10.75)

where C is the capacitance, L is the length, e is the electronic charge, and N is the number of elec-
trons added. It was observed that when conductance g was plotted against the electron density
(N/L), oscillations of the conductance were periodic. This is shown in Figure 10.20.

From Eq. (10.75) and Figure 10.20, it was observed that the transistor’s conductance oscillated
as a function of the number of electrons per unit length. In fact, there is a special length L0, such

Upper gate

Si (p)

70 nm
Lower gate
CVD oxide

Thermal oxide

(a) (b)

Lower gate

Inversion region

70 nm

FIGURE 10.19

Schematic diagram of the (a) cross-section and (b) top view of the silicon transistor with a continuous
upper gate and a gap in the lower gate.

Reproduced from Kastner et al.7 with the permission of the American Physical Society.

10.4 Transistors 321



that the voltage difference for one period is
that necessary to add some fixed number of
electrons to some fixed length,

eΔN = L0ðC/LÞΔVg: (10.76)

In a separate experiment, it was also
observed that the period was not correlated to
the channel length. The sensitivity of the con-
ductance fluctuations to thermal cycling lead to
the conclusion that the period was determined
by the distribution of charges at the Si-SiO2

interfaces. These charges are always present
even at densities of approximately 1010 per cm2

for the best interfaces. It was calculated that for
the transistor that had 2 μm× 1 μm in size, there
were approximately two charges adjacent to it.
In fact, each sample had random distribution of
charges that changed each time the sample was
warmed to the room temperature. Kastner et al.7

guessed that the charges create potential barriers
along the length of the transistor, as shown sche-
matically in Figure 10.21. They postulated that
each period of conductance oscillations corre-
sponded to the addition of one electron to the
distance between the charges.

The proof that the period of oscillations did
not correspond to the addition of two electrons
due to spin degeneracy or four electrons due to
the energy-band structure of Si depended on
the measurement of the length L0 defined in
Eq. (10.76). The measurement of L0 was facili-
tated by the discovery of small transistors in
GaAs by Meirav et al.13 Their device is shown
in Figure 10.22.

Using molecular-beam epitaxy (MBE), a
layer of AlGaAs, which has larger band gap
than GaAs, is grown on a heavily doped GaAs
crystal ðn+ Þ: Then a layer of pure GaAs is

grown where the electrons accumulate. The density of the electrons is controlled by the positive
voltage applied to the n+ substrate. A metal gate, which is negatively biased so that the electrons
are repelled from it, is deposited on the top by electron-beam lithography. The negative bias on the
top gates creates a potential barrier for the electrons moving down the narrow channel.

The advantage of the GaAs-AlGaAs interface is that the density of charges near the semiconduc-
tor and insulator is smaller than the Si-SiO2 interface. Figure 10.23 shows the conductance as a
function of gate voltage Vg for two devices with different length.
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FIGURE 10.20

Conductance C versus gate voltage Vg in single-
transistor Si devices.

Reproduced from Kastner et al.7 with the permission of the

American Physical Society.

Charges

Potential:

FIGURE 10.21

Narrow channel through which the electrons move.
The metal gate with the gap is shown by the
shaded area. The random distribution of charges
near the interface is shown by black diamonds. The
bottom sketch shows the electrostatic potential
resulting from such impurities versus position along
the channel.

Reproduced from Kastner et al.7 with the permission of the

American Physical Society.
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Each period corresponds to the addition of the same number of electrons to the regions between con-
strictions. The voltage to add one electron is larger for a shorter segment because the capacitance is smal-
ler. However, it is necessary to know the absolute capacitance of a segment to be able to estimate
whether the number of electrons added per period is one or two. The charge density was obtained by sol-
ving the Poisson equation and estimated by a method similar to the Thomas–Fermi approximation. The

n+ substrate 

GaAs
(140 nm)

AIGaAs
(100 nm)

450 nm

100 nm

3 μm

1 μm

Top View:

IDES

Metal Gate

Double-Barrier Channel

FIGURE 10.22

The double-barrier channel shows a one-dimensional electron gas (1DES) or narrow two-dimensional gas
forms at the top of the GaAs-AlGaAs interface. The density is controlled by the substrate voltage Vg : The
top view shows the top metal gate structure, which has a narrow channel with two constrictions.

Reproduced from Kastner et al.7 with the permission of the American Physical Society.
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Conductance as a function of Vg for L0 = 0:8 μm (sample 2) and L0 = 0:6 μm (sample 3).
Reproduced from Kastner et al.7 with the permission of the American Physical Society.
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capacitance was calculated at each gate voltage by
integrating the charge contained in the region
between the two constrictions. The capacitance
was compared with the measured period. It was
conclusively proved that the period of oscillations
corresponds to the addition of one electron per
oscillation. Thus, the one-electron transistor turns
on and off again each time an electron is added.

We note from Figure 10.23 that the conduc-
tance of a small region of electron gas, separated
by tunnel junctions from its leads, oscillates
with density, which is explained by the simple
Coulomb blockade model. A schematic picture
of the tunnel barrier with a metal particle is
shown in Figure 10.24.

Due to the Coulomb interaction between the
electrons in the metal particle, the electrons can-
not tunnel from one plate of the capacitor to the other plate through the metal particle. For current
to flow, an electron or hole of charge qð±eÞ has to be added to the particle. This costs an energy
q2/ 2C, where C is the capacitance between the particle and the rest of the system. Thus, there is an
energy gap in the single-particle density of states. If we consider the tunneling of an electron or a
hole, the gap width is e2/C: This is shown in Figure 10.24.

Because the potential difference between the gate and the electron gas is Vg, the isolated region
of the transistor has an electrostatic energy

ε =
q2

2C
−qVg, (10.77)

where −qVg is the attractive interaction between the positively charged gate and the charge in the
isolated region, and q2/ 2C is the repulsive term between two charges in the isolated region. We
note that Eq. (10.77) can be written in the alternate form

ε = ðq− q0Þ2/2C, (10.78)

where q0 = CVg and a constant q20/2C has been added to ε: Any value of q0 can be added to mini-
mize the energy, but because the charge is quantized, only discrete values of energy are possible
for a given qo: Thus, either q0 = ne or q0 = ðn+ 1/2Þe, where n is an integer. These two cases are
illustrated in Figure 10.25.

We note that when q0 = ðn+ 1/2Þe, the states where q = ne and q = ðn+ 1Þe are degenerate. The
energy gap in the tunneling density of states disappears because the charge fluctuates between the
two values even at zero temperature. Because the conductance is thermally activated at all values of
the gate voltage except those for q0 = ðn+ 1/2Þe, it has sharp peaks at low temperatures. The
change in voltage to alter q0 from (n + 1/2)e to (n + 3/2)e is ΔVg = e/C, which is the period in Vg:
The activation energy at the minimum is e2/2C:

To summarize, the number of electrons on the isolated segment is quantized because the time
for tunneling onto and off the segment is long. The Coulomb interactions and the quantization of

EF

lead lead
Metal

particle

e2/C

FIGURE 10.24

A Coulomb blockade system. Electrons tunnel from
one lead onto a small metal particle and then to
the other lead.

Reproduced from Kastner et al.7 with the permission of the

American Physical Society.
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charge suppress all charge fluctuations at zero temperature for all values of q0 not equal to
ðn+ 1/2Þe and at that value the charge fluctuates only by one electron. This device is called a
Coulomb island because the Coulomb interaction suppresses the charge fluctuations.

10.5 INTEGRATED CIRCUITS
An integrated circuit consists of capacitors, resistors, transistors, and other metallic connections
required for a complete electrical circuit. The most popular electrical circuits are the MOSFET cir-
cuits because the switching time can be easily reduced. In addition, the transistors switch faster if
the devices are made smaller. However, it is important to keep in check the power dissipated by a
transistor so that the amount of heat produced in an integrated circuit can be kept under control.

Due to the improvement of the technology in building integrated circuits, primarily due to the
decrease in the individual devices as well as in the increase in the area of the circuit, there has been
a rapid growth in the number of transistors on an integrated circuit since the first such circuit was
fabricated in 1961 with only four transistors. At present, a typical integrated circuit has about
80 million transistors. The single most important criterion is to keep in check the enormous heat
produced by such circuits.

10.6 OPTOELECTRONIC DEVICES
Semiconductors can be utilized for a variety of optical properties. The simplest way to consider the
role of a photon is that if it has energy ∈ = hν greater than the band gap, it can excite an electron
from the valence band to the conduction band, leaving behind a hole in the valence band. It may
be noted that both the laws of conservation of momentum and energy have to be obeyed by the
photons and electrons involved in the collision process where the energy is absorbed from the
photon by the electron. This is usually possible only in direct band-gap semiconductors such as
GaAs where the minimum of the conduction band is directly above the maximum of the valence
band. This process, shown in Figure 10.26a, is known as photoconductivity because a beam of light
with appropriate frequency can produce a large number of electrons and holes, thereby significantly
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FIGURE 10.25

Energy versus charge for q0 = ne and q0 = ðn+1/2Þe: Because the charge is quantized, the allowed values
of energy are shown by solid circles.

Reproduced from Kastner et al.7 with the permission of the American Physical Society.
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increasing the conductivity. In the reverse process, shown in Figure 10.26b, an electron in the con-
duction band recombines with a hole in the valence band and produces a photon of energy ∈ = hν:
This is the basis of both the light-emitting diode (LED) and the semiconductor laser. As emphasized
earlier, only semiconductors of which the minimum of the conduction band lies directly above the
conduction band can be used for such a process.

A light-emitting diode constitutes a forward-biased p-n junction made from a direct band-gap
material. The band gap of the semiconductor determines the wavelength of the emitted light. One
can obtain light across most of the visible spectrum by using GaAsP if one varies the phosphorus
content of the alloy semiconductor.

A photodiode, shown in Figure 10.27, is used to detect light. One uses a reverse-biased p-n
junction. In this junction, when a valence electron in the depletion region on the p-type region
absorbs a photon of the appropriate frequency, it is excited to the conduction band, where it is the
minority carrier. The strong electric field sweeps it across the depletion region to the n-type region,
and hence, the electron contributes to the drift current. The magnitude of this current is proportional
to the intensity of light. This process can be used to construct a solar cell.

A laser (light amplification by stimulation of radiation) that produces coherent light is different from
an LED in the sense that although the production of photons in an LED by the recombination of elec-
trons and holes is a spontaneous process, in a laser the recombination of one-electron-hole pair triggers
similar events in other electrons and holes, simultaneously producing a large number of photons of the
same frequency. This is known as stimulated emission. The original diode laser, shown in Figure 10.28,

had more electrons at the bottom of the conduction
band than at the top of the valence band, which is
obtained in a heavily doped p-n junction.

In Figure 10.28, the population inversion exists
only near the middle of the depletion region even
though the recombination events take place in a
wide region. Consequently, most of these events
have spontaneous emission rather than stimulated
emission as required in lasers. The efficiency of
the lasing process is low. Because a major propor-
tion of the electrons and holes are lost due to
spontaneous emission, to replenish their loss,
a large current must flow through the junction in a
continuous basis. This large current produces so

hν Eg hν

Conduction
band

Valence
band(a) (b)

FIGURE 10.26

(a) A photon excites an electron from the valence band to the conduction band. (b) An electron in the
conduction band recombines with a hole and produces a photon.
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FIGURE 10.27

A reverse-biased p-n junction used as a
photodetector.
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much heat that the diode laser can be used for
only short bursts or pulses.

The efficiency of the diode laser is very low.
However, the efficiency of the laser is considerably
improved by using two heterostructures instead of
a p-n junction. A schematic diagram of the double-
heterostructure laser is shown in Figure 10.29.

In a double-heterostructure laser, the conduc-
tion electrons and holes are confined in the GaAs
layer. Due to the fact that both the conduction
electrons and holes collect in the same region,
the proportion of stimulated emission is much
larger than a diode laser. In view of the above,

this type of laser does not get heated very quickly, and therefore, it can be used for a longer period.
Semiconducting lasers are very widely used in communication systems using optical fibers. For

best results, the wavelength is matched to the performance of the fiber. An InGaAsP laser, which is
widely used in optical communication systems, is shown in Figure 10.30.

Recent studies on semiconductor lasers has shown that a semiconductor laser generates a number-
phased squeezed state rather than a squeezed state, primarily due to the fact that a semiconductor
laser is pumped by a shot-noise-free electric current. When the squeezed state becomes phase coher-
ent with an independent local laser oscillator, the squeezed light can be detected by optical homodyne
detectors and used for various interferometric measurements. Thus, a phase-coherent squeezed state
can be generated by injection locking the squeezed slave laser with an external master laser.

A setup for generating a squeezed vacuum state by destructively interfering with an amplitude-
squeezed state from an injection-locked slave laser with strong coherent light from a master laser is
shown in Figure 10.31. A constant-current-driven semiconductor laser, which is denoted as a slave
laser, is injection locked by an external master laser. Thus, the two signals, which are phase coher-
ent, are combined at a high transmission mirror where the coherent excitation of the squeezed
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Schematic diagram of a diode laser.
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Schematic diagram of a double-heterostructure laser.
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FIGURE 10.30

Schematic diagram of an InGaAsP laser.
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output signal from the injection-locked slave laser is canceled by the destructive interference with
the master laser signal. The squeezed output signal of the slave laser is not degraded because the
noise of the master laser signal is attenuated by the mirror.

The actual experimental setup is shown in Figure 10.32. The master laser is an AlGaAs single-
mode high-power semiconductor laser, and the slave laser is a single-mode low-power GaAs

Master laser

Slave laser
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signal

Half-wave plate
Reflected master

laser output Master laser output

a2

a1

Slave laser outputSqueezed
vacuum state

Squeezed
vacuum

HTM

Signal
output

(a) (b)

FR
PBS

FIGURE 10.31

Squeezed-vacuum-state generation by mixing an amplitude-squeezed state with a coherent state. FR,
Faraday rotator; PBS, polarization beam splitter, HTM, high-transmission mirror.

Reproduced from Yamamoto et al.6 with the permission of Elsevier.
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The experimental setup for the squeezed-vacuum-state generation by a semiconductor laser system; HWP,
half-wave plate; PBS, polarization beam splitter; NPBS, nonpolarization bean splitter; HTM, high-transmission
mirror; PZT, pizeo translator.

Reproduced from Yamamoto et al.6 with the permission of Elsevier.
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transverse-junction strip semiconductor laser with antireflection coating ð∼10%Þ on the front facet
and high-reflection coating ð∼90%Þ on the rear facet.

10.7 GRAPHENE
Graphene is a flat monolayer of carbon atoms that is tightly packed into a two-dimensional honey-
comb lattice. Graphene can be wrapped up into zero-dimensional fullerenes or rolled into one-
dimensional nanotubes. It can also be stacked into three-dimensional graphite. Figure 10.33 shows
the different ways in which graphene can be wrapped or stacked.

FIGURE 10.33

Graphene is a 2D carbon material that can be wrapped into 0D buckyballs, rolled into 1D nanotubes, or
stacked into 3D graphites.

Reproduced from Geim5 with the permission of MacMillan Publishers Ltd. Copyright 2011.
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Graphene and its bilayer are both zero-gap semiconductors (which can also be considered as
zero-overlap semimetals) with one type of electron and one type of hole. The conduction and
valence bands start overlapping for three or more layers. Thus, single-, double-, and few- (3- to 9-)
layer graphene can be considered as three types of 2D crystals. In these crystals, the charge carriers
can travel thousands of interatomic distances.

Single- and few-layer graphenes have been grown epitaxially by chemical vapor deposition of
hydrocarbons on metal substrates and thermal decomposition of SiC. Few-layer graphene obtained
on SiC shows high-mobility charge carriers. Although epitaxial growth of graphene is the viable
route for experimental applications, current experiments mostly use samples obtained by micro-
mechanical cleavage of bulk graphite, which provides high-quality graphene crystallites up to
100 μm in size. Graphene becomes visible in an optical microscope if placed on an Si wafer with
an appropriate thickness of SiO2: This is due to feeble interference-like contrast with an empty
wafer. These high-quality graphene crystallites are shown in Figure 10.34.

There is a pronounced ambipolar electric field effect in graphene that is shown in Figure 10.35.
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9Å 13Å 
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FIGURE 10.34

(a) Graphene visualized by atomic force microscopy. The folded region exhibiting a relative height of ≈ 4 A°

indicates that it is a single crystal. (b) Transmission electron microscopy image of a graphene sheet freely
suspended on a micrometer-sized metallic scaffold. (c) Scanning electron microscopy of relatively large
graphene crystal, which shows that most of the crystal’s faces are zigzag and armchair edges.

Reproduced from Geim5 with the permission of MacMillan Publishers Ltd. Copyright 2011.
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The insets in Figure 10.35 show the conical
low-energy spectrum E(k), which shows the
change in the Fermi energy EF with gate voltage
Vg: Positive Vg induces electrons and negative
Vg induces holes. The concentration n = αVg,
where α = 7:2× 1010 cm−2V−1 for field-effect
devices with a 300 nm SiO2 layer used as a
dielectric. The rapid decrease in resistivity ρ
on adding charge carriers indicates their high
mobility and does not change significantly
when the temperature is increased to 300º K.
The charge carriers in graphene can be tuned
continuously between electrons and holes in
concentrations n∼1013 cm−2 and mobilities
μ≥ 15,000 cm2 V−1 s−1 .

A unique property of graphene is that the
interaction of the electrons with the periodic
potential of the honeycomb lattice gives rise to
quasiparticles that are described at low energies
E by a (2 + 1)–dimensional Dirac equation with
an effective speed of light vF = 106 m−1s−1:
These quasiparticles are essentially electrons

that have lost their rest mass me and are called massless Dirac fermions.
The conical sections of the energy spectrum for jEj< 1 eV are a consequence of the fact that

graphene is a zero-gap semiconductor. The low-E quasiparticles within each valley can be described by
the Dirac-like Hamiltonian, which is a direct consequence of graphene’s crystal symmetry. A detailed
analysis of the physical properties of graphene, including the origin of Dirac fermions, is given in
Chapter 18 (on novel materials). The Hamiltonian H can be written as (for details, see Chapter 18):

H = ħvF
0 kx − iky

kx + iky 0

� 	
= ħvF σ! .k: (10.79)

Here, k is the quasiparticle momentum, σ! is the 2D Pauli matrix (but pseudospin rather than real spin),
and the Fermi velocity vF , which is independent of k, plays the role of the speed of light. The honey-
comb lattice of graphene is made up of two equivalent carbon sublattices, A and B. The cosine-like
energy bands associated with the sublattices give rise to the conical sections of the energy spectrum for
|E|< 1 eV (Figure 10.33) because they intersect at zero E near the edges of the Brillouin zone.

In addition to the unique feature of the band structure E = ħvFk, the electronic states at zero E,
where bands intersect, are a mixture of states of different sublattices. One has to use two-component
wave functions (spinors) by requiring an index to identify sublattices A and B, to account for their rela-
tive contributions in the makeup of the quasiparticles. Thus, in Eq. (10.79), σ! is referred as the pseu-
dospin. The real spin of the electrons is described by additional terms in the Hamiltonian. However, the
pseudospin effects, which are inversely proportional to the speed of light c (note that vF plays the role
of c) in quantum electrodynamics (QED), dominate the effects due to real spin because c/vF ≈ 300:
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FIGURE 10.35

Ambipolar electric field effect in single-layer
graphene.

Reproduced from Geim5 with the permission of MacMillan

Publishers. Copyright 2011.
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In QED, chirality (which is positive or negative for electrons or holes, respectively) is defined as
the projection of σ! on the direction of motion k. In graphene, the intricate connection of chirality
is a consequence of the fact that k electrons and −k hole states originate from the same carbon sub-
lattices. Both chirality and pseudospin are conserved in graphene.

10.8 GRAPHENE-BASED ELECTRONICS
The high mobility ðμÞ of the charge carriers of graphene does not decrease even in the highest-field-
induced concentrations and remains unchanged by chemical doping. Thus, there can be ballistic
transport on a submicrometer scale at room temperature. The switching time is reduced due to the
large value of vF and low-resistance contacts without a Schottky barrier. The on–off ratios, which
are comparatively low for graphene because of poor conductivity ð≈100Þ, do not create any pro-
blem for high-frequency applications. In fact, it has been shown that transistors can be operational
at THz frequencies.

The fact that graphene remains metallic even at the neutrality point creates a problem for main-
stream logic applications. However, it has been shown that significant semiconductor gaps,
ΔEð≈0:3 eVÞ, can be induced in bilayer graphene, which can be used in tunable infrared lasers and
detectors. ΔE can also be induced in single-layer graphene by spatial confinement or lateral-super-
lattice potential. If graphene is epitaxially grown on top of crystals with matching lattices such as
BN or SiC, such superlattice effects are likely to occur.

It can be shown that the confinement gap for graphene is

ΔEðeVÞ≈ αħvF /d≈ 1/d ðnmÞ, (10.80)

where the coefficient α≈ 0:5 for Dirac fermions. For room-temperature operations, d≈ 10 nm,
which is achievable with the rapidly advancing Si-based technology. However, hitherto, no techni-
que has been found to make anisotropic etching of graphene to make devices with crystallographic-
defined faces in order to avoid irregular edges. Electronic states associated with short irregular
edges in short channels usually induce a significant sample-dependent conductance, whereas those
associated in long channels lead to additional scattering.

Graphene can also be used as a conductive sheet where the different nanometer-size structures
can be carved to make a single-electron transistor circuit. Graphene nanostructures are stable down
to nanometer sizes that allow the exploration of a region between SET and molecular electronics.
Figure 10.36 shows an SET made from graphene by using electron-beam lithography and dry
etching.

Figure 10.36b shows that for a minimum feature size of ≈10 nm, the combined Coulomb and
confinement gap reaches >3 kBT : This would allow a SET-like circuitry operational at room tem-
perature, and resistive barriers can be used to induce a Coulomb blockade.

There are two impediments for growth of graphene electronics. High-quality wafers suitable for
industrial applications are yet to be developed despite the recent progress in epitaxial growth of gra-
phene. In addition, individual features in graphene devices have to be controlled to provide reason-
ably accurate reproducibility in their properties.
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PROBLEMS
10.1. In Eqs. (10.3) and (10.4), we derived

ncðxÞ = ℵcðTÞe−βðεc−eϕðxÞ−μÞ (1)

and

pvðxÞ = ℘vðTÞeβðεv−eϕðxÞ−μÞ: (2)

Because Nd = ncð∞Þ and Na = pvð−∞Þ, show that

eϕð∞Þ− eϕð−∞Þ = Eg +
1
β
ln

NdNa

ℵcðTÞ℘vðTÞ
� �

: (3)

10.2. From the preceding expressions, show that

ncðxÞ = Nde
−eβ½ϕð∞Þ−ϕðxÞ� (1)

and

pvðxÞ = Nae
eβ½ϕð−∞Þ−ϕðxÞ�: (2)

10.3. Within the boundaries of the depletion layer ðx = xp and x = xnÞ, nc ≪Nd and pv ≪Na:
Outside the depletion layer, nc = Nd on the n-side and pv = Na on the p-side: Neglecting the
boundary effects, show that, outside the depletion layer,

ρðxÞ = 0, (1)
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FIGURE 10.36

(a) Coulomb blockade in large quantum dots (diameter ≈0.25 μm) at low temperatures. Narrow constrictions
in graphene serve as quantum barriers. (b) Here, 10 nm–scale graphene structures are stable under ambient
conditions and survive thermal cycling to liquid-helium temperature. The inset shows a scanning electron
micrograph of two graphene dots of ≈40 nm in diameter with narrower (<10 nm) constrictions.

Reproduced from Geim5 with the permission of MacMillan Publishers Ltd. Copyright 2011.
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and, inside the depletion layer,

ρðxÞ = e½NdðxÞ−NaðxÞ�: (2)

10.4. In the “abrupt junctions,” one can approximate

NdðxÞ = Nd, x> 0
0, x< 0

� �
(1)

and

NaðxÞ = Na, x< 0
0, x> 0

� �
: (2)

Show that the one-dimensional Poisson’s equation (Eq. 10.10) can be written as

∂2ϕ
∂x2

=

0, x< xp

− 4πeNa

∈
, 0> x> xp

4πeNd

∈
, 0< x< xn

0, x> xn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: (3)

By integrating Eq. (3), show that

ϕðxÞ =

ϕð−∞Þ, x< xp

ϕð−∞Þ+ 2πeNa

∈

� �
ðx− xpÞ2, 0> x> xp

ϕð∞Þ− 2πeNd

∈

� �
ðx− xnÞ2, 0< x< xn

ϕð∞Þ, x> xn

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: (4)

10.5. From Eq. (10.6) and (10.7), prove the law of mass action,

ncðx,TÞpvðx,TÞ = ℵcðTÞ℘vðTÞe−βEg : (1)

Since, for an intrinsic semiconductor, ncðx,TÞ = pvðx,TÞ = niðTÞ, and from Eq. (10.12),
ncð∞Þ = Nd (the n-side of the depletion layer), using Eq. (1), show that

pvð∞Þ≈ n2i ðTÞ
Nd

, (2)

where

niðTÞ = nið0Þe−βEg/2: (3)

Similarly, because pvð−∞Þ = Na in the p-side of the depletion layer, show that

ncð−∞Þ≈ n2i ðTÞ
Na

: (4)
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10.6. It has been shown that

∂g
∂t

= − _r:
∂g
∂r

− _k . ∂g
∂k

− g− f
τn

, (1)

where g is the density of particles at position r. In the presence of weak-applied fields, g is
replaced by grkðtÞ, which is the occupation number of electrons at position r, which have a
wave vector k at time t. It can be easily shown from Eq. (6.83) that at constant temperature

grk ≈ frk − eτn
∂f
∂μ

vk .E: (2)

The electron density nc at position r in the conduction band can be written as

nc =
1
4π3

Z
grkdk, (3)

while the equilibrium density of electrons in the conduction band can be written as

n0c =
1
4π3

Z
fdk: (4)

Integrating Eq. (1) over dk, show from Eqs. (1) through (4),

∂nc
∂t

= − ∂
∂r

. < _r>+
n0c − nc
τn

: (5)

Here, n0c is the equilibrium density of the electrons in the conduction band and < _r> is vk
averaged over the Brillouin zone,

< _r> = 1
4π3nc

Z
dk grkvk =

1
4π3nc

Z
dk f − τnvk . eE

∂f
∂μ

+
∂f
∂r

� �� �
vk: (6)

10.7. It has been shown that in the steady state, for the minority carriers,

Dn
d2nc
dx2

+
n0c − nc
τn

= 0 (1)

and

Dp
d2pv
dx2

+
p0v − pv
τp

= 0: (2)

Show that in the n-side of the depletion layer, for x≥ xn,

pvðxÞ− pvð∞Þ = ½pvðxnÞ− pvð∞Þ�e−ðx−xnÞ/dp , (3)

and in the p-side of the depletion layer, for x≤ xp,

ncðxÞ− ncð−∞Þ = ½ncðxpÞ− ncð−∞Þ�eðx−xpÞ/dn , (4)
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where the diffusion lengths for holes and electrons are defined as

dp = ðDpτpÞ1/2 and dn = ðDnτnÞ1/2: (5)

10.8. From Eqs. (10.49) and (10.50), we have

je = encμnE+ eDn
dnc
dx

(1)

and

jh = epvμpE− eDp
dpv
dx

: (2)

Show that

ncðxÞ = Nde
β½VðxÞ−VðxnÞ� 1+

je
eNdDn

Zx
xn

dx′e−β½Vðx′Þ−VðxnÞ�
2
4

3
5 (3)

and

pvðxÞ = Nae
−β½VðxÞ−VðxpÞ� 1− jh

eNaDp

Zx
xp

dx′eβ½Vðx′Þ−VðxpÞ�

2
64

3
75: (4)

Hence, show that the second term in the square bracket can be neglected compared to the first
term in both Eqs. (3) and (4).

10.9. We derived in Chapter 9 that

n2i = ℵcðTÞ℘vðTÞe−βEg : (1)

We also derived in Eq. (10.8),

eΔϕ = Eg +
1
β
ln

NdNa

ℵcðTÞ℘vðTÞ
� �

: (2)

Show from Eqs. (1) and (2) that

n2i = NdNae
−eβΔϕ: (3)
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11.1 INTRODUCTION
As we noted in Chapter 10 on electronics, charges are manipulated by electric fields, but spins are
generally ignored. Magnetic recording and other techniques use the spin only through the magneti-
zation of a ferromagnet. When giant magnetoresistance (GMR) of the magnetic multilayers was
discovered in 1988, an efficient control of the electrons was achieved through the orientation of
their magnetization by acting on their spin. The application of the GMR to the read heads of the
hard discs contributed significantly to the quick rise in the density of stored information. This led to
the extension of hard disc technology and consumer electronics.

A large number of phenomena related to the control and manipulation of spin currents were
developed through a new area of physics/materials science called spintronics. The rapidly growing
area of research in spintronics includes such phenomena as spin transfer, molecular spintronics,
spintronics with semiconductors, and single-electron spintronics.
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11.2 MAGNETORESISTANCE
In Chapter 3, we discussed the Hall effect by considering a conductor in the shape of a rod that has
a rectangular cross-section, which is placed under a magnetic field B in the z direction. There is a
longitudinal electric field Ex: The electric and magnetic fields are so adjusted that the current cannot
flow out of the rod in the y direction ð jy = 0Þ: The charges pile up on the surface of the sample,
thereby setting up an electric field Ey: This field, which nullifies the Lorentz force (Eq. 3.90), is
known as the Hall field. The Hall coefficient RH , which defines the size of the carrier, is defined
as RH = Ey=Bjx: The component of the resistivity tensor ρ, ρyx, is the Hall resistance defined as
ρyx = Ey=jx, whereas the diagonal component ρxx is the magnetoresistance, defined as

ρxx =
Ex

jx
, (11.1)

and the magnetoresistance ratio is defined as

Δρ
ρ0

=
ρ− ρ0
ρ0

, (11.2)

where ρ and ρ0 are the resistivities (along a given direction) in the presence and absence of a mag-
netic field, respectively. The dependence of the electrical resistance of the material on an applied
magnetic field, usually perpendicular to the direction of the current, represents this effect.

11.3 GIANT MAGNETORESISTANCE
11.3.1 Metallic Multilayers
A typical multilayer unit is shown in Figure 11.1. In a magnetic multilayer system, one of the
metals (A) is magnetic, whereas the other (B) is nonmagnetic, which is referred to as the spacer
layer. When the thickness of the spacer layer is varied, there are oscillations in the magnetic cou-
pling between the magnetic layers. The thickness of these thin films can vary from a few tenths
of a nanometer to tens of nanometers. The magnetization directions of the ferromagnetic layers
are coupled to each other through an exchange interaction. The sign of this coupling oscillates as
the thickness of the spacer layer is varied. The best multilayer samples have around 30 periods
of oscillations.

Some metallic multilayers exhibit drastic changes in magnetoresistance and, hence, the name
giant magnetoresistance (GMR). The drastic change of magnetoresistance in metallic multilayers
has resulted in a new definition of the magnetoresistance ratio, MR, as

MR =
RAP −RP

RP
× 100, (11.3)

where RP and RAp are the resistances of the parallel and antiparallel magnetic configurations,
respectively.

In the mid-1980s, it became possible to develop molecular-beam epitaxy (MBE) and other
techniques to fabricate multilayers composed of very thin individual layers. The explanation of the
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GMR effect includes spin-dependent electron scattering and redistribution of scattering events due
to anti-alignment of magnetizations. This scenario is shown in Figure 11.2.

The microscopic explanation for the GMR effect is that the scattering rates of the electrons
depends on the orientation (parallel or antiparallel) of the electron spins with respect to the local
magnetizations. Figure 11.2 shows two structures, one with parallel and the other with antiparallel
alignment with the magnetization. The electrons with spin parallel to the local magnetization in
their random walk are not scattered in the ideal situation. In Figure 11.2, only one passage from the
left to the right is shown as a sample of the electron motion. A short circuit is caused by the elec-
trons that are not scattered. However, when the electron with spin-up enters the layer where the
magnetization has been turned around, its spin is opposite to the local magnetization. The bottom
diagram in Figure 11.2 shows the increase in resistivity due to the removal of the short circuit. In
practice, although both types of electrons are scattered, the resistivity due to the antiparallel magne-
tization is more than that due to parallel magnetization.

In Figure 11.3, the arrows represent the majority spin direction in the magnetic layers. In the fer-
romagnetic (F) configuration, the spin+ ðsz = 1/2Þ electrons are weakly scattered everywhere, which
gives a short circuit effect and hence a small resistivity. In the antiferromagnetic (AF) configuration,
each spin direction is scattered at every second magnetic layer, and the resistivity is higher because
there is no short circuit effect.

The short circuit effect for the ferromagnetic (F) configuration is visually explained in Figure 11.4.
In the parallel (P) configuration, majority electrons in the (+) channel ðsz = 1/2Þ experience little or

M MM M

FIGURE 11.2

Spin-dependent electron scattering and redistribution of
scattering events upon anti-alignment of magnetization.

Reproduced from Grunberg11 with the permission of the

American Physical Society.

Capping layer

Magnetic layer (A)

Spacer layer (B)

Substrate

H = 0 H > HC

A

B

B

A

A

FIGURE 11.1

A multilayer structure and the changes in
magnetization directions with an applied magnetic
field H. The parallel magnetizations lead to a large
magnetoresistance compared to that of an
antiparallel structure.

Reproduced from Fernando6 with the permission of Elsevier.

11.3 Giant Magnetoresistance 341



no resistance, and hence, a short circuit effect occurs. In the antiparallel (AP) configuration (not
shown), electrons in the (+) and (–) ðsz = −1/2Þ channels will experience a significant resistance
when going through the slab with opposite magnetization with no short circuit effects.

11.4 MOTT’S THEORY OF SPIN-DEPENDENT SCATTERING OF ELECTRONS
A simple model of a scattering of electrons, which was given by Mott15 will be presented here. It was
modified later by more complex models. We consider a ferromagnetic d-band metal with a magneti-
zation M(T) at temperature T. The schematic density of states representing s-, p-, and d-bands of a
transition metal is shown in Figure 11.5.

If M0 is the saturation magnetization at T= 0,
and β = MðTÞ=M0, a fraction ð1− βÞ=2 of the
unoccupied d states will have their spins parallel
to M, and a fraction ð1+ βÞ=2 will have their
spins antiparallel. If we define ρ1ðEÞ and ρ2ðEÞ
as the respective density of states, then they will
have a parabolic form,

ρ1ðEÞ = a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE1 −EÞ

p
(11.4)

and

ρ2ðEÞ = a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE2 −EÞ

p
, (11.5)

where E1 and E2 are the highest energies the two
spins can have. However, above the Curie tem-
perature, where the system becomes paramagnetic

AF

MNM

−

M

+

F

−

M MNM

+

FIGURE 11.3

Schematic picture of the electron trajectories. The
electron trajectories between two scatterings are
represented by straight lines and the scatterings by
abrupt change in direction. The + and – are for
electron spins sz = 1/2 and sz = −1/2, respectively.

Reproduced from Fert et al.10 with the permission of Elsevier.
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FIGURE 11.4

Schematic diagram of the short circuit effect.
Reproduced from Fernando6 with the permission of Elsevier.
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FIGURE 11.5

Density of states plotted against E for s, p, and d
states of a transition metal.
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and the number of parallel spins equals the number of antiparallel spins, E1 = E2 = E0: It can be shown
that the corresponding relaxation times are related to the density of states as

1
τ1
∝ ρ1ðEÞ+ δ (11.6)

and

1
τ2
∝ ρ2ðEÞ+ δ, (11.7)

where δ is a contribution from spin-independent scattering. From Eqs. (11.4) through (11.7), it can be
shown that (Problem 11.1)

1
τ1

= AðT/MIθ
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE1 −EÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE0 − ζ0Þ

p + α

" #
(11.8)

and

1
τ2

= AðT/MIθ
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE2 −EÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE0 − ζ0Þ

p + α

" #
, (11.9)

where α≈ 1/4, θ is the Debye temperature, and A is a constant. If ζ0 represents the energy at T= 0 and
β = 0, and ζ0′ represents the energy at the highest occupied state (Fermi energy) at T=0 when the states
are split, because the density of states is proportional to n1/30 , we can write (Problem 11.2)ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E1 − ζ0′
E0 − ζ0

s
= ð1− βÞ1/3 (11.10)

and ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ζ0′
E0 − ζ0

s
= ð1+ βÞ1/3: (11.11)

One can write the expression for conductivity by using a Drude-type formula, but including the
energy dependence of the relaxation time,

σ = −Ne2/m
Z ðτ1 + τ2Þ

2
∂f
∂E

dE: (11.12)

The resistivity ρðβ, TÞ = 1/σ is obtained by approximating the partial derivative of the integrand in
Eq. (11.12) to be nonzero only when E = ζ0′: We obtain, after some algebra (Problem 11.3),

ρðβ, TÞ = AðT /mθ2Þ 1
ð1− βÞ1/3 + α

+ 1
ð1+ βÞ1/3 + α

" #−1
: (11.13)
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Because α≃ 0:25, the ratio of the resistances between the saturated magnetization case ðβ = 1Þ and the
paramagnetic case ðβ = 0Þ is given by

ρðβ = 1, TÞ
ρðβ = 0, TÞ ≃ 0:34: (11.14)

If we define the resistances for up and down channels as R↑ and R↓, then the resistances RP and RAP

for the parallel and antiparallel alignments of spins relative to a given magnetic layer are given by

RP = ð1/R↑ + 1/R↓Þ−1 (11.15)

and

RAP = ðR↑ +R↓Þ/4, (11.16)

when the mean path of the electrons is much higher than the repeat length of the multilayer. From Eqs.
(11.3), (11.15), and (11.16), we obtain

MR =
ð1− ηÞ2

4η
× 100%, (11.17)

where

η =
R↓

R↑
: (11.18)

Because η is a positive parameter, it follows from Eq. (11.17) that RAP > RP: This is a very simplified
explanation of the higher resistance encountered in the antiparallel case.

When an applied field changes an alignment from antiferromagnetic (AF) to ferromagnetic (F)
alignment, the difference in resistivity is the largest. The AF alignment is usually provided by inter-
layer exchange or by coercivities of successive magnetic layers, by pinning the magnetization using
an antiferromagnetic material in direct contact, known as exchange biasing. If GMR is obtained by
exchange biasing, it is called a spin-valve system.

The first discovery of GMR was done by Baibich et al.1 on Fe/Cr magnetic multilayers, in
which it is possible to switch the relative orientation in adjacent magnetic layers from antiparallel
to parallel by applying a magnetic field. The resistivity is strongly enhanced in the antiparallel
magnetic configuration of two adjacent layers A and B because the electrons in each channel are
slowed down at every second magnetic layer. There is no such enhancement in layers A and B in
the parallel magnetic configuration because the electrons can go easily through all the magnetic
layers, and the short circuit through this channel leads to a small resistance. This opens up the
possibility of switching between high and low resistivity states by changing the relative orientation
of the magnetizations of A and B layers from parallel to antiparallel. Similar GMR effects were
discovered by Binash et al.2 in Fe/Cr/Fe trilayers. These effects are shown later in Figure 11.9.
Camley and Barnas3 presented a theoretical description of the GMR effects in Fe/Cr/Fe trilayers by
calculating the resistivity using Boltzmann transport equations, with spin-dependent scattering at
the interface.
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11.5 CAMLEY–BARNAS MODEL
The Camley–Barnas model3 includes the idea that there is an antiferromagnetic coupling between
Fe films due to the intervening Cr films. At the zero field, the resulting magnetic moments of
neighboring Fe films are antiparallel to each other. However, in a strong external magnetic field, all
the magnetic moments of the Fe films can be forced to lie in the same direction. Earlier experimen-
tal results suggested that the resistance is the largest when the magnetic moments in neighboring Fe
films are antiparallel and smallest when they are parallel. Further, multilayer structures with thin Fe
films have a much larger magnetoresistance than a single sandwich structure of Fe/Cr/Fe. In addi-
tion, the magnetoresistance is increased by a factor of 2 or 3 when the temperature is changed from
room temperature to that of liquid He. Camley and Barnas interpreted these results to conclude that
a spin-dependent scattering is responsible for the observed effects and the relative lengths of the
mean-free path are more important than the thickness of the various films.

To develop a theory for the multilayer, Camley and Barnas first considered a single sandwich
structure of Fe/Cr/Fe, as shown in Figure 11.6, and computed the conductivity by using the Boltzmann
equation.

In Figure 11.6, the dashed line in the center of the Cr films is the position at which the change
in axis of quantization for the electron spin is calculated. In each region, the Boltzmann equation
reduces to a differential equation that depends on the coordinate z only,

∂g
∂z

+
g
τvz

= eE
mvz

∂f0
∂vx

, (11.19)

where f0 is the equilibrium distribution function, τ is the relaxation time, E is the external field in
the x direction, and g is the correction to the distribution function due to scattering.

Z

E

A B C D

z

xy

FeCrFe

FIGURE 11.6

The geometry of the Fe/Cr/Fe sandwich structure.
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In the region A, the contributions to g for regions for spin-up or spin-down electrons moving to
the right (positive vz) or left (negative vz) are

g = gA+↑ðvz, zÞ+ gA+↓ðvz, zÞ (11.20)

and

g = gA−↑ðvz, zÞ+ gA−↓ðvz, zÞ: (11.21)

From Eqs. (11.19) through (11.21), it can be easily shown that (Problem 11.4)

gA±↑ðvz, zÞ = eEτ
m

∂f0
∂vx

1+A±↑ exp
∓z
τjvzj

� �� �
(11.22)

and

gA±↓ðvz, zÞ = eEτ
m

∂f0
∂vx

1+A±↓ exp
∓z
τjvzj

� �� �
: (11.23)

The coefficients A±↑ð↓Þ and similar coefficients for the regions B, C, and D are determined through
the boundary conditions. The distribution function g for an electron leaving the surface (at the outer
surfaces of the sandwich) is equal to the distribution function g for an electron of the same spin
striking the surface multiplied by a specular scattering event R0: Thus, we obtain

gA+↑ = R0gA−1 at z = −b (11.24)

and

gD−↑ = R0gD+↑ at z = +b: (11.25)

Similar equations are obtained for down-spins.
Camley and Barnas3 assumed a model system of two equivalent simple metals that have the same

Fermi energies, mean-free path values, and so on. They neglected the angular dependence of scattering
and assumed that there is only transmission or diffusive scattering at the Fe/Cr interfaces. They further
assumed that the scattering at the outer boundaries is purely diffusive (the reflection coefficients are
zero). If the transmission coefficients are T↑ for up-spins and T↓ for down-spins, for up-spins at z = −a,

gA−↑ð↓Þ = T↑ð↓ÞgB−↑ð↓Þ (11.26)

and

gB+↑ð↓Þ = T↑ð↓ÞgA+↑ð↓Þ: (11.27)

A similar set of equations holds for the z=+a interface. Similar boundary conditions are obtained for
gB−↑ð↓Þ and gC−↑ð↓Þ, except that one has to account for the fact that the magnetic moments in the two
films are in different directions by an angle θ, which is the angle between the magnetization vectors in
the two Fe films. We define the transmission coefficients,

T↑↑ = T↓↓ = cos2ðθ/2Þ (11.28)
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and

T↑↓ = T↓↑ = sin2ðθ/2Þ, (11.29)

where T↑↑ is the probability of an electron of spin-up (in layer A, with respect to the magnetization) at
z = −0 to continue as a spin-up (in layer D, with respect to magnetization) at z = 0, and the other sym-
bols are defined similarly. We obtain

gB−↑ð↓Þ = gC−↑ð↓Þ cos2ðθ/2Þ+ gC−↓ð↑Þ sin2ðθ/2Þ (11.30)

and

gC+↑ð↓Þ = gB+↑ð↓Þ cos2ðθ/2Þ+ gB+↓ð↑Þ sin2ðθ/2Þ: (11.31)

The current density at different fields are obtained by using the expression

JðzÞ =
Z

vxgðvx, zÞ d3v: (11.32)

The current of the whole structure is obtained by integrating JðzÞ over the coordinate z:
Camley and Barnas defined the diffusive scattering parameter,

D↑ = 1−T↑, (11.33)

and the asymmetry in up-spin and down-spin scattering,

N = D↑/D↓: (11.34)

Their results are plotted in Figure 11.7.
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The maximum normalized change in resistance as a function of D1 and N: The inset shows the geometry
shown in Figure 11.6.

Reproduced from Camley and Barnas3 with the permission of the American Physical Society.
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The calculations shown in Figure 11.7 were made to show how the magnetoresistance effect
depends on D↑ and N for a (120Å Fe)/(10Å Cr)/(120 Å Fe) sandwich structure with a mean-free
path of λ = 180 Å. The theoretical value of the percentage change in resistance as a function of an
applied field for a (120Å Fe)/(10Å Cr)/(120Å Fe) sandwich structure is shown in Figure 11.8.

In the preceding calculations, the mean-free path is λ = 180 Å, and the angle θ between the
magnetizations in the two Fe films was calculated by minimizing the sum of the exchange, aniso-
tropy, and Zeeman energies for the Fe/Cr/Fe sandwich.

The first observation of giant magnetoresistance was discovered by Baibich et al.1 and is shown
in Figure 11.9a. It may be noted that if we define MR = (RAP −RPÞ/RP × 100, MR = 85% for the
(Fe 3 nm/Cr 0.9 nm) multilayer. The experimental results of Binash et al.2 for Fe/Cr/Fe trilayers
is shown in Figure 11.9b. A schematic diagram of the electrons in parallel (low resistance) and
antiparallel (high resistance) spin configurations is shown in Figure 11.9c.

As we noted earlier, GMR can be obtained in the current in plane (CIP) and current perpendicu-
lar to plane (CPP) geometry. At present, the CIP configuration is used for most sensor applications,
and in most experiments the current flows in the CIP geometry. However, Pratt et al.17 showed that
for the Ag/Co multilayers, CPP-MR is several times larger than the CIP-GMR. There has been
considerable interest in CPP-MR, which is more likely to be used in future sensor applications.

11.6 CPP-GMR
11.6.1 Introduction
The first experiment of CPP-GMR was done by sandwiching a magnetic multilayer between supercon-
ducting electrodes. This restricted the use of such multilayers only at very low temperatures. However,
Fert and Piraux9 as well as other groups have fabricated magnetic nanowires by electrodepositing into
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The percentage change of resistance as a function of an applied field ðN = 6, D1 = 0:48Þ: The experimental
results are from Binash et al.2 from Figure 11.9b.

Reproduced from Camley and Barnas3 with the permission of the American Physical Society.
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pores of membranes. These nanowires usually have a diameter in the range 30–500 nm for a length
of 10μm: The multilayered nanowires can be composed of a stack of layers of different metals with
thicknesses in the nanometer range.

The general technique for fabrication of magnetic multilayered nanowires in nanoporous
polymer membranes (Figure 11.10b) consists of a pulse-plating method in which two metals are
deposited from a single solution by switching between the deposition potential of two constituents.
These types of multilayers include Co/Cu, NiFe/Cu, Ni/Cu, and Fe/Cu. Other types of multilayered
nanowires such as Ni/NiO/Co heterostructures and Co/Pb multilayers have been grown by electrodepo-
sition. We will now summarize the theory of the perpendicular magnetoresistance in magnetic
multilayers (CPP-MR) derived by Valet and Fert22 (the V–F model) and in magnetic nanowires by
Fert and Piraux.9

11.6.2 Theory of CPP-GMR of Multilayered Nanowires
The V–F theory uses the Boltzmann equation to calculate the transport properties of magnetic multi-
layers for currents perpendicular to the layer. Their model takes into account both volume and interface
scattering and includes a spin-lattice relaxation term τsf , which describes the relaxation of spin accumu-
lation by spin-flip scattering. The data on the perpendicular magnetoresistance can be used to separate
the volume and interface scattering. The notations generally used in the calculation of the magnetoresis-
tance of a multilayer are as follows. The spin ↑ (majority) and spin ↓ (minority) resistivities of the
ferromagnetic metal are defined by

ρF↑ð↓Þ = 2ρ�F½1− ð+βÞ�, (11.35)

where β is the bulk-scattering spin asymmetry coefficient. The (equal) spin resistivities of the nonmag-
netic metal are defined by

ρN↑ð↓Þ= 2ρ�N , (11.36)

and the interface resistances per unit area, r↑ and r↓, are defined by

r↑ð↓Þ= 2r�b ½1− ð+Þγ�, (11.37)

where γ is the interface asymmetry coefficient, tN and tf are defined as the thickness, and lNsf and lFsf as
the spin diffusion length (SDL) of the nonmagnetic and ferromagnetic layers, respectively. In the long
SDL limit, where tN ≪ lNsf and tF ≪ lFsf , Valet and Fert22 showed that the resistances RP (parallel) and
RAP (antiparallel) of a unit area of the multilayer (which is also valid for nanowires for a true antiparallel
configuration and for a state with zero net magnetization in a volume of the cube of the SDL) are

RAP= Nðρ�FtF + ρ�NtN + 2r�bÞ (11.38)

and

RP= RAP −
fβρ�FtF + 2γr�bg2 N2

RAP
, (11.39)

where N is the number of periods.
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From Eqs. (11.38) and (11.39), it can be shown that (Problem 11.5)

RAP −RP

RAP

� �−1/2
=

ρ�FtF + 2r�b
βρ�FtF + 2γr�b

+
ρ�NtN

βρ�FtF + 2γr�b
: (11.40)

The magnetoresistance properties of multilayered nanowires helps considerably in the understanding
of the CPP-GMR and the determination of the spin diffusion length. In addition, in current-induced
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Reproduced from Fert7 with the permission of the American Physical Society.
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switching (or reversal) of magnetization, nanowires can be used. They are ideal for high-injection
density currents in order to probe the change in spin configuration of multilayers.

In Figure 11.10a, the large and oscillatory GMR effects in Co/Cu, which were discovered simulta-
neously by Mosca et al.13 and Parkin et al.16, are shown. In fact, these effects became the archetypical
GMR system. In 1991, Dieny et al.5 observed the GMR in spin valves, i.e., trilayered structures in
which the magnetization of one magnetic layer is pinned by coupling with the antiferromagnetic layer
while the magnetization by the second layer is free. A small magnetic field can reverse the magnetiza-
tion of the free layer; this concept is now used in most applications in spin valves.

Figure 11.10b shows a schematic picture of an array of multilayered nanowires in nanoporous track-
etched polymer membranes and the technique of fabrication, the theory of which was described earlier.
Due to the spin accumulation effects that occur in the CPP geometry, the length scale of the spin trans-
port becomes the long spin diffusion length. In fact, the CPP-GMR has demonstrated the spin accumula-
tion effects that determine the propagation of a spin-polarized current through magnetic and
nonmagnetic materials. The CPP-GMR plays an important role in all recent developments of spintronics.

As one can see in Figures 11.10c and d, in the CPP, the GMR is not only higher than in CIP, but
also subsists in multilayers with relatively thick layers, up to the micron range. The CPP-GMR has
demonstrated the spin accumulation effects that govern the propagation of a spin-polarized current
through a series of magnetic and nonmagnetic materials. Thus, it plays an important role in the devel-
opment and future use of spintronics. The key mechanism driving a spin-polarized current at a large
distance from the interface is the diffusion current induced by the accumulation of spins at the
magnetic–nonmagnetic interface. For example, spin-polarized currents can be transported in long
carbon nanotubes because the SDL is quite large beyond the micron range.

When an electron flux crosses the interface between a ferromagnetic and a nonmagnetic mate-
rial, far from the magnetic side, the current is large in one of the spin channels. However, when the
flux is far from the interface on the other side, the current is equally distributed in both channels.
This scenario is shown in Figure 11.11.

Figure 11.11a shows the spin-up and spin-down currents far from an interface between ferro-
magnetic and nonmagnetic conductors outside the spin accumulation zone. Figure 11.11b shows the
splitting of the chemical potentials EF↑ and EF↓ at the interface. When the current travels through
the spin-accumulation zone, it is polarized due to the inversion of the spin accumulation and opposite
spin flips. The spin flips control the gradual depolarization of the current due to the left and the right.
Figure 11.11c shows the variation of the current spin polarization on both sides of metal/metal, where
there is a balance between the spin flips on both sides, and the metal/nonmagnetic semiconductor
(without spin-dependent interface resistance), where the spin flips dominate in the left side. Thus, the
current is nearly depolarized when it enters the semiconductor. One can introduce a tunnel junction,
which results in a discontinuity of the spin accumulation at the interface, thereby increasing the depo-
larization from the metallic to the semiconductor side. However, due to the large tunnel resistances, it
is difficult to efficiently transform the spin information into an electrical signal.

11.7 MTJ, TMR, AND MRAM
There have been significant advances in the research on the tunneling magnetoresistance (TMR) of
magnetic tunnel junctions (MTJ). The MTJs are tunnel junctions with ferromagnetic electrodes of
which the resistances are different for parallel and antiparallel configurations. In addition, the two
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Reproduced from Fert7 with the permission of the American Physical Society.
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metallic layers that are called electrodes are separated by an insulating layer thin enough to allow
some tunneling current. Julliere13 did one of the early experiments on MTJ by using the Fe-Ge-Co
system. The conductance G(V) measurements, made for Fe and Co when the average magnetiza-
tions were parallel and antiparallel, showed a difference related to the spin polarizations of the tun-
neling conduction electrons. Julliere used a simple (stochastic) model for tunneling electrons and
denoted the fractions of electrons, of which the magnetic moments are parallel to the magnetizations
in Fe and Co, as a and a′: The conductance of the Fe-Ge-Co junction when the magnetizations in
Fe and Co are parallel ðGpÞ and antiparallel ðGAPÞ can be expressed as21

Gp ∝ ½aa′+ ð1− aÞð1− a′Þ� (11.41)

and

Gap ∝ ½að1− a′Þ+ a′ð1− aÞ�: (11.42)

Assuming that the spin is conserved,

TMR =
GP −Gap

Gap
= 2PP′

ð1−PP′Þ , (11.43)

where the conduction electron spin polarization of the two ferromagnetic metals are13

P = 2a− 1 and P′ = 2a′− 1 : (11.44)

The original value measured by Julliere was 14%, mainly due to interface roughness. Recent experi-
ments indicate that in MTJs consisting of ferromagnetic amorphous CoFeB and MgO, the TMR can
be as large as 500%. In fact, it appears that MgO is crucial for achieving large TMR values.

The polarization of tunneling electrons depends on the barrier height of the insulator in addition to the
polarization of the ferromagnets. Slonczewski19 made the simple assumption that the ferromagnets had
parabolic but spin-split bands that are separated by an insulating barrier. The schematic picture is shown
in Figure 11.12. A schematic picture of the one- and two-band parabolic models is shown in Figure 11.13.
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Schematic picture of an insulator between two different types of ferromagnets.
Reproduced from Slonczewski19 with the permission of the American Physical Society.
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When the barrier has low energy and thin
size, the wave function of the two ferromagnets
has to be matched at the interfaces. Slonczewski19

showed that P′, the polarization of the tunneling
electrons, depends on the polarization of the
ferromagnets as well as on the barrier height,

P′ = k↑ − k↓

k↑ + k↓

� �
κ2 − k↑k↓

κ2 + k↑k↓

� �
, (11.45)

where k↑ and k↓ are the Fermi wave vectors for
the up- and down-spin bands, and

ħκ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2mðVb −EF�

p
, (11.46)

where Vb is the barrier height, and EF is the Fermi
level of the ferromagnet. This barrier-dependent
factor can vary from −1 to 1. It may be noted that
for parabolic, free electron bands, the polarization
associated with the ferromagnets is

P = k↑ − k↓

k↑ + k↓

� �
ρ↑ − ρ↓

ρ↑ + ρ↓

� �
: (11.47)

Thus, Eqs. (11.46) and (11.47) change Julliere’s result obtained in Eq. (11.44), especially when the tun-
nel barrier is high. The signs of the polarization can even change in certain cases.

The magnetic random access memory (MRAM) is built from the concept of MTJs, as shown in
Figure 11.14.
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Density of spin-up ðρ↑Þ and spin-down ðρ↓Þ
electrons. The positions of the Fermi energy for one-
band ðEF1Þ and two-band ðEF2Þ models of a
ferromagnet are shown schematically.

Reproduced from Slonczewski19 with the permission of the

American Physical Society.
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In Figure 11.14a, the binary information “0” and “1” is recorded on the two opposite orientations
of the magnetization of the MTJs, which are connected to two crossing points of two perpendicular
arrays of parallel conducting lines. The current pulses are sent through one line of each array for
“writing,” and only at the crossing point, the resulting magnetic field is high enough to orient the
magnetization of the free layer. The resistance between the two lines between the addressed cell is
measured for “reading.” Figure 11.14b shows the TMR = ðRmax−RminÞ/Rmin for the stack
ðCo25Fe75Þ80B20ð4 nmÞ/MgOð2:1 nmÞ/ðCo25Fe75Þ80B20ð4:3 nmÞ annealed at 475ºC after growth.
The measurements were done at room temperature (closed circles) and low temperatures (open
circles). In the first MRAMs, the memory cells are MTJs with an alumina barrier. The “word”
and “bit” lines generate magnetic fields that switch the magnetic configuration. The future of the
technology of computers is based on the ST-RAM, which is based on MgO tunnel junctions and
switching by spin transfer.

11.8 SPIN TRANSFER TORQUES AND MAGNETIC SWITCHING
A spin current,

$
Q, which consists of moving spins, can be written as

$
Q = ðħ/2ÞPŝ⊗ j, (11.48)

where P is the polarization (scalar). The spin and current densities can be written as

s!ðrÞ = ∑
iσσ′

ψ�
iσðrÞŜσ,σ′ψ

�
iσ′ðrÞ (11.49)

and

$
QðrÞ = ∑

iσσ′
Reðψ�

iσðrÞŜσ,σ′ ⊗ v̂ψ�
iσðrÞÞ, (11.50)

where Ŝσ,σ′ and v̂ are spin and velocity operators. The continuity equation, which expresses the
conservation of number of electrons, is given by

∂n
∂t

= −∇ . j, (11.51)

where n is the number density, and j is the current density. It can be shown that there is a similar
equation for the spin density, s, which consists of an extra term arising due to the noncommutivity
of spin density with magnetocrystalline anisotropy,

∂s
∂t

= −∇ .$Q +next, (11.52)

where ∇ .$Q = ∂kQik: Here, next is the external torque density that rotates the spins. Eq. (11.52) is
equivalent to the continuity equation stated in Eq. (11.51) with additional terms next: In general, there
are two contributions to the spin current. If the direction of magnetization is nonuniform in a ferro-
magnet, the left and right spin currents do not cancel, and the gradient of this current gives rise
to a spin torque nex = −∇ .$Qex: There is also a second contribution to the spin current at the
interfaces due to the imbalance in the population of the spin states at or near the Fermi energy. It can be
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shown that the spin current along the direction of the magnetization is conserved. Further, the reflected
and transmitted components do not (generally) have any transverse components. Therefore, the main
mechanism for transfer of angular momentum is the exchange interaction experienced by the electrons in
the ferromagnet, which exerts a torque on the spin current. The scattering of spin at a ferromagnetic inter-
face is a growing area of research, and we have considered only an elementary discussion of this topic.

To summarize, in spin-transfer phenomena, the magnetic moments of a ferromagnet are manipu-
lated by the transfer of spin-angular momentum from a spin-polarized current without the applica-
tion of a magnetic field. The transfer of a transverse spin current to a “free” magnetic layer F2 is
due to the torque acting on the magnetic moment, as briefly described previously. The spin torque
can induce irreversible switching of the magnetic moment or can generate precession of the moment
in the microwave frequency range in the presence of a magnetic field in a second regime.

This scenario is schematically shown in Figure 11.15. The first magnetic layer, F, prepares a spin-
polarized current with an obliquely oriented spin polarization with respect to the magnetization axis
of a second layer, F2: When this current goes through F2, the exchange interaction aligns its spin
polarization along the magnetization axis. Because the exchange interaction is spin conserving, the
transverse spin polarization lost by the current is transferred to the total spin of F2: This can lead to a
magnetic switching of the F2 layer or to magnetic oscillations in the microwave frequency range.

11.9 SPINTRONICS WITH SEMICONDUCTORS
11.9.1 Introduction
Spintronics with semiconductors has the tremendous advantage of combining the potential of the
magnetic materials such as the control of current by spin manipulation, nonvolatility, etc., with the
potential of the semiconductors (control of current by gate, coupling with optics, etc.). Datta and Das4

Transverse
component

Cobalt/Copper/Cobalt

e− e−

S

S

F2F1

FIGURE 11.15

Illustration of the spin-transfer concept. The spin-transfer torque described previously acts on F2:

Reproduced from Fert7 with the permission of the American Physical Society.

11.9 Spintronics with Semiconductors 357



proposed the concept of a spin-effect transistor (spin FETs) based on spin transport in semiconductor
lateral channels between spin-polarized sources and drains with control of the spin transmission by a
field-effective gate. The spin precession can be controlled by spin-orbit coupling. The three ingredi-
ents for a spin transistor are (1) long relaxation time of a semiconductor, (2) gate voltage control of
the spin-orbit coupling, and (3) high spin injection coefficients. Optical experiments have established
that electron spins of semiconductors have long relaxation time. Modulation of the spin-orbit splitting
at the Fermi level by gate voltage has been reported for both electrons and holes for a variety of semi-
conductors. However, the spin injection from a ferromagnetic (FM) source into a semiconductor is a
very difficult task and yields a maximum of 1% spin polarization.

The conductivity mismatch between an FM metal emitter and a semiconductor is the primary
reason for the difficulty in spin injection. It has been shown that if we define the spin injection
coefficient in a diffusive regime, γ, as

γ ∝ σN /σF , (11.53)

where σN and σF are the conductivities of a normal (N) and FM contacts, then

σN /σF ≫ 1 (11.54)

if N is a paramagnetic metal, and

σN /σF ≪ 1 (11.55)

if N is a semiconductor. This explains why the spin injection from an FM source into a paramag-
netic metal is very efficient, whereas the same from an FM source to a semiconductor is practically
impossible. Rashba18 showed that tunnel contacts (T) can significantly increase spin injection and
solve the problem of the mismatch between the conductivities of a ferromagnetic metal (FM) and a
semiconductor (N) microstructure. The tunnel resistance, rc, should be larger than the competing
“effective resistances” making the total contact resistance,

rc ≥LF/σF , minfLN ,wg/σN , (11.56)

where LF and LN are spin diffusion lengths in the FM and N conductors and w is the width of the N
conductor.

11.9.2 Theory of an FM-T-N Junction
Rashba considered a semi-infinite FM ðx < 0Þ and Nðx > 0Þ and assumed that the T contact, at
x = 0, has different spin conductivities, Σ↑ and Σ↓, for up- and down-spins, and there is no spin
relaxation in it. The currents j↑,↓ðxÞ carried by up- and down-spins can be written as

j↑,↓ðxÞ = σ↑,↓ ξ↑,↓′ ðxÞ, (11.57)

where ξ↑,↓′ ðxÞ is the space derivative of the electrochemical potentials ξ↑,↓ðxÞ, which are related to
the nonequilibrium parts n↑,↓ðxÞ of the electron concentrations and φFðxÞ in the FM region,

ξ↑,↓ðxÞ = ðeD↑,↓/σ↑,↓Þn↑,↓ðxÞ−φFðxÞ: (11.58)
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Here, D↑,↓ are diffusion coefficients, and σ↑,↓ are conductivities of up- and down-spin electrons. To
maintain the charge neutrality under the spin injection conditions,

n↑ðxÞ+ n↓ðxÞ = 0: (11.59)

The continuity equation is

j↑′ðxÞ = en↑ðxÞ/τFs , (11.60)

where τFs is the spin-relaxation time. Because the charge is conserved,

J = j↑ðxÞ+ j↓ðxÞ = constant: (11.61)

Introducing the notations

ξFðxÞ = ξ↑ðxÞ− ξ↓ðxÞ (11.62)

and

jFðxÞ = j↑ðxÞ− j↓ðxÞ, (11.63)

one can show (Problem 11.7) that the diffusion equation can be written as

DFξF″ðxÞ = ξFðxÞ/τFs , (11.64)

where

DF = ðσ↓D↑ + σ↑D↓Þ/σF (11.65)

and

σF = σ↑ + σ↓: (11.66)

From Eqs. (11.57) through (11.66), it can be shown that (Problem 11.8)

φF′ðxÞ = ½ðD↑ −D↓Þ/DF�ðσ↑σ↓/σ2FÞξF′ ðxÞ− J/σF : (11.67)

At T= 0, the Einstein relations are

e2D↑,↓ = σ↑,↓/ρ↑,↓, (11.68)

where ρ↑,↓ are the densities of states at the Fermi level. One can show (Problem 11.9) from
Eqs. (11.65) through (11.68) that

e2DF = ðσ↑σ↓/σFÞðρF /ρ↑ρ↓Þ (11.69)

and

ðρ↓σ↑ − ρ↑σ↓Þ/ρFσF = ½ðΔσ/σFÞ− ðΔρ/ρFÞ�/2: (11.70)

It can be easily shown (Problem 11.10) from Eqs. (11.67), (11.69), and (11.70) that

φF′ðxÞ = ½ðΔσ/σFÞ− ðΔρ/ρFÞ�ξF′ ðxÞ/2− J/σF: (11.71)

11.9 Spintronics with Semiconductors 359



From Eqs. (11.57) and (11.71), it is easy to show that

jFðxÞ = 2ðσ↑σ↓/σFÞξ′FðxÞ+ ðΔσ/σFÞJ: (11.72)

Eqs. (11.64), (11.65), (11.71), and (11.72) are a complete system of bulk equations for the F region.
One can also show (Problem 11.11) that

ξ↑ðxÞ+ ξ↓ðxÞ = −½2φFðxÞ+ ðΔρ/ρFÞξFðxÞ� (11.73)

and

n↑ðxÞ = ðρ↑ρ↓/ρFÞξFðxÞ: (11.74)

The equations for the N region can be obtained from the equations for the F region by substituting
the following in Eqs. (11.64), (11.67), and (11.72):

σ↑ = σ↓ = σN /2, (11.75)

Δρ = Δσ = 0, (11.76)

and

DN = D↑ = D↓: (11.77)

We obtain

DNξNðxÞ = ξNðxÞ/τNs ,
φ′NðxÞ = −J/σN ,

(11.78)

and

jNðxÞ = σNξ′NðxÞ/2: (11.79)

In Eqs. (11.77) through (11.79), the symbol N in the prefix has been used for the N region,
instead of the prefix F, which was used in the F region in the previous equations. Because there is
no spin relaxation at the interface x= 0, the boundary conditions are j↑ðxÞ is continuous at x= 0 and
hence jFð0Þ = jNð0Þ: Substituting these in Eqs. (11.72) and (11.79), we obtain

σNξ′Nð0Þ− 4ðσ↑σ↓/σFÞξ′Fð0Þ = 2ðΔσ/σFÞJ: (11.80)

The currents j↑,↓ð0Þ are related to the conductivities of the T contact,

j↑,↓ð0Þ = Σ↑,↓ðξN↑,↓ − ξ↑,↓Þ: (11.81)

Using Eq. (11.62) and its equivalent for ξN , we can rewrite Eq. (11.81) as

ξNð0Þ− ξFð0Þ = −2ðΔΣ/ΣÞrcJ + 2rc jð0Þ, (11.82)

where

ΔΣ = Σ↑ −Σ↓, Σ = Σ↑ +Σ↓ and rc = Σ/4Σ↑Σ↓: (11.83)
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From Eq. (11.73), its equivalent for φN and Eq. (11.83), we obtain

ðφFð0Þ−φNð0ÞÞ+ Δρ
2ρF

ξFð0Þ = rcJ −
ΔΣ
Σ

rcjð0Þ: (11.84)

Eq. (11.84) implies that even when rc = 0, because Δρ≠ 0, there is a finite potential drop at the
interface, ½φFð0Þ−φNð0Þ�∝ J:

11.9.3 Injection Coefficient
The solutions of Eqs. (11.64) and (11.78) are

ξFðxÞ = Ae−LFx (11.85)

and

ξNðxÞ = Be−LNx, (11.86)

where

LF = ðDFτ
F
s Þ1/2 (11.87)

and

LN = ðDFτ
N
s Þ1/2: (11.88)

Here, LF and LN are known as the diffusion lengths. Thus, we obtain

ξ′Nð0Þ = −ξNð0Þ/LN = 2γJ/σN (11.89)

and

ξ′Fð0Þ = ξFð0Þ/LF : (11.90)

The injection coefficient is defined as

γ = jð0Þ/J: (11.91)

If we eliminate ξFð0Þ from Eqs. (11.80) and (11.82), we obtain (Problem 11.14)

γ = ½rFðΔσ/σFÞ+ rcðΔΣ/ΣÞ�
�
rFN : (11.92)

Here,

rFN = rF + rN + rc, (11.93)

rF = LFσF/4σ↑σ↓, (11.94)

and

rN = LN /σN : (11.95)
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Eq. (11.93) shows that rc, rF , and rN are connected in series. We note that if rF = rN , γ ∼ 1 if and only if
rc ≥ rN , a criterion that can be satisfied for narrow tunnel junctions of the atomic scale. If
rc ≫ rN , rF , rFN ∼ rc from Eq. (11.93). Using this approximation, we obtain (from Eq. 11.92) the injec-
tion coefficient γ ≈ ΔΣ/Σ: The contact completely determines γ in this regime. Thus, the spin injection
coefficient is controlled by the element of an FM-T-N junction having the largest effective resistance.

There are alternate possibilities of spintronics with semiconductors based on the use of ferro-
magnetic semiconductors such as Ga1−xMnxAs, where x ≪ 1: There is a good possibility of control-
ling the ferromagnetic properties with a gate voltage as well as having large TMR effects.

An alternate approach is the spin accumulation effect due to spin-orbit coupling or anomalous scat-
tering mechanisms. When a spin-unpolarized current flows in a metal, the spin-orbit interaction pro-
duces asymmetric scattering of the conduction electrons so that spin-up electrons have a larger
probability to be scattered to the right compared to spin-down electrons, and spin-down electrons would
tend to scatter to the left more than spin-up electrons. This results in a spin current that is generated in a
direction transverse to the direction of the flow of current. If a spin-polarized current is present in a
semiconductor, a Hall-like effect can be induced by the spin-orbit coupling without an external field.
Zhang23 derived an expression for the spin Hall effect (SHE) using a semiclassical Boltzmann equation
and extending it to the case where the spin diffusion effect is finite. He showed that when the
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Spintronics of semiconductors illustrated by experimental results.
Reproduced from Fert7 with the permission of the American Physical Society.
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formulation is applied to certain metals and semiconductors, the magnitude of the spin Hall voltage is
much larger than that of magnetic multilayers. Because SHE is also found in nonmagnetic metals,
further research in this area is very active.

Spintronics with semiconductors is shown in Figure 11.16. The structure, shown in Figure 11.16a,
is composed of a GaAs layer that is separated from the GaMnAs source and drain by tunnel barriers
of AlAs. Figure 11.16b shows the MR curve at 4.2º K, which shows a difference in resistance of 40%
between the parallel and antiparallel magnetic configuration between the source and the drain.
Figure 11.16c shows the MR ratio as a function of the resistance of the tunnel barriers.

It may be noted that spintronics is a very rapidly growing area of research. Recently, large
GMR- and TMR-like effects were predicted in carbon-based molecules. In fact, due to small
spin-orbit coupling, carbon molecules have a long spin lifetime. Recent experiments on carbon
nanotubes between a ferromagnetic source and drain made of the metallic manganite
La2/3Sr1/3MnO3 (LSMO) have been encouraging (see Figure 11.17).
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The results indicate that the resistances of the parallel and antiparallel configurations are between
60% and 70%, which is larger than that obtained for semiconductor channels. In addition, their high
Fermi velocity, which is responsible for short dwell time, is an advantage over semiconductors. The
research is very active in the general area of spintronics and, in particular, on graphene-based
devices.

In view of the above, any review of the general area of spintronics would very quickly become
outdated. Therefore, this chapter may be considered as an introduction to the topic.

PROBLEMS
11.1. By using Mott’s two-current model, in which the spin transport in a metal is perceived as

being due to two independent spin channels, and by using Eqs. (11.4) through (11.7), show
that the energy-dependent relaxation times can be expressed as

1
τ1

= AðT/MIθ
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE1 −EÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE0 − ς0Þ

p + α

" #
(1)

and

1
τ2

= AðT/MIθ
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE2 −EÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE0 − ς0Þ

p + α

" #
, (2)

where α ≈ 1/4 and θ is the Debye temperature.

11.2. Show that

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E1 − ζ′0
E0 − ζ0

r
= ð1− βÞ1/3 (1)

and ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 − ζ′0
E0 − ζ0

r
= ð1+ βÞ1/3, (2)

where ζ0′ represents the energy of the highest occupied state (Fermi energy) at T = 0 when
the states are split and ζ0 when β = 0:

11.3. By using Eqs. (11.8) through (11.12), derive the equation for resistivity (Eq. (11.13),

ρðβ,TÞ = AðT/mθ2Þ 1
ð1− βÞ1/3 + α

+ 1
ð1+ βÞ1/3 + α

" #−1
: (1)
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11.4. From Eqs. (11.19) through (11.21), show that

gA±↑ðvz, zÞ = eEτ
m

∂f0
∂vx

1+A±↑exp
∓z
τjvzj

� �� �
(1)

and

gA±↓ðvz, zÞ = eEτ
m

∂f0
∂vx

1+A±↓exp
∓z
τjvzj

� �� �
: (2)

11.5. We obtained in Eqs. (11.38) and (11.39)

RAP = Nðρ�FtF + ρ�NtN + 2r�bÞ (1)

and

RP = RAP −
fβρ�FtF + 2γr�bg2 N2

RAP
: (2)

Show that

RAP −RP

RAP

� �−1/2
=

ρ�FtF + 2r�b
βρ�FtF + 2γr�b

+
ρ�NtN

βρ�FtF + 2γr�b
: (3)

11.6. Using a simple model, we have shown in Eqs. (11.41) and (11.42) that

Gp ∝ ½aa′+ ð1− aÞð1− a′Þ� (1)

and

Gap ∝ ½að1− a′Þ+ a′ð1− aÞ�: (2)

Assuming that the spin is conserved, show that

TMR =
GP −Gap

Gap
= 2PP′

ð1−PP′Þ , (3)

where the conduction electron spin polarization of the two ferromagnetic metals is

P = 2a− 1 and P′ = 2a′− 1 : (4)

11.7. Introducing the notations

ξFðxÞ = ξ↑ðxÞ− ξ↓ðxÞ (1)

and

jFðxÞ = j↑ðxÞ− j↓ðxÞ, (2)
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show that the diffusion equation can be rewritten as

DFξ″FðxÞ = ξFðxÞ/τFs , (3)

where

DF = ðσ↓D↑ + σ↑D↓Þ/σF (4)

and

σF = σ↑ + σ↓: (5)

11.8. From Eqs. (11.57) through (11.66), show that

φ′FðxÞ = ½ðD↑ −D↓Þ/DF�ðσ↑σ↓/σ2FÞξ′FðxÞ− J/σF : (1)

11.9. By using Eqs. (11.65) through (11.68), show that

e2DF = ðσ↑σ↓/σFÞðρF/ρ↑ρ↓Þ (1)

and

ðρ↓σ↑ − ρ↑σ↓Þ/ρFσF = ½ðΔσ/σFÞ− ðΔρ/ρFÞ�/2, (2)

where

Δσ = σ↑ − σ↓, (3)

Δρ = ρ↑ − ρ↓, (4)

and

ρF = ρ↑ + ρ↓: (5)

11.10. Show from Eqs. (11.67), (11.69), and (11.70) that

φ′FðxÞ = ½ðΔσ/σFÞ− ðΔρ/ρFÞ�ξ′FðxÞ/2− J/σF : (1)

11.11. From Eqs. (11.64), (11.65), (11.71), and (11.72), show that

ξ↑ðxÞ+ ξ↓ðxÞ = −½2ϕFðxÞ+ ðΔρ/ρFÞξFðxÞ� (1)

and

n↑ðxÞ = ðρ↑ρ↓/ρFÞξFðxÞ: (2)

11.12. Using Eq. (11.62) and its equivalent for ξN , show that Eq. (11.81) can be rewritten as

ξNð0Þ− ξFð0Þ = −2ðΔΣ/ΣÞrcJ + 2rc jð0Þ, (1)
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where

ΔΣ = Σ↑ −Σ↓, Σ = Σ↑ +Σ↓ and rc = Σ/4Σ↑Σ↓: (2)

Here, rc is the effective contact resistance.

11.13. From Eq. (11.73), its equivalent for φN , and Eq. (11.83), show that

ðφFð0Þ−φNð0ÞÞ+ Δρ
2ρF

ξFð0Þ = rcJ −
ΔΣ
Σ

rcjð0Þ: (1)

11.14. The injection coefficient is defined as

γ = jð0Þ/J: (1)

If one eliminates ξFð0Þ from Eqs. (11.80) and (11.82), show that

γ = ½rFðΔσ/σFÞ+ rcðΔΣ/ΣÞ�/rFN : (2)

Here,

rFN = rF + rN + rc, (3)

rF = LFσF /4σ↑σ↓, (4)

and

rN = LN /σN : (5)
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12.1 INTRODUCTION
The magnetization density of a quantum-mechanical system is defined as

Mv = − 1
V

∂Ω
∂Bv

, (12.1)

where Ω is the thermodynamic potential, V is the volume of the solid, and Bv is the vth component
of the magnetic induction B, the microscopic field perceived by the nuclei or the electrons due to
an external magnetic field H. The magnetic susceptibility is defined as

χμv = lim
B!0

∂Mv

∂Bμ
= − 1

V
lim
B!0

∂2Ω
∂Bμ∂Bv

: (12.2)

It may be noted that the magnetic susceptibility is a tensor, whereas the magnetization is a vector. If
a system has positive magnetic susceptibility, it is known as paramagnetic, and if it has negative
magnetic susceptibility, it is known as diamagnetic. In a linear medium, B = μH, where μ is known
as the magnetic permeability. Because an alternate definition of susceptibility is χμv= lim

H!0

∂Mv

∂Hμ ,
a linear system is paramagnetic if μ> 1 and diamagnetic if μ< 1:

There exists a lot of confusion in the literature as to when to use H and when to use B. H is the
external applied magnetic field usually produced by external currents. Therefore, experiments that
control external currents control H more directly than B, and hence, it is appropriate to consider H
as the experimentally applied field. However, when this external magnetic field is applied to the
system through external currents, the microscopic field perceived by the nuclei or the electrons is
the magnetic induction B. Thus, the microscopic Hamiltonian should be written in terms of B,
whereas the experimental results should be expressed in terms of H.

In this chapter, we will first calculate by using approximate methods, the atomic susceptibility,
the susceptibility of insulators with filled shells that leads to Larmor diamagnetism, and the suscept-
ibility of a collection of magnetic ions with partially filled shells that leads to paramagnetism. Then
we will calculate the magnetic susceptibility of free electrons in metals that leads to Pauli paramag-
netism and Landau diamagnetism, as well as the de Haas–van Alphen effect. Finally, we will out-
line the many-body theory of magnetic susceptibility of Bloch electrons in a magnetic field. We
will express the total magnetic susceptibility as a sum of the contributions of the orbital ð χoÞ, spin
ð χsÞ, and spin-orbit interactions ð χsoÞ, and discuss the effects of exchange and correlation on each
of these terms. Here, the spin susceptibility χs includes the effect of spin-orbit interaction on the
spin, whereas χso is the contribution to magnetic susceptibility from the effect of spin-orbit coupling
on the orbital motion of Bloch electrons. In the usual derivations of many-body theories of mag-
netic susceptibility, attention is focused either on the orbital part or on the spin part of the Hamilto-
nian, and the effects of spin-orbit coupling are accounted for in χo through the modifications of the
Bloch functions and in χs by replacing the free electron g factor by the effective g factor. In this
process, χso, which is of the same order as χs for solids with large effective g factors, has been
neglected.

370 CHAPTER 12 Diamagnetism and Paramagnetism



12.2 ATOMIC (OR IONIC) MAGNETIC SUSCEPTIBILITIES
12.2.1 General Formulation
It can be easily shown that the classical Hamiltonian for an electron in a magnetic field B is given by

H = 1
2m

p+
eAðrÞ
c

� �2
, (12.3)

where p is the classical momentum, and AðrÞ is the vector potential obtained from the relation
B = ∇×A and ∇.A = 0: In quantum mechanics, the vector p is replaced by the operator −iħ∇:
Thus, the Hamiltonian for a free electron with spin operator ŝ in a magnetic field B is given by

Ĥ = 1
2m

−iħ∇+
eAðrÞ
c

� �2
+ g0μBB . ŝ = 1

2m
p̂ +

eAðrÞ
c

� �2
+ g0μBB . ŝ, (12.4)

where p̂ and ŝ are the momentum and spin operators. The Hamiltonian of an atom (or ion) in
a uniform magnetic field B (in the z direction) can be written as

Ĥ = 1
2m

∑
i

p̂i +
eAðriÞ

c

� �2
+ g0μBB∑

i
ŝiz, (12.5)

where ri,pi, and ŝi are the position, momentum, and spin operator of each electron in the atom
(or ion), and AðriÞ is the vector potential such that

B = ∇×A and ∇ .A = 0: (12.6)

Here, g0 ≈ 2:0023 and μB = eħ/2mc: The first term in the Hamiltonian in Eq. (12.5), in which the sum
is taken over all the electrons in the atom, is due to T̂ , the kinetic energy operator of the electrons,
which includes the interaction of the orbital magnetic momentum with the magnetic induction. This
interaction is accounted for by including the vector potential AðriÞ in the momentum operator pi of
the electron at ri: The second term in Eq. (12.5) is due to the interaction of B with the electron spin
and is a consequence of Dirac’s relativistic theory. We will assume that

A = − 1
2
r×B, (12.7)

which satisfies both conditions in Eq. (12.6). Thus, the kinetic energy operator, T̂ , in Eq. (12.5) can
be written as

T̂ = 1
2m

∑
i
p̂2
i + μBL̂ .B+ e2

8mc2
B2∑

i
ðx2i + y2i Þ, (12.8)

where L̂ is the total electronic orbital angular momentum operator,

L̂ = 1
ħ
∑
i
ri × p̂i: (12.9)
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From Eqs. (12.5), (12.8), and (12.9), we obtain (Problem 12.1)

Ĥ = 1
2m

∑
i
p̂2
i + μBðL̂ + 2ŜÞ .B+ e2

8mc2
B2∑

i
ðx2i + y2i Þ, (12.10)

where we have approximated g0 ≈ 2, and

Ŝ = ∑
i
ŝi: (12.11)

We can rewrite Eq. (12.10) in the alternate form

Ĥ = Ĥ0 +ΔĤ, (12.12)

where Ĥ0 is the Hamiltonian in the absence of the magnetic field, and ΔĤ is the perturbation due to
the magnetic field,

ΔĤ = μBðL̂ + 2ŜÞ .B+ e2B2

8mc2
∑
i
ðx2i + y2i Þ: (12.13)

If the states jn> are the orbital states of the electrons in the absence of the magnetic field, we obtain,
by using second-order perturbation theory,

En = E0
n +ΔEn, (12.14)

where

E0
n = <njH0jn> (12.15)

and

ΔEn = <njΔĤjn> + ∑
n′≠ n

j<njΔĤjn′j2>
En−En′

: (12.16)

From Eqs. (12.13) and (12.16), retaining terms through those quadratic in B, we obtain

ΔEn = μBB . <njL̂ + 2Ŝjn> + ∑
n′≠n

j<njμBB . ðL̂ + 2ŜÞjn′>j2
En−En′

+ e2B2

8mc2
<nj∑

i
ðx2i + y2i Þjn> : (12.17)

The magnetic susceptibility of atoms, ions, and molecules is obtained from Eq. (12.17). Usually,
the first term on the right side of the equation is the dominant term unless it vanishes. As we will
see, the first term will be zero for either closed shells or shells with one electron short of being half
filled (J = 0). However, for magnetic ions, the first term is much larger than the second and third
terms, which can be neglected. The collection of ions becomes paramagnetic in such cases.

12.2.2 Larmor Diamagnetism
If a solid has atoms or ions where all the electronic shells are filled, each atom has zero orbital and
spin angular momentum in its ground state. Therefore,

Ĵj0>= L̂j0>= Ŝj0>= 0: (12.18)
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In the ground state, the third term in Eq. (12.17) is the only term that contributes to the magnetic
susceptibility,

ΔE0 =
e2B2

8mc2
<0j∑

i
ðx2i + y2i Þj0> = e2B2

12mc2
<0j∑

i
r2i j0> , (12.19)

which follows from the spherical symmetry of the atom or ion. Assuming that the free energy is
equal to the ground-state energy (which is true if and only if J = 0), the magnetic susceptibility of
the solid of N such ions in a volume V (in a semiclassical approximation) is given by

χ ≈−∂2ΔE0

∂B2
= −N

V
<0j∑

i
r2i j0> : (12.20)

Eq. (12.20) is known as Larmor diamagnetic susceptibility or sometimes as Langevin susceptibility.
It is valid only for solids composed of atoms or ions of filled shells.

We will now discuss Hund’s rules, which are needed to discuss atoms or ions with partially
filled shells.

12.2.3 Hund’s Rules
Hund’s rules, which are valid for atoms or ions with partially filled shells, were obtained from the
analysis of atomic spectra as well as by rigorous theoretical calculations. They are valid for incomplete
shells of which the one-electron levels are characterized by orbital angular momentum l: The shell
would have 2ð2l+ 1Þ one-electron levels (including spin). If n is the number of electrons in the shell,

0<n<2ð2l+ 1Þ: (12.21)

The degeneracy of these levels is lifted by electron–electron interaction as well as by the spin-orbit
interaction.

We will first discuss Russsell–Saunders coupling, which states that the Hamiltonian of the atom or
ion (with partially filled shells) commutes with the total angular momentum Ĵ = L̂ + Ŝ and with the
total electronic orbital and spin angular momentum L̂ and Ŝ (provided the spin-orbit coupling is not too
large such that it can be considered as a small perturbation). Thus, the partially filled shells can be
indexed by the quantum numbers J, Jz, L, Lz, S, and Sz: This indexing is based on the fact that the

eigenvalues of the operators Ĵ
2
, Ĵz, L̂

2
, L̂z, Ŝ

2
, and Ŝz are JðJ + 1Þ, Jz, LðL+ 1Þ, Lz, SðS+ 1Þ, and Sz:

Hund’s rules are as follows:

1. In an incomplete shell, the electrons that lie lowest in energy have the largest total spin S,
which is consistent with the exclusion principle. The largest value S can have is equal to the
largest magnitude that Sz can have. When n≤ 2l+ 1, each electron can have parallel spin without
multiple occupation of any one-electron level in the shell, provided each electron has a different
value of lz: Thus, when n≤ 2l+ 1, S = 1

2 n: The exclusion principle requires that when n> 2l+ 1,
the spin of each additional electron has spin opposite to the first 2l+ 1 electrons. Therefore, S is
reduced by half a unit from its maximum vale of l+ 1

2 for each electron after the first 2l+ 1
electrons.
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2. Once S has been determined, as per Hund’s first rule, the total angular momentum L of
the electrons of the lowest-lying states has the largest value. For example, the first electron in
the shell is in the level jlzj = l, which is its maximum value. The second electron is in the level
jlzj = l− 1: When the electrons are half filled, L = l+ ðl− 1Þ+… ½L− ðn− 1Þ� = 0: The spin
of the electrons that fill the second half of the shell are opposite to those in the first half, and
using the same arguments, L = 0:

3. The values of L and S or the states of lowest energy are obtained from the first two rules.
However, there are ð2L+ 1Þð2S+ 1Þ possible states that are degenerate. The degeneracy of these
states is lifted by spin-orbit coupling, which is of the form λðL̂ . ŜÞ: The total angular momentum
J can take on all integral values between jL− Sj and L+ S: Spin-orbit coupling favors minimum
J if λ is positive (for shells that are less than half filled) and maximum J if λ is negative (for
shells that are more than half filled). Thus, in the ground state,

J = jL− Sj, n≤ ð2l+ 1Þ,
J = L+ S, n≥ ð2l+ 1Þ . (12.22)

We note that when the shell is half full, L = 0 and there is no jump in J because J = S:

We further note that Hund’s rules apply to partially filled d and f shells but not to partially
filled p shells, which contain valence electrons and broaden into bands in the solid.

12.2.4 Van Vleck Paramagnetism
We consider the susceptibility of insulators containing ions with a partially filled shell. First, we
consider the case where J = 0 (shells that are one electron short of being half filled). The first term
in Eq. (12.17) still vanishes, as in the case of a filled shell. However, the second and third terms
contribute to the shift in the ground-state energy, and we obtain

ΔE0 = −∑
n

j<0jμBB . ðL̂ + 2ŜÞjn>j2
En −E0

+ e2B2

8mc2
∑
i
<0jðx2i + y2i Þj0>: (12.23)

Because J = 0, assuming as before that the free energy is equal to the ground-state energy, the mag-
netic susceptibility is given by

χ ≈−N
V

∂2E0

∂B2

≈−N
V

−2μ2B∑
n

j<0jL̂z + 2Ŝzjn> j2
En −E0

+ e2

4mc2
<0j∑

i
ðx2i + y2i Þj0>

" #
:

(12.24)

The first term in Eq. (12.24), which is positive, is known as Van Vleck paramagnetism, and the
second term is the Larmor diamagnetism derived for ions of filled shells. Thus, the magnetic
susceptibility of ions with a shell one electron short of being half filled is obtained by the sum of
the two terms. The Van Vleck paramagnetism also exists in molecules that have a more complex
structure than single atoms or ions.

It may be noted that the basic assumption made in these derivations is that the ground state is
occupied with appreciable probability in thermal equilibrium, and hence, the free energy is equal to
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the ground-state energy. However, if the next state is close to the J = 0 ground state, the free
energy is not just the ground-state energy, and the derivation of the formula for magnetic suscept-
ibility is much more complicated.

12.2.5 Landé g Factor
If J ≠ 0 for the shell, the first term for the shift in energy in Eq. (12.17) becomes the dominant term
compared to the other two terms, which yield the Larmor diamagnetism and Van Vleck paramagnetism.
If we ignore the last two terms in Eq. (12.17), we have to consider the matrix elements’ dominant term

ΔEn ≈ μBB<njL̂z + 2Ŝzjn> : (12.25)

Here, we have assumed that B = Bẑ: The ground state jn> is ð2J + 1Þ-fold degenerate in the absence of
the magnetic field. The matrix elements can be evaluated by diagonalizing and evaluating the matrix
elements of the ð2J + 1Þ-dimensional square matrix

<JLSJzjL̂z + 2ŜzjJLSJ′z> , (12.26)

where

Jz,J′z = −J, …, J: (12.27)

To evaluate these matrix elements, we use the Wigner–Eckart theorem according to which the matrix
elements of any vector operator Â in the ð2J + 1Þ-dimensional space of eigenstates of J2 and Jz with a
given value of J are proportional to the matrix elements of Ĵ itself:

<JLSJzjÂjJLSJ′z> = gðJLSÞ<JLSJzjĴjJLSJ′z> : (12.28)

The proportionality constant gðJLSÞ depends on Â but does not depend on the values of Jz and J′z :
Applying the Wigner–Eckart theorem to magnetism,

<JLSJzjL̂z + 2ŜzjJLSJ′z> = gðJLSÞ<JLSJzjĴzjJLSJ′z> = gðJLSÞJzδJzJ′z : (12.29)

Here, gðJLSÞ is known as the Landé g factor. The matrix is diagonal in the states of definite Jz, and the
ground state jn> , which is (2J+ 1)-fold degenerate, is split into states with definite values of Jz: From
Eqs. (12.25) and (12.29), we obtain

ΔEJz ≈ gðJLSÞμBBJz δJzJ′z : (12.30)

The energies are uniformly split by gðJLSÞμBB: The Landé g factor can be evaluated by writing, in ana-
logy with Eq. (12.28),

<JLSJzjðL̂ + 2ŜÞjJLSJ′z> = gðJLSÞ<JLSJzjĴjJLSJ′z> : (12.31)

We can also rewrite Eq. (12.31) in the alternate form (Problem 12.2)

<JLSJzjL̂ + 2ŜjJ′L′S′J′z> = gðJLSÞ<JLSJzjĴjJ′L′S′J′z> , (12.32)
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because both matrix elements vanish unless J = J′, L = L′, and S = S′: By using the completeness
relation,

∑
J″L″S″J″

jJ″L″S″J″z > <J″L″S″J″z j = 1, (12.33)

we can rewrite Eq. (12.32) in the alternate form

∑
J″L″S″J″z

<JLSJzjðL̂ + 2ŜÞjJ″L″S″J″z > .<J″L″S″J″z jĴjJ′L′S′J′z>
= gðJLSÞ ∑

J″L″S″J″z
<JLSJzjĴjJ″L″S″J″z > .<J″L″S″J″z jĴjJ′L′S′J′z> . (12.34)

Because the sum over Eq. (12.34) is taken over a complete set, from Eqs. (12.31), (12.32), and (12.34),
we obtain (Problem 12.3)

<JLSJzjðL̂ + 2ŜÞ . ĴjJLSJ′z> = gðJLSÞ<JLSJzjĴ2jJLSJ′z> : (12.35)

We have, from the relation (Problem 12.4),

Ĵ = L̂ + Ŝ, (12.36)

ðL̂ + 2ŜÞ . ðL̂ + ŜÞ = L̂
2
+ 2Ŝ

2
+ L̂ . Ĵ + 2Ŝ . Ĵ = 1

2
½3Ĵ2

− L̂
2
+ Ŝ

2�: (12.37)

From Eqs. (12.35) through (12.37), we obtain

gðJLSÞ = ½3JðJ + 1Þ−LðL+ 1Þ+ SðS+ 1Þ�
2JðJ + 1Þ : (12.38)

We note that for the ð2J + 1Þ-dimensional set of states that make up the degenerate atomic ground
state in the zero field, Eq. (12.32) can often be rewritten without the state vectors as

L̂ + 2Ŝ = gðJLSÞJ, (12.39)

as long as the matrix elements are diagonal in J,L, and S: If the splitting between the zero-field atomic
ground-state multiplet and the first excited multiplet is large compared with kBT , then the ð2J + 1Þ states
in the ground-state multiplet will contribute significantly to the free energy. In this case, we can rewrite
the first term of Eq. (12.32) by using Eq. (12.39), as the interaction ð−μ! .BÞ of the field B with a mag-
netic moment,

μ! = −gðJLSÞμBJ: (12.40)

The magnetic susceptibility has to be obtained from the free energy because the free energy cannot
be equated with the ground-state energy in this case. When B ! 0, the splitting of the ð2J + 1Þ
lowest-lying states would be small compared with kBT: As we will see, the magnetic susceptibility of
a collection of magnetic ions is paramagnetic and leads to Curie’s law.
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12.2.6 Curie’s Law
To calculate the Helmholtz free energy F, we assume that only the lowest-lying spin multiplet con-
tributes to the statistical mechanical sums. Thus, only the lowest 2J + 1 states are thermally excited
with appreciable probability. The Helmholtz free energy F, for a single ion in magnetic field B, is
given by

e−βF = ∑
J

Jz=−J
e−βgðJLSÞμBBJz = ∑

J

Jz=−J
e−βγBJz , (12.41)

where

γ = gðJLSÞμB: (12.42)

By summing over the geometric series, we obtain

e−βF = eβγBðJ+
1
2Þ − e−βγBðJ+

1
2Þ

eβγB/2 − e−βγB/2
: (12.43)

The magnetization of N ions in a volume V is defined as

M = −N
V

∂F
∂B

: (12.44)

From Eqs. (12.43) and (12.44), we obtain (Problem 12.5)

M = N
V

γJBJðβγJBÞ, (12.45)

where the Brillouin function BJðxÞ is defined as

BJðxÞ = ð2J + 1Þ
2J

coth 2J + 1
2J

x
� �

− 1
2J

coth 1
2J

x
� �

: (12.46)

If βγB ≪ 1, x≪ 1, and

cothx≈ 1
x + 1

3
x+Oðx3Þ, (12.47)

from Eqs. (12.46) and (12.47), we obtain

BJðxÞ≈ J + 1
3J

x≈ J + 1
3

βγB≈ J + 1
3

gðJLSÞβμBB: (12.48)

From Eqs. (12.45) and (12.48), we obtain

M = N
V

βg2μ2B
3

BJðJ + 1Þ: (12.49)

The magnetic susceptibility is

χ = ∂M
∂B

= N
V

ðgμBÞ2
3

JðJ + 1Þ
kBT

: (12.50)
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This is known as Curie’s law and characterizes paramagnetic systems with “permanent moments” of
which the alignment is opposed by thermal disorder but favored by the magnetic field. We note that
Curie’s law, as derived here, is valid as long as the system of magnetic ions is considered as
noninteracting.

We can rewrite Curie’s law in the alternate form

χ = 1
3
N
V

μ2Bp
2

kBT
, (12.51)

where the “effective Bohr magneton number” p is given by

p = gðJLSÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðJ + 1Þ

p
: (12.52)

12.3 MAGNETIC SUSCEPTIBILITY OF FREE ELECTRONS IN METALS
12.3.1 General Formulation
The diamagnetic and paramagnetic susceptibilities of free electrons in a metal were calculated by
Landau4 and Pauli, respectively. The diamagnetic susceptibility arises out of the orbital motion of
the electrons, and the paramagnetic susceptibility arises out of the realignment of spins in a mag-
netic field. It can be shown that Pauli paramagnetism is three times the value of Landau diamagnet-
ism with the signs reversed. In addition, there is an oscillatory contribution to the magnetic
susceptibility, which is known as the de Haas–van Alphen effect5. The de Haas–van Alphen effect
is an effective tool to measure the contours of the Fermi surface of a metal.

The spin-orbit interaction is not included in the following derivation for magnetic susceptibility
of free electrons. We will first calculate the magnetic susceptibility of a free electron gas confined
in a box.

For a free electron gas, one can write the magnetization density M as

M = − 1
V

∂F
∂B

, (12.53)

where F is the free energy

F = Nμ− 1
β
∑
k
ln Zk, (12.54)

β = 1/kBT , N is the total number of electrons, μ is the chemical potential, and the partition function is

Zk = 1+ e−βðEðkÞ−μÞ: (12.55)

The Schrodinger equation for free electrons in a magnetic field B (neglecting spin) is given by

HψðrÞ = 1
2m

ð−iħ∇+ eA
c
Þ2ψðrÞ = EψðrÞ: (12.56)
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We assume that the magnetic field is along the z direction, B = Bẑ, in which case A = Bxŷ (from
B = ∇×A). This is also known as the Landau gauge. In the Landau gauge, we can write

H = 1
2m

½ p2x + p2z + ð py +mωcxÞ2�, (12.57)

where the cyclotron frequency

ωc = eB/2mc: (12.58)

If we make the substitution

py = ħky, pz = ħkz, and x = − ħ
mωc

ky + q = x0 + q, (12.59)

Eq. (12.57) can be rewritten in the alternate form

H = 1
2m

ð p2x +m2ω2
cq

2Þ+ ħ2

2m
k2z : (12.60)

We consider the electrons to be confined in a rectangular parallelepiped of sides Lx, Ly, and Lz

with the Born–von Karman periodic boundary conditions. The solution of Eq. (12.56), which is a
plane wave eik

.r when A= 0, is modified (by using Eq. 12.60) as

ψðrÞ = eiðkyy+kzzÞϕðxÞ: (12.61)

Substituting Eqs. (12.60) and (12.61) in (12.56), we obtain

− ħ2

2m
ϕ″ðxÞ+ mω2

c

2
ðx− x0Þ2ϕðxÞ = E−

ħ2k2z
2m

 !
ϕðxÞ, (12.62)

where Eq. (12.62) is the Schrodinger equation of
the one-dimensional oscillator centered at x0: The
eigenvalues are

Ev =
ħ2k2z
2m

+ v+ 1
2

� �
ħωc, v = 0,1, 2,…: (12.63)

Thus, the energy of the electron is the sum of the
kinetic energy of its undisturbed motion along the
z direction, and the quantized energy of the oscil-
latory motion in the plane orthogonal to the field
direction. This part of the energy is the contribu-
tion due to the orbital motion. The energy of the
one-dimensional sub-bands is plotted as a function
of the wave number kz in Figure 12.1.The wave
function in Eq. (12.61) depends on ky and kz
directly and on kz and v indirectly through ϕðxÞ.

ν = 3

ν = 2

ν = 1

ν = 0

B = 0

E
ne

rg
y 

E

Wave number kz

kz

FIGURE 12.1

Sketch of the one-dimensional energy sub-bands in
the free electron model.
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Because one can choose any ky for a particular
value of kz and v, the state ky is degenerate.
Further, x0 lies in the range

−Lx/2 < x0<Lx/2: (12.64)

If we neglect spin, the states occur on the ky
axis in the intervals of 2π/Ly: One can write

− 1
2ħ

mωcLy< ky<
1
2ħ

mωcLx: (12.65)

Thus, ky can have ðLy/2πÞðmωcLx/ħÞ different
values. Furthermore, in the range dkz, the
z-component of k will have ðLz/2πÞdkz different values. The density of states is obtained by
multiplying by a factor of 2 for spin and dividing by the volume of the cube (Lx Ly LzÞ,

gðv, kzÞdkz = 2
ð2πÞ2

mωc

ħ
dkz: (12.66)

From Eqs. (12.63) and (12.66), we obtain (Problem 12.6)

gðE, vÞdE = 2
ð2πÞ2

hωc

2
2m
ħ2

� �3/2
E− v+ 1

2

� �
ħωc

� �−1/2
dE: (12.67)

The total density of states is obtained by summation over all bands that lie “below” the energy E,

gðEÞdE = ∑
v′

v = 0
gðE, vÞdE: (12.68)

It can be easily shown (Problem 12.7) that Eq. (12.68) has the same density of states as the zero-field
case. The average density of states is unaffected by a magnetic field. The states are redistributed due to
the magnetic field B, which pulls together a large number of states into a single level (see Figure 12.2).

The contribution due to spin is ±ðg/2ÞμBB, depending on its direction, where the Bohr magneton
μB = eħ/2mc and the g factor for free electrons is g = 2. If we include the contribution of spin, the
energy E is modified as

E± =
ħ2k2z
2m

+ ð2v+ 1ÞμBB±
g
2
μBB = E± μBB: (12.69)

12.3.2 Landau Diamagnetism and Pauli Paramagnetism
From Eqs. (12.53) through (12.55) and (12.69), we obtain the expression for magnetization per unit
volume (Problem 12.8),

M = − d
dB

nμ− 1
β

Z∞
0

gðE+ Þ ln ½eβðμ−EÞ + 1� dE+−
1
β

Z∞
0

gðE−Þ ln  ½eβðμ−EÞ + 1� dE−

8<
:

9=
;: (12.70)
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FIGURE 12.2

Sketch of the density of states for B = 0 and B≠ 0:
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In Eq. (12.70), the summation over the energy states is replaced by an integration because the
energy levels are very close together. Here, n is the electron concentration, and μ is the chemical
potential. We have

n =
Z∞
0

nðEÞdE =
Z∞
0

f ðEÞgðEÞdE, (12.71)

where f ðEÞ is the Fermi function,

f ðEÞ = ½1+ eβðEðkÞ−μÞ�−1: (12.72)

The density of states in k space is given by

gðEÞdE = 1
2π2

2m
ħ2

� �3/2
E1/2 dE: (12.73)

From Eqs. (12.71) through (12.73), we obtain

n = 2
mkBT

2πħ2

� �3/2
2ffiffiffi
π

p FðβμÞ, (12.74)

where the Fermi integral FðxÞ is given by

FðxÞ =
Z∞
0

y1/2

1+ eðy−xÞ
dy . (12.75)

It can be shown (Problem 12.9) that

FðxÞ≈
ffiffiffi
π

p
2

ex, for x< 0

and

FðxÞ≈ 2
3
x3/2, for x> 0: (12.76)

Using a similar expansion for Eq. (12.70) and for low temperatures, in which the first term is
retained, one can show that (Problem 12.10)

M =
3nμ2BB

2EF
1− 1

3
+

πkBT
μBB

EF

μBB

� �1/2
∑
∞

v=1

ð−1Þvffiffiffi
v

p cos  ðπvÞ
sin π

4
− πvEF

μBB

� �

sinh π
2vkBT
μBB

2
6664

3
7775: (12.77)

Here, EF is the Fermi energy (value of μ at T = 0). The magnetic susceptibility is obtained from the
expression

χ = ∂M
∂B

: (12.78)
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For most cases, M is linear in B for attainable field strengths, and the definition reduces to

χ ≈ M
B
: (12.79)

From Eqs. (12.77) and (12.79), we obtain (retaining only the first term in the series expansion),

χ = χP + χL + χdH−vA, (12.80)

where χP is the Pauli spin paramagnetism,

χP =
3nμ2B
2EF

, (12.81)

χL is the Landau diamagnetism,

χL = −
nμ2B
2EF

, (12.82)

and χdH−vA is the de Haas–van Alphen effect, which is oscillatory with a period
2μB
EF

: This is an
additional diamagnetic term given by

χdH−vA ≈
3nπ
2β

μB
EFB

� �1/2 sin π
4
− πEF

μBB

� �

sinh π2

μBβB

� �
0
BB@

1
CCA: (12.83)

We note from Eq. (12.83) that because the sin term is oscillatory,

sin  π
4
− πEF

μBB

� �
= sin π

4
− πEF

μBB
+ 2nπ

� �
, (12.84)

χdH−vA is oscillatory whenever

πEF

μBB
=

πEF

μBB
+ 2nπ (12.85)

or

1
B

= 1
B
+

2nμB
EF

: (12.86)

χdH−vA is periodic in 1/B with a temperature-independent period 2μB/EF: However, these oscillations
can be observed only at low temperatures and high magnetic fields. It will be shown that the
condition for such oscillations is

ħωc = 2μBB≫ 1
β
: (12.87)

Otherwise, the distribution of electrons in the region of EF is widely spread, and the oscillations are
spread out.
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The origin of each of the previous three contributions to the magnetic susceptibility of a free
electron gas can be explained in simple manner. The origin of the Pauli spin paramagnetism is the
additional contribution ±μBB to the kinetic energy of the electrons due to the magnetic field,
depending on their spin directions. This is shown in Figure 12.3.

In Figure 12.3a, the occupied states for both spins are the same in the absence of a magnetic
field. The highest occupied states for each spin have the energy equal to the Fermi energy EF: In
Figure 12.3b, the states of opposite spins are shifted in a magnetic field B: However, the “occupied”
states above EF with spin “up” flow to the “unoccupied” states with spin “down” until the states are
filled. The imbalance of the density of states in a magnetic field between the two spin states contri-
butes to the positive Pauli paramagnetism.

The Landau diamagnetic term represents the orbital quantization of the electrons in a magnetic field.
It is one-third the contribution of the Pauli paramagnetism and is of the opposite (negative) sign. The
theory of diamagnetic susceptibility of metals was derived by Misra and Roth (Ref. 12). The theory of
magnetic susceptibility of Bloch electrons was derived by Misra and Kleinman (Ref. 13).

12.3.3 De Haas–van Alphen Effect
The de Haas–van Alphen effect5, which has been
used extensively to investigate the Fermi surfaces
of metals, can be explained by first assuming that
the Fermi level is approximately constant as B is
varied. The validity of this assumption can be
seen in Figure 12.4. We note GðEÞ∼G0ðEÞ as
the energy increases. Here, GðEÞ and G0ðEÞ are
the number of states below the energy E in the
presence and absence of the magnetic field.
Because the number of states below the Fermi
level EF is half of the number of electrons at
T = 0 (each state can have two electrons), EF is
approximately constant as B is varied.
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FIGURE 12.3

Sketch of densities of states g↓ and g↑ as a function of energy.
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FIGURE 12.4

The ratio of the number of states G(E ) below E in a
magnetic field to the number G0(E ) in the absence
of a magnetic field.
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If we consider the case at T = 0, all states are filled up to the Fermi level EF , and all states
above it are empty. If we consider a plane slab in k space of thickness δkz at kz, the number of
allowed values of kz in the range δkz is ðLz/2πÞ δkz: The total degeneracy of the state v (neglecting
spin) per unit volume in the slice δkz is (from Eq. 12.66)

mωc

4π2ħ
δkz = ξB: (12.88)

Thus, the degeneracy parameter (apart from spin), which is defined as the degeneracy per unit mag-
netic field per unit volume, is

ξ =
eδkz
4π2ħc

: (12.89)

We consider the de Haas–van Alphen effect for a free electron gas at absolute zero. Figure 12.5
shows the spectrum of the Landau levels when the energy E is plotted versus B.

At T= 0, all levels in the slice δkz will be filled (Figure 12.5) for which

ðv+ 1
2
Þħωc +

ħ2k2z
2m

≤EF , (12.90)

which can be rewritten in the alternate form,

ðv+ 1
2
Þħωc ≤ ε′F , (12.91)

where

ε′F = EF −
ħ2k2z
2m

: (12.92)

At T = 0, if v′ is the highest filled level, n, the
number of electron states in the slice of thickness
δkz is (from Eq. 12.89 and the fact that v = 0 is a
filled level)

n = ðv′+ 1ÞξB: (12.93)

When B is increased, n increases linearly with
B until v′ coincides with ε′F : As B is further
increased, all the electrons in v′ will have energy
greater than ε′F , and hence, they will empty out
into the orbits in other slices with different values
of kz and ε′F: This oscillatory evacuation occurs
when

ðv′+ 1
2
Þ = ε′F

ħωc
=

mcε′F
eħ

1
B
: (12.94)
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FIGURE 12.5

Sketch of the spectrum of Landau levels versus B.
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Hence, the population δn is approximately a periodic function of 1/B, with period eħ
mcε′F : The energy

of the electrons in the slice δkz in a magnetic field B such that the population n0 is

E0 = ħξBωc∑
v′ �

v+ 1
2

�
+ n0

ħ2k2z
2m

= 1
2
ħξBωcðv′+ 1Þ2 + n0

ħ2k2z
2m

: (12.95)

From Eqs. (12.89) and (12.95), we obtain

E0 =
1
2
ħωc

ξB
n20 + n0

ħ2k2z
2m

, (12.96)

where n0 = ðv′+ 1ÞξB from Eq. (12.89) for this value of B: For a nearby B that has the same value of
v′ for the highest filled state,

E = 1
2
ħωc

ξB
n2 + n

ħ2k2z
2m

+ ðn0 − nÞεF , (12.97)

where ðn0 − nÞεF is the change in energy arising out of the transfer of n− n0 electrons at the Fermi
level while the first two terms are the energy of the electrons in the slice δkz: From Eqs. (12.92),
(12.96), and (12.97), we obtain

δE = E−E0 =
μ
ξ
ðn2 − n20Þ+ ðn0 − nÞε′F , (12.98)

where

μ = eħ
2mc

: (12.99)

Further, from Eq. (12.94),

ε′F ≈ ðn0/ξBÞħωc = 2μn0/ξ: (12.100)

From Eqs. (12.98) and (12.100), we obtain

δE =
μ
ξ

� �
ðn− n0Þ2: (12.101)

From Eq. (12.101), δM, the magnetization of the slice at T= 0,

δM = −∂E
∂B

= − 2μ
ξ

ðn− n0Þ dn
dB

: (12.102)

From Eqs. (12.93), (12.94), and (12.100), we have

dn
dB

≈ ε′F
ξ

2μB

� �
: (12.103)

From Eqs. (12.102) and (12.103), we obtain

δM ≈− ε′F
B
ðn− n0Þ: (12.104)

12.3 Magnetic Susceptibility of Free Electrons in Metals 385



As B is increased, n− n0 oscillates with extrema ± 1
2 ξB because the population of the level v′

varies between ξB and 0. Thus, the magnetization varies between ∓ 1
2 ξε′F: This oscillation of the

magnetization as a periodic function of B is known as the de Haas–van Alphen effect, a more rigor-
ous analysis of which was presented earlier in this section. The de Haas–van Alphen oscillations are
sensitive probes of the geometrical property of the Fermi surface. The areas of the extremals of the
electron orbits can be determined from the period of oscillation.

Because the de Haas–van Alphen effect is an important tool and is widely used to experimentally
measure the contours of the Fermi surface of crystalline solids, we will present the sequence of events
that occur when a magnetic field is applied to a free electron gas in a rectangular parallelepiped, the
Fermi surface of which is a sphere prior to the application of a magnetic field.

Figure 12.6 shows a plane section in the k space. The electron states are uniformly distributed in
the ðkx, kyÞ plane. The magnetic field B is directed normally into the plane section. The k states are
subjected to a Lorenz force, and all the k states rotate with the cyclotron frequency about an axis
through the origin and parallel to the field direction.

The magnetic field causes a redistribution of the k states that lie on rings that correspond to the
energies

Ev = ðv+ 1
2
Þħωc =

ħ2k2v
2m

: (12.105)

These rings are shown in Figure 12.7. Because the magnetic field B is in the z direction, kz is not
affected by it. Thus, in the k space, the representative points lie on cylinders (Landau cylinders) of
which the cross-sections are the Landau rings.

At T = 0, the k states are within the Fermi sphere of radius kF : Thus, the Landau cylinders,
shown in Figure 12.8, are either partially occupied or fully empty.

F

ν

k

ν ×B

FIGURE 12.6

A magnetic field B is directed normally into the
plane section of k space.

0 1 2 3 kx

ky

FIGURE 12.7

The Landau levels have a concentric circular form
in the ðkx , ky Þ plane but have cylindrical surfaces
in the k space.
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Figure 12.9 shows the de Haas–van Alphen oscillations for metals with complicated crystal
structures as B is decreased. Usually, the Fermi surface of such metals has a thin neck and a thick
belly. The large-scale oscillations, of which the amplitude decreases with decreasing B, are due to
the extremal orbits around the thin neck, whereas the barely resolved small-scale oscillations are
due to the extremal orbits of the thick belly.

ν ν ′ ν ″

FIGURE 12.8

Landau cylinders. As the magnetic field B is increased, the cylinders expand until they become empty when
they cross the Fermi sphere.

1
B

FIGURE 12.9

The de Haas–van Alphen oscillations for a metal with complex structure with decreasing magnetic field.
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12.4 MANY-BODY THEORY OF MAGNETIC SUSCEPTIBILITY OF BLOCH
ELECTRONS IN SOLIDS

12.4.1 Introduction
Misra et al. (Ref. 14) derived an expression for the total magnetic susceptibility ðχÞ of Bloch elec-
trons in solids (including spin-orbit interaction) that includes both many-body and interband
effects.14 They used a finite-temperature Green’s function formalism to express the thermodynamic
potential ΩðT ,V , μ,BÞ for an interacting electron system in the presence of a periodic potential V
(r), spin-orbit interaction, and external magnetic field B in terms of the exact one-particle propaga-
tor G: They showed that the total magnetic susceptibility of a nonferromagnetic solid can be
expressed as the sum of three terms,

χ = χo + χs + χso, (12.106)

where χo is the orbital contribution, χs is the spin contribution, and χso is the contribution of the
spin-orbit coupling on the orbital motion of the Bloch electrons. An important aspect of their deri-
vation is the analysis of exchange and correlation effects on each of these terms that have been
explicitly calculated.

Misra et al. (Ref. 14) have shown that if they make a simple approximation for the self-energy,
their expression for χo is reduced to the earlier results. If they make drastic assumptions while
solving the matrix integral equations for the field-dependent part of the self-energy, their expression
for χs is equivalent to the earlier results for the exchange-enhanced χs but with the g factor replaced
by the effective g factor, a result that has been intuitively used but not yet rigorously derived.
An important aspect of their derivation is the analysis of exchange and correlation effects on χso
that are more subtle and cannot be included in an intuitive way.

12.4.2 Equation of Motion in the Bloch Representation
The exact one-particle propagator G satisfies the equation

ðξl − ĤÞGðr, r′, ξlÞ+
Z

dr″Σ̂ðr, r″, ξlÞGðr″, r′, ξlÞ = δðr− r′Þ, (12.107)

where Σ̂ is the exact proper self-energy operator, ξl is the complex energy,

ξl =
ð2l+ 1Þπi

β
+ μ, l = 0, ±1, ±2, :::, (12.108)

and Ĥ is the Hamiltonian of the Bloch electron in a magnetic field,

Ĥ = 1
2m

p+ eA
c

� �2
+ ħ2

4m2c2
σ! . ∇!V × p+ eA

c

� �
+VðrÞ+ ħ2

8m2c2
∇2V + 1

2
gμBB . σ!: (12.109)

In the absence of the magnetic field, both G and Σ̂ have the symmetry

Gðr+R, r′+R, ξlÞ = Gðr, r′, ξlÞ (12.110)

388 CHAPTER 12 Diamagnetism and Paramagnetism



and

Σ̂ðr+R, r′+R, ξlÞ = Σ̂ðr, r′, ξlÞ: (12.111)

The vector potential in the Hamiltonian destroys this symmetry. It can be shown that in a
symmetric gauge ðA = 1

2 B× rÞ, both Ĝ and Σ̂ can be written as the product of a Peierls phase
factor and a part that has the preceding symmetry,

Gðr, r′, ξl, hÞ = eih
.r×r′ eGðr, r′, ξl, hÞ (12.112)

and

Σ̂ðr, r′, ξl, hÞ = eih
.r×r′ eΣðr, r′, ξl, hÞ, (12.113)

where

h = eB
2ħc

: (12.114)

Substituting Eqs. (12.112) and (12.113) in Eq. (12.108), commuting the differential operator
through the Peierls phase factor, and then multiplying the left side by e−ih

.r× r′, we obtain
(Problem 12.11)

ðξl− 1
2m

½p+ ħh× ðr−r′Þ�2− ħ
4m2c2

σ!.∇!V × ½p+ ħh× ðr− r′Þ�−VðrÞ− ħ2

8m2c2
∇2V

−1
2
gμBB . σ!ÞeGðr, r′, ξl, hÞ−

Z
dr″eih.ðr′×r+r×r″+r″×r′ÞeΣðr, r″, ξl,hÞeGðr″, r′, ξl,hÞ= δðr−r′Þ .

(12.115)

One can write the equation of motion in the Bloch representation, i.e., in terms of the basis functions,

ψnkρðrÞ = eik
.rUnkρðrÞ, (12.116)

where UnkρðrÞ is a periodic two-component function, n is the band index, k is the reduced wave vector,
and ρ is the spin index. Using the Bloch representation, one can show that Eq. (12.115) can be rewritten
as (Problem 12.12)

½ξl−Ĥð κ!, ξlÞ�eGðk, ξlÞ= I, (12.117)

where

Ĥð κ!, ξlÞ= 1
2m

ðp+ħ κ!Þ2+VðrÞ+ ħ
4m2c2

σ!.∇!V×ðp+ħ κ!Þ+ ħ2

8m2c2
∇2V+ 1

2
gμBB . σ!+Σð κ!, ξlÞ

(12.118)

and

κ!= k+ ih×∇k: (12.119)

12.4 Many-Body Theory of Magnetic Susceptibility of Bloch Electrons in Solids 389



12.4.3 Thermodynamic Potential
The grand partition function of a system is defined as

ZG = Trfe−βðĤ−μN̂Þg, (12.120)

where μ is the chemical potential, and N̂ is the operator giving the number of particles. If we write
ZG in the form

ZG = e−βΩðT ,V ,μ,BÞ, (12.121)

all the thermodynamic properties may be derived from ΩðT ,V , μ,BÞ, which is called the thermody-
namic potential. It can be easily shown that the mean energy E is given by

Ω = E− μN −TS, (12.122)

where N is the mean number of particles, and S is the entropy. Because S ! 0 when T ! 0, the
last term in Eq. (12.122) is neglected.

It can be shown that the thermodynamic potential for an interacting system is given by

Ω = 1
β
Tr lnð−eGξlÞ+ 1

β
½−TreΣξl

eGξl +ϕðeGξlÞ� � Ωqp + Ωcorr: (12.123)

Here, eGξl � eGðξlÞ and eΣξl � eΣðGξlÞ are the one-particle Green’s function and the proper self-energy,
respectively. ξl stands for the imaginary frequencies, Ωqp is the contribution from quasiparticles,
and Ωcorr describes the corrections from electron correlations. The functional

ϕðeGξlÞ = lim
λ!1

Tr∑
n

λn

2n
eΣðnÞðeGξlÞeGξl , (12.124)

where Tr involves summation over both the imaginary frequencies and one-particle states, and
ΣðnÞðeGξlÞ is the nth-order self-energy part, where only the interaction parameter λ occurring explicitly
in Eq. (12.123) is used to determine the order. In fact, ϕðeGξlÞ is defined through the decomposition of
ΣðnÞðeGξlÞ into skeleton diagrams. There are 2n eGξl lines for the nth-order diagrams in ϕðeGξlÞ: Differ-
entiating ϕðeGξlÞ with respect to eGξl has the effect of “opening” any of the 2n lines of the nth-order
diagram, and each will give the same contribution when Tr is taken.

12.4.4 General Formula for χ
The magnetic susceptibility is calculated from the expression

χμv = − 1
V
lim
B!0

∂2Ω
∂Bμ∂Bv

: (12.125)

From Eqs. (12.121) through (12.123), it can be shown that14

χμv = 1
Vβ

− ∂2

∂Bμ∂Bv
Tr lnð−eGξlÞ+Tr

∂2eΣξl

∂Bμ∂Bv
eGξl +Tr

∂eΣξl

∂Bμ

∂eGξl

∂Bv

" #
B!0

: (12.126)
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We can expand

eΣð κ!, B, ξlÞ = eΣðk, B, ξlÞ− ihαβ
∂eΣðk, B, ξlÞ

∂kα
∇β

k−
1
2
hαβhγδ

∂2eΣ
∂kα∂kγ

∇β
k∇

δ
k +… (12.127)

and

eΣðk, B, ξlÞ = Σ0ðk, ξlÞ+BμΣ1,μðk, ξlÞ+BμBvΣ2,μvðk, ξlÞ+…, (12.128)

where

hαβ = ∈αβγ h
γ , (12.129)

∈αβγ is the antisymmetric tensor of the third rank, and we follow the Einstein summation conven-
tion. From Eqs. (12.118), (12.119), (12.127), and (12.128) (Problem 12.13), we obtain

Ĥð κ!, ξlÞ = Ĥ0ðk, ξlÞ+ Ĥ′ðk, ξlÞ, (12.130)

where

Ĥ0ðk, ξlÞ = 1
2m

ðp + ħkÞ2 +VðrÞ+Σ0ðk, ξlÞ+ ħ2

8mc2
∇2V + ħ

4m2c2
σ! . ∇!V × ðp + ħkÞ (12.131)

and

Ĥ′ðk, ξlÞ = −ihαβ∏
α∇β

k +
1
2
gμBB

μσμ +BμΣ1,μðk, ξlÞ−ihαβBμ ∂Σ1,μ

∂kα
∇β

k

− 1
2
hαβhγδ

ħ2

m
δαγ +

∂2Σ0

∂kα∂kγ

� �
∇β

k∇
δ
k +BμBvΣ2,μvðk, ξlÞ,

(12.132)

where the terms up to the second order in the magnetic field are retained, and ∏
	!

=ħ is the velocity
operator,

∏
	!

= ħ
m
ð p!+ ħkÞ+ ħ2

4m2c2
σ!× ∇!V +∇kΣ0ðk, ξlÞ: (12.133)

We can make a perturbation expansion

eGðk, ξlÞ = G0ðk, ξlÞ+G0ðk, ξlÞH′G0ðk, ξlÞ+G0ðk, ξlÞH′G0ðk, ξlÞH′G0ðk, ξlÞ+ :::,⋯ (12.134)

where

G0ðk, ξlÞ = 1
ξl −H0ðk, ξlÞ

, (12.135)

and only terms up to the second order in the magnetic field are retained. It can be shown that
(Problem 12.14)

∇α
kG0ðk, ξlÞ = G0ðk, ξlÞ∏αG0ðk, ξlÞ (12.136)
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and

∇α
k∇

γ
kG0ðk, ξlÞ = G0

ħ2

m
δαγ +Χαγ

� �
G0 +G0∏

αG0∏
γG0 +G0∏

γG0∏
αG0, (12.137)

where

Χαγ = ∇α
k

ħ2

4m2c2
ð σ! × ∇!VÞγ +∇γ

k ∑
0ðk, ξlÞ

� �
: (12.138)

After considerable algebra (for details, see Misra et al.14), the general expression for the total mag-
netic susceptibility of nonferromagnetic solids (including exchange and correlation effects) is obtained as

χμv = χμv0 + χμvs + χμvso , (12.139)

where

χμv0 = ∑
k
ð1+ δμvÞ

(
e2∈αβμ∈γδv

48ħ2c2
∇α

k∇
γ
kEn ∇β

k∇
δ
kEn f ′ðEnÞ

+

"
e2∈αβμ∈γδv

4ħ2c2
ð− 2ħ2

m

∏α
nρ,mρ′∏

γ
mρ′,nρ

E2
mn

δβδ + 2
∏α

nρ,mρ′∏
γ
mρ′,nρ″∏

β
nρ″,qρ″′∏

δ
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Emn
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)

(12.140)

where

Emn�Em −En, (12.141)

and repeated indices means summation over band and spin. Similarly, one can show14 that the effective
Pauli spin susceptibility, including the exchange and correlation effects is,

χμvs = − 1
8
ð1+ δμvÞμ2B ∑

n, k,ρ,ρ′
gvnnðkÞσvnρ,nρ′ gμnnðkÞσμnρ′,nρ + 2

μB
Σ1,μ
nρ′,nρ

� �
f ′ðEnÞ, (12.142)

where the effective g matrix is defined as

gvnnðkÞσvnρ,nρ′ = ie
μBħc

∈αβv ∑
m,ρ″

∏α
nρ,mρ″∏

β
mρ″,nρ′

Emn
+ gσvnρ,nρ′: (12.143)
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The additional spin-orbit contribution to the magnetic susceptibility is14

χμvso = ∑
k
ð1+ δμvÞ

"
e2∈αβμ∈γδv
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Emn
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f ðEnÞ,

(12.144)

where

J
!

= σ!+ 1
gμB

Σ1, (12.145)

Yμv = ∂Σ1,v

∂kμ , (12.146)

and

Fv = σv + 2
gμB

Σ1,v: (12.147)

12.4.5 Exchange Self-Energy in the Band Model
The exchange contribution to the self-energy is local in r space. In the simple static screening
approximation, the self-energy is independent of ξl: Neglecting the field dependence of screening as
well as that of veff ðr, r′Þ,

eΣðr, r′Þ = − 1
β
∑
ξl

veff ðr, r′ÞeGðr, r′, ξlÞ, (12.148)

eΣ and eG can be expanded in terms of Bloch states as follows:

eΣðr, r′Þ = ∑
n,m,k,ρ,ρ′

eΣnρ,mρ′ðkÞψnkρðrÞψ�
mkρ′ðr′Þ (12.149)

and

eGðr, r′Þ = ∑
n,m,k,ρ,ρ′

eGnρ,mρ′ðkÞψnkρðrÞψ�
mkρ′ðr′Þ . (12.150)
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Substituting Eqs. (12.149) and (12.150) in (12.148), we obtain

∑
n,m,ρ,ρ′

eΣnρ,mρ′ðkÞψnkρðrÞψ�
mkρ′ðr′Þ

= − 1
β

∑
ξl,p,q,k′,ρ,ρ′

veff ðr, r′ÞeGpρ,qρ′ðk′, ξlÞψpk′ρðrÞψ�
qk′ρ′ðr′Þ .

(12.151)

If the effective electron–electron interaction is spin independent, then ρ = ρ, ρ′ = ρ′, and we
obtain

Σnρ,mρ′ðkÞ = − 1
β

∑
k′,ξl ,p,q

<nmjveff ðk, k′Þjpq> ρρ′
eGpρ,qρ′ðk′, ξlÞ, (12.152)

where (Problem 12.15)

<nmjveff ðk, k′Þjpq> ρρ′ =
Z

ψ�
nkρðrÞψmkρ′ðr′Þveff ðr, r′Þψpk′ρðrÞψ�

qk′ρ′ðr′Þdrdr′: (12.153)

Eq. (12.153) is the exchange self-energy in the band model. One can obtain Σ0, Σ1, Σ2, and so on
(defined in Eq. 12.128), by expanding eG. We make the further approximation

<nnjveff ðk, k′Þjpq> ρρ′ ≈ <nnjveff ðk, k′jpp> δpq = vnpðk, k′Þδpq: (12.154)

From Eqs. (12.152) and (12.154),

eΣnρ,nρ′ðkÞ = − 1
β

∑
k′, ξl,ρ

vnpðk, k′ÞeGpρ,pρ′ðk′, ξlÞ . (12.155)

Substituting only the value of the first-order terms of B occurring in eG from Eq. (12.134) on the
right side of Eq. (12.155), and neglecting the terms proportional to f , we obtain (Problem 12.16)

Σ1,μ
nρ,nρ′ðkÞ≃−∑

mk′
vnmðk, k′ÞΣ1,μ

mρ,mρ′ðk′Þf ′mðk′Þ− 1
2
μB∑

mk′
vnmðk, k′Þgμmmðk′Þσμmρ,mρ′f ′mðk′Þ: (12.156)

Similarly, to calculate Σ1
nρ,mρ′ðkÞ, we assume

<nmjveff ðk, k′Þjpq> ρρ′ = vnmðk, k′Þδnpδmq: (12.157)

From Eqs. (12.152) and (12.157), we obtain

eΣnρ,mρ′ðkÞ = − 1
β
∑
k′, ξl

vnmðk, k′ÞeGnρ,mρ′ðk′, ξlÞ . (12.158)

12.4.6 Exchange Enhancement of χs
We will first discuss how χμμs gets exchange enhanced. One can rewrite Eq. (12.142) in the alternate
form

χμμs = χμμ0,s + χμμ1.s, (12.159)
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where

χμμ0,s = − 1
4
μ2B ∑

n,k,ρ,ρ′
gμnnσ

μ
nρ,nρ′g

μ
nnσ

μ
nρ′,nρ f ′ðEnÞ (12.160)

is the effective Pauli spin susceptibility for noninteracting Bloch electrons, and

χμμ1,s = − 1
2
μB ∑

n,k,ρ,ρ′
gμnnΣ

1,μ
nρ,nρ′σ

μ
nρ′,nρ f ′ðEnÞ (12.161)

is the contribution due to exchange and correlation. If we consider the individual band enhancement
and neglect interband interactions in the expression for Σ1,μ

nρ,nρ′ in Eq. (12.156), make an average
exchange enhancement ansatz, and assume vnm ≃ vnnδnm, which is equivalent to the assumption that
Σ1,μ is independent of k, we obtain

Σ1,μ
nρ,nρ′ =

1
2

αn
1−αn

μBg
μ
nnσ

μ
nρ,nρ′, (12.162)

where

αn = −∑
k′,m

vnmðk, k′Þf ′ðEmðk′ÞÞ: (12.163)

From Eqs. (12.159) through (12.162), we obtain

χμμs = ∑
n

χμ0s,n
ð1−αnÞ, (12.164)

where χμμ0s.n is the contribution to effective Pauli susceptibility for each band. Eq. (12.164) is known
as the Stoner enhancement, which was obtained by making drastic assumptions while solving
the matrix integral equations for Σ1,μ

nρ,nρ′: However, the neglect of coupling of interband terms, i.e., cou-
pling between Σ1,μ

nρ,nρ′, might be too drastic for systems such as Be, Cd, and so on. It can be easily
shown14 that even in a simple two-band model, the exchange enhancement of χs is quite different
from the simple form obtained from Eq. (12.164).

12.4.7 Exchange and Correlation Effects on χo
The exchange and correlation effects on χo are very complicated. We consider only the first term of
Eq. (12.140),

χμv0 ≈ χqpLP = ∑
k
ð1+ δμvÞ

e2∈αβμ∈γδv

48 ħ2c2
∇α

k∇
γ
kEn∇β

k∇
δ
kEn f ′ðEnÞ, (12.165)

which is the familiar Landau–Peierls susceptibility for quasiparticles ðχqpLPÞ, because the energy in
the Landau–Peierls term is the quasiparticle energy. This is the well-known Sampson–Seitz prescrip-
tion that had been stated without proof. If we include the effects of electron–electron interaction
through an effective mass and ignore the band effects, we obtain the well-known results for χo,

21

χqpLP =
χLP

1+A1/3
, (12.166)
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where A1 is the Fermi-liquid parameter. The second through fifth terms in Eq. (12.140) are corrections
to the Landau–Peierls term, which are zero for free electrons, but are of the same order as χLP for
band electrons even in the absence of electron–electron interactions.12 Therefore, while one considers
many-body effects on χo, it is wrong to consider only χqpLP as was done in earlier calculations.

12.4.8 Exchange and Correlation Effects on χso
The effect of electron–electron interactions is different on the various terms in χso in Eq. (12.144).
A discussion of these effects is beyond the scope of this book except to note that even in the
absence of exchange and correlation effects, the contributions of χso are of the same order as χs for
some metals and semiconductors.

12.5 QUANTUM HALL EFFECT
12.5.1 Introduction
von Klitzing et al.20 first observed the integer quantum Hall effect (QHE) in a two-dimensional electron
gas formed by an inversion layer at an Si/SiO2 interface (discussed in Chapter 11). We note that
a two-dimensional electron gas can be formed at the semiconductor surface if the electrons are fixed
close to the surface by an external electric field in either Silicon MOSFETS or GaAs-AlxGa1–xAs
heterostructures (Chapter 11). In fact, a two-dimensional electron gas is essential for the
observation of the quantum Hall effect. In addition to the quantum phenomena connected with the
confinement of electrons within a two-dimensional layer, the Landau quantization of the electron
motion in a strong magnetic field is necessary for the interpretation of the quantum Hall effect. We will
discuss the integer quantum Hall effect in detail and briefly mention the fractional quantum Hall effect,
discovered soon after, because a detailed discussion involving many-body theory is beyond the scope of
this book.

12.5.2 Two-Dimensional Electron Gas
The energy of mobile electrons in semiconductors can be written as

E = ħ2

2m� ðk2x + k2y + k2z Þ: (12.167)

When the energy for the motion in the z direction
is fixed by using a triangular potential with an
infinite barrier at the surface (z = 0) and with a
constant electric field Fs for z ≥ 0 (z is positive
downward), one obtains a quasi-two-dimensional
electron gas (as shown in Figure 12.10).

The electrons are confined close to the surface
due the electrostatic field Fs normal to the interface
originating from the positive charges, which causes
a drop in the electron potential toward the surface.

Positive charge
(ionized impurities)

Insulator

Semiconductor
(p − GaAs)

AlxGa1−xAs

FIGURE 12.10

Two-dimensional electron gas formed close to
the semiconductor surface of GaAs-AlxGa1–xAs
heterostructures by an external electric field along the
z direction.
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The energy of the carriers is grouped into electric sub-bands corresponding to the quantized levels for the
motion in the z direction provided the potential well is small compared to the de Broglie wavelength of
the electrons. At very low temperatures (T< 4º K), if the carrier densities of the two-dimensional electron
gas are small such that only the lowest electric sub-band E0 is occupied with electrons (the electric
quantum limit that occurs when the Fermi energy EF is small compared with the sub-band separation
E1 – E0), the energy spectrum can be written as

E = E0 +
ħ2k2jj∥
2m� , (12.168)

where kjj is a wave vector within the plane of the electron gas.
The experimental arrangement for QHE measurements is shown in Figure 12.11. For measure-

ment of current, heavily doped n+ contacts are used as current contacts and potential probes at the
semiconductor surface.

The resistivity component ρxx is directly proportional to σxx = σyy, σxy = −σyx. Hence,
ρxx = σxx/ðσ2xx + σ2yyÞ: This means that the condition σxx = 0 (fully occupied Landau levels) leads to
ρxx = 0: Thus, a correct value for the quantized Hall resistance is RH = h/e2n, which is expected
only under the condition ρxx = 0:

12.5.3 Quantum Transport of a Two-Dimensional Electron Gas
in a Strong Magnetic Field

When a strong magnetic field B is applied such that Bz is normal to the interface, the two-dimensional
electrons move in cyclotron orbits parallel to the surface. The energy levels can be expressed as

En = E0 +
�
n+ 1

2

�
ħωc + gsμBB, (12.169)

Gate

n+
n-inversion layer

(2DEG)

(a)

ρ − Si

SiO2

Drain DrainSource Source Gate
GaAs (undoped)

GaAs (undoped)

GaAs (semi-insulating)

Al0.3Ga0.7As

2DEG

(b) (c)

Undoped

Si-doped
20 nm

140 nm

5 nm

2DEG

1 μm

FIGURE 12.11

Typical geometries and cross-sections of devices used in the quantum Hall experiments. From left to right:
(a) Long silicon device (Hall geometry) with potential probes (for Rx measurements) and Hall probes (for
RH measurements): typical length: 0.5 mm. (b) Circular MOS device for σxy measurements. (c) Cross-
section and top view of a GaAs−Al0:3Ga0:7As heterostructure with Hall geometry.

Reproduced from von Klitzing19 with the permission of Elsevier.
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where ωc is the cyclotron frequency ðωc = −eB/m�Þ, and s is the spin quantum number, s = ± 1
2 :

Laughlin (Ref. 8) derived an expression of a 2DEG in a strong magnetic field by considering the iso-
tropic effective-mass Hamiltonian

Ĥ = 1
2m� p+ e

c
A

h i2
−eE0y, (12.170)

where the y coordinate is related to the vector potential (in the Landau gauge),

A = Byx̂: (12.171)

From Eqs. (12.170) and (12.171), the wave functions are given by

ψ k,n = eikxϕnðy− y0Þ, (12.172)

where ϕn is the solution of the harmonic-oscillator equations

1
2m� p2y + ðe

c
BÞ2y2

h i
ϕn = ðn+ 1

2
Þħωcϕn (12.173)

and

y0 =
1
ωc

ħk
m� −

cE0

B

h i
: (12.174)

The energy of the state is

En,k = ðn+ 1
2
Þħωc−eE0y0 +

1
2
m�ðcE0BÞ2: (12.175)

The y0 are changed by a vector potential increment ΔAx̂ only through the location of their centers,

y0 ! y0 −ΔA/B: (12.176)

It is obvious from Eqs. (12.175) and (12.176) that the energy changes linearly with ΔA:
From Eq. (12.174), one can obtain the degeneracy factor for each Landau level that is given by

the number of center coordinates y0 (note that y− y0 is a good quantum number) in the sample. For
a two-dimensional electron gas confined in a device of dimensions Lx, Ly,

Δy0 =
1
ωc

ħΔk
m�c

= −ħ
eB

Δk = −ħ
eB

2π
Lx

= −h
eBLx

: (12.177)

The degeneracy factor is given by

N0 =
Ly

Δy0
=

−LxLyeB

h
, (12.178)

(note that e is negative) which is the same as the number of the flux quanta in the sample. The
degeneracy factor per unit area (from Eq. 12.178) is

N =
N0

LxLy
= −eB

h
: (12.179)
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Thus, the degeneracy factor for each Landau level is independent of the effective mass and other
semiconductor parameters.

It can be shown that the Hall voltage UH of a two 2DEG with a surface carrier density ns
(ns = nN, when n energy levels are fully occupied) is

UH = − B
nse

I, (12.180)

where I is the current in the sample. From Eqs. (12.179) and (12.180), the Hall resistance

RH =
UH

I
= − B

nse
= − B

nNe
= h

ne2
, (12.181)

where n= 1, 2, 3,…. Thus, whenever

n = − nsh
eB

(12.182)

is an integer (by adjusting the magnetic field B and the density of states ns), the Hall resistance is
quantized. When the condition outlined in Eq. (12.182) is satisfied, there is no current flow in the direc-
tion of the electric field, and hence, the conductivity σxx = 0: The electrons move like free particles per-
pendicular to the electric field. The quantized plateaus in the Hall resistance are shown in Figure 12.12.

10

B = 18.9 T

T = 1.5° K

h/2e2

h/3e2

h/4e2

h/6e2

h/8e2

0

12

10

8

6

4

2

0
20 30

vg /v

RX

RH

R
H
, 
R

x
/k

Ω

n = 2n =1

FIGURE 12.12

Gate voltage dependence of the Hall resistance RH and resistivity Rx at B= 18.9 T for a long silicon MOS
device at B= 18.9 T and T= 1.5°K.

Reproduced from von Klitzing 19 with the permission of Elsevier.
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12.5.4 Quantum Hall Effect from Gauge
Invariance

Laughlin (Refs. 7-9) considered a two-dimensional
metallic loop (see Figure 12.13) pierced by a mag-
netic field B normal to its surface. A voltage UH is
applied between the two edges of the ring. When
σxx = 0, the energy is conserved and Faraday’s
law of induction can be written as

I = c ∂E
∂ϕ

, (12.183)

where E is the total energy of the system, and ϕ
is the magnetic flux threading the loop. If ϕ !
ϕ+Δϕ, where Δϕ�ϕ0 = −hc/e is a flux quan-
tum, the wave function enclosing the flux changes
by a factor 2π, which implies k ! k+ ð2πÞ/L, where L is the circumference of the ring.

The change in energy ΔE when the states are transported from one edge to the other is

ΔE = −neUH , (12.184)

where n corresponds to the filled Landau levels. From Eqs. (12.183) and (12.184), we obtain an
expression for the dissipationless Hall current and the Hall voltage,

I = c ∂E
∂ϕ

= cΔE
Δϕ

= − cneUH

ϕ0
=

ne2UH

h
: (12.185)

The quantized Hall resistance is obtained from the expression

RH =
UH

I
= h

ne2
: (12.186)

12.6 FRACTIONAL QUANTUM HALL
EFFECT

There have been numerous papers on the
fractional quantum Hall effect. It is generally
interpreted on the elementary excitations of
quasiparticles with a charge e/3, e/5, e/7, and so
on. A typical experimental result is shown in
Figure 12.14.

B

UH

I

FIGURE 12.13

Quantized Hall resistance for a model two-dimensional
metallic loop.
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FIGURE 12.14

Schematic diagram of fractional quantum Hall effect
in GaAs/Ga1−x AlxAs heterostructure.
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PROBLEMS
12.1. The Hamiltonian of an atom (or ion) in a uniform magnetic field B (in the z direction) can

be written as

H = 1
2m

∑
i

pi +
eAðriÞ

c

� �2
+ g0μBB∑

i
ŝiz: (1)

If

AðriÞ = − 1
2
r × B, (2)

show that Eq. (1) can be rewritten in the alternate form

Ĥ = 1
2m

∑
i
p̂2
i + μBðL̂ + g0ŜÞ .B + e2

8mc2
B2∑

i
ðx2i + y2i Þ: (3)

12.2. We have derived

<JLSJzjðL̂ + 2ŜÞjJLSJ′z> = gðJLSÞ<JLSJzj Ĵ jJLSJ′z>: (1)

Show that Eq. (1) can be rewritten in the alternate form

<JLSJzjL̂ + 2ŜjJ′L′S′J′z> = gðJLSÞ<JLSJzj Ĵ jJ′L′S′J′z>: (2)

12.3. We have proved that

∑
J″L″S″J″z

<JLSJzjðL̂ + 2ŜÞjJ″L″S″J″z > .<J″L″S″J″z j Ĵ jJ′L′S′J′z>
= gðJLSÞ ∑

J″L″S″J″z
<JLSJzj Ĵ jJ″L″S″J″z > . <J″L″S″J″z j Ĵ jJ′L′S′J′z>:

(1)

Because the sum over Eq. (1) is taken over a complete set, using Eqs. (12.31) and (12.32),
show that Eq. (1) can be rewritten in the alternate form

<JLSJzjðL̂ + 2ŜÞ . ĴjJLSJ′z> = gðJLSÞ<JLSJzj Ĵ2jJLSJ′z>: (2)

12.4. Using the standard relation for the total angular momentum of an electron in an atom,

Ĵ = L̂ + Ŝ, (1)

show that

ðL̂ + 2ŜÞ . ðL̂ + ŜÞ = L̂
2
+ 2Ŝ

2
+ L̂ . Ĵ + 2Ŝ . Ĵ = 1

2
½3Ĵ2

− L̂
2
+ Ŝ

2�: (2)
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12.5. The Helmholtz free energy is obtained from

e−βF = e
βγB J +

1

2

� �
− e

−βγB J +
1

2

� �
eβγB/2 − e−βγB/2

: (1)

The magnetization of N ions in a volume V is defined as

M = −N
V

∂F
∂B

: (2)

From Eqs. (1) and (2), show that

M = N
V

γJBJðβγJBÞ, (3)

where the Brillouin function BJðxÞ is defined by

BJðxÞ = ð2J + 1Þ
2J

coth 2J + 1
2J

x
� �

− 1
2J

coth 1
2J

x
� �

: (4)

12.6. From the equations

Ev =
ħ2k2z
2m

+ v+ 1
2

� �
ħωc, v = 0, 1, 2,… (1)

and

gðv, kzÞ dkz = 2
ð2πÞ2

mωc

ħ
dkz, (2)

show that

gðE, vÞdE = 2
ð2πÞ2

ħωc

2
2m
ħ2

� �3/2
E− v+ 1

2

� �
ħωc

� �−1/2
dE: (3)

12.7. In the limiting case, B ! 0, the summation

gðEÞdE = ∑
v′

0
gðE, vÞdE (1)

can be replaced by an integration because the sub-bands of different quantum numbers move
very close to each other. By carrying out this integration (using Eq. 3 from Problem 12.6),
and substituting B = 0, show that

gðEÞdE = 1
2π2

2m
ħ2

� �3/2
E1/2dE, (2)

which is the density of states of free electrons.
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12.8. Show from Eqs. (12.53) through (12.55) and (12.69) that the expression for magnetization
per unit volume can be written as

M = − d
dB

nμ− 1
β

Z∞
0

gðE+ Þ ln½eβðμ−EÞ + 1� dE+−
1
β

Z∞
0

gðE−Þ ln ½eβðμ−EÞ + 1� dE−

8<
:

9=
;: (1)

12.9. The Fermi integral FðxÞ is given by

FðxÞ =
Z∞
0

y1/2

1+ eðy−xÞ
dy . (1)

Show that

FðxÞ≈
ffiffiffi
π

p
2

ex, for x < 0

and

FðxÞ≈ 2
3
x3/2, for x> 0: (2)

12.10. The magnetization per unit volume is given by (Problem 12.8)

M = − d
dB

nμ− 1
β

Z∞
0

gðE+ Þ ln½eβðμ−EÞ + 1� dE+−
1
β

Z∞
0

gðE−Þ ln½eβðμ−EÞ + 1� dE−

8<
:

9=
;: (1)

By retaining the first term in the expansion similar to the one outlined in the text, show that
at very low temperatures

M =
3nμ2BB

2EF
1− 1

3
+

πkBT
μBB

EF

μBB

� �1/2
∑
∞

v=1

ð−1Þvffiffiffi
v

p cos ðπvÞ
sin π

4
− πvEF

μBB

� �

sinh
π2vkBT
μBB

2
6664

3
7775, (2)

where EF is the Fermi energy (the value of μ at T = 0Þ.
12.11. Substituting Eqs. (12.112) and (12.113) in Eq. (12.108), commuting the differential operator

through the Peierls phase factor, and then multiplying the left side of the equation by e−ih
.r×r′,

show that

ðξl− 1
2m

½p + ħh × ðr− r′Þ�2− ħ
4m2c2

σ! . ∇!V × ½p+ ħh× ðr− r′Þ�−VðrÞ− ħ2

8m2c2
∇2V

− 1
2
gμBB . σ!ÞeGðr, r′, ξl, hÞ−

Z
dr″eih.ðr′×r+r×r″+r″×r′ÞeΣðr, r″, ξl, hÞeGðr″, r′, ξl, hÞ

= δðr− r′Þ .
(1)
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12.12. Using the Bloch representation, ψnkρðrÞ = eik
. rUnkρðrÞ, show that Eq. (1) in Problem 12.11

can be rewritten as

∑
n″,ρ″, k′,k″

Z
drdr′dr″e−ik.rU�

nkρðrÞ
ξl−

1
2m

½p+ ħh× ðr− r′Þ�2− ħ
4m2c2

σ! . ∇!V × ½p+ ħh× ðr− r′Þ�

−VðrÞ− ħ2

8m2c2
∇2V− 1

2
gμBB . σ!

0
BB@

1
CCA

× e−k″
.ðr− r″ÞUn″k″ρ″ðrÞU�

n″k″ρ″ðr″ÞeGðr″, r′, ξl, hÞUn′k′ρ′ðr′Þeik′.r′

+ ∑
n″,ρ″, k′,k″

Z
drdr′dr″dr′′′e−ik . rU�

nkρðrÞeih
. ðr′× r+ r× r″+ r″× r′ÞeΣðr, r″Þeik″ . ðr″−r′′′Þ

Un″k″ρ″ðr″ÞU�
n″k″ρ″ðr′′′Þ× eGðr′′′, r′, ξl, hÞUn′k′ρ′ðr′Þeik′.r′ = δnn′δρρ′ . (1)

By introducing a change of variables R1 = r″− r′, and R2 = 1
2 ðr′+ r″Þ in the first term,

R1 = r− r″, R2 = 1
2 ðr+ r″Þ, R3 = r′′′− r′, and R4 = 1

2 ðr′+ r′′′Þ in the second term, and by

using partial integration of the type

∑
k″
ðr− r′Þeik″.ðr−r′Þeik″.ðr′−r″ÞUn″k″ρ″ðrÞU�

n″k″ρ″ðr″Þ
= ∑

k″
eik″

.ðr−r′Þi∇k″e
ik″.ðr′−r″ÞUn″k″ρ″ðrÞU�

n″k″ρ″ðr″Þ,
(2)

show that Eq. (1) can be rewritten in the form

∑
n″,ρ″

½ξl−Ĥð κ!′, ξlÞ�nkρ,n″kρ″eGn″kρ″,n′k′ρ′ðk′, ξlÞjk′ = k = δnn′δρρ′, (3)

where

κ! = k+ ih × ∇k: (4)

Ĥð κ!,ξlÞ = 1
2m

ðp+ ħ κ!Þ2 +VðrÞ+ ħ
4m2c2

σ! . ∇!V × ðp+ ħ κ!Þ+ ħ2

8m2c2
∇2V + 1

2
gμBB . σ!+ eΣð κ!, ξlÞ,

(5)

eΣnkρ,n″kρ″ð κ!′,ξlÞ =
Z

drdr′U�
n″kρ″ðrÞe−i κ

!′ . ðr−r′ÞeΣðr, r′, ξlÞUn″kρ″ðr′Þ, ð6Þ

and

eGn″kρ″,n′kρ′ðk′,ξlÞ =
Z

drdr′U�
n″kρ″ðrÞeGðr, r′, ξlÞe−ik′ . ðr−r′ÞUn′kρ′ðr′Þ: (7)
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Hence, show that because the Unkρ′s form a complete set of functions, Eq. (3) can be
rewritten in the alternate form

½ξl − Ĥð κ!, ξlÞ�eGðk, ξlÞ = I: (8)

12.13. From Eqs. (12.118), (12.119), (12.127), and (12.128), show that

Ĥð κ!, ξlÞ = Ĥ0ðk, ξlÞ+ Ĥ′ðk, ξlÞ, (1)

where

Ĥ0ðk, ξlÞ = 1
2m

ðp+ ħkÞ2 +VðrÞ+Σ0ðk, ξlÞ+ ħ2

8mc2
∇2V + ħ

4m2c2
σ! . ∇!V × ðp+ ħkÞ, (2)

and

Ĥ′ðk, ξlÞ = −ihαβ∏
α∇ β

k +
1
2
gμBB

μσμ +BμΣ1,μðk, ξlÞ− ihαβB
μ ∂Σ1,μ

∂kα
∇β

k

− 1
2
hαβhγδ

ħ2

m
δαγ +

∂2Σ0

∂kα∂kγ

� �
∇β

k∇
δ
k +BμBvΣ2,μvðk, ξlÞ,

(3)

where the terms up to the second order in the magnetic field are retained and ∏
	!

=ħ is the
velocity operator,

∏
	!

= ħ
m
ð p!+ ħkÞ+ ħ2

4m2c2
σ!× ∇!V +∇kΣ0ðk, ξlÞ: (4)

12.14. The temperature Green’s function operator is defined as

G0ðk, ξlÞ = 1
ξl −H0ðk, ξlÞ

, (1)

where H0ðk, ξlÞ is defined in Eq. (12.131). Show that

∇α
kG0ðk, ξlÞ = G0ðk, ξlÞ∏αG0ðk, ξlÞ (2)

and

∇α
k∇

γ
kG0ðk, ξlÞ = G0

ħ2

m
δαγ +Χαγ

� �
G0 +G0∏

αG0∏
γG0 +G0∏

γG0∏
αG0, (3)

where

Χαγ = ∇α
k

ħ2

4m2c2
ð σ!× ∇!VÞγ +∇γ

k ∑
0ðk, ξlÞ

� �
: (4)
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12.15. We have derived

∑
n,m,ρ,ρ′

eΣnρ,mρ′ðkÞψnkρðrÞψ�
mkρ′ðr′Þ

= − 1
β

∑
ξl,p,q,k′,ρ,ρ′

veff ðr, r′ÞeGpρ,qρ′ðk′, ξlÞψpk′ρðrÞψ�
qk′ρ′ðr′Þ .

(1)

If the effective electron–electron interaction is spin independent, then ρ = ρ, ρ′ = ρ′: Show that

Σnρ,mρ′ðkÞ = − 1
β

∑
k′,ξl ,p,q

<nmjveff ðk, k′Þjpq> ρρ′ eGpρ,qρ′ðk′, ξlÞ, (2)

where

<nmjveff ðk, k′Þjpq> ρρ′ =
Z

ψ�
nkρðrÞψmkρ′ðr′Þveff ðr, r′Þψpk′ρðrÞψ�

qk′ρ′ðr′Þdrdr′: (3)

12.16. From Eqs. (12.152) and (12.154), we have obtained

eΣnρ,nρ′ðkÞ = − 1
β

∑
k′,ξl ,ρ

vnpðk, k′ÞeGpρ,pρ′ðk′, ξlÞ . (1)

Substituting only the value of the first-order terms of B occurring in eG from Eq. (12.134) on
the right side of Eq. (1), and neglecting the terms proportional to f , show that

Σ1,μ
nρ,nρ′ðkÞ≃−∑

mk′
vnmðk, k′ÞΣ1,μ

mρ,mρ′ðk′Þf ′mðk′Þ− 1
2
μ0∑

mk′
vnmðk′Þσμmρ,mρ′f ′mðkÞ: (2)

12.17. The isotropic effective-mass Hamiltonian (Eq. 12.170) is given by

Ĥ = 1
2m� p+ e

c
A

h i2
−eE0y, (1)

where the y coordinate is related to the vector potential (in the Landau gauge),

A = Byx̂: (2)

From Eqs. (1) and (2), show that the wave functions are given by

ψ k,n = eikxϕnðy− y0Þ, (3)

where ϕn is the solution of the harmonic-oscillator equations

1
2m� p2y + ðe

c
BÞ2y2

h i
ϕn = ðn+ 1

2
Þħωcϕn (4)

and

y0 =
1
ωc

ħk
m� − cE0

B

h i
: (5)
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13.1 INTRODUCTION
The phenomena of magnetic ordering such as ferromagnetism, antiferromagnetism, and ferrimagnetism
are very complex. Ferromagnets have been known to exist for thousands of years in the shape of
loadstones. However, ferromagnetism in transition metals, which is one of the most important as well
as complex phenomena in physics, remains one of the major unsolved problems in solid state physics
and is not well understood compared to most other physical properties. We will discuss some of the
important models used in the theory of magnetic ordering used in solids before discussing some specific
cases, including that of ferromagnetism in transition metals.

There are three different types of “magnetic ordering,” known as ferromagnetism, antiferro-
magnetism, and ferrimagnetism. The ferromagnetic solid has a nonvanishing magnetic moment
even in the absence of an external magnetic field. This is known as “spontaneous magnetization,”
which is a result of parallel orientation of the individual magnetic moments that must be due to
interactions between these moments. In a ferromagnet, because all the individual moments are
aligned in the same direction, there is a net total moment even in the absence of a magnetic field.
As the temperature is increased, these orientations become gradually disordered, and at a critical
temperature known as the Curie temperature, the spontaneous magnetization vanishes. This
situation is far more complicated than the simple model used at T = 0. In the preceding discussion,
we tacitly assumed that the electrons of an ion in a lattice are tightly bound so that each ion has a
net magnetic moment.

In some other types of solids, the ions of the nearest neighbors have antiparallel spin. The
ground state consists of two sublattices of identical ions having opposite spin directions. This is
known as an antiferromagnet, in which the two sublattices have mutually compensating magnetic
moments. Thus, the net magnetic moment of an antiferromagnet is zero.

In ferrimagnets, there are usually two types of basis atoms and therefore two sublattices
because the ions in the individual sublattices are different. The individual ions in each sublattice
will possess a magnetic moment, and each
sublattice will have a net magnetic moment in
the ground state. The total moment in the
ground state will be the vector sum of the
moments of the sublattices. For sublattices with
opposite magnetic moments, the net magnetic
moment will be the difference between the two
moments. Such types of solids are known as
ferrimagnets. These differences are illustrated
in Figure 13.1.

Ferromagnet Antiferromagnet Ferrimagnet

FIGURE 13.1

Ferromagnetic, antiferromagnetic, and ferrimagnetic
states.
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13.2 MAGNETIC DIPOLE MOMENTS
The simplest problem involves magnetic dipole moments and how nearby magnetic dipoles interact
with each other even though such interaction does not lead to ferromagnetism.

The magnetic dipole moment m of a current distribution j can be defined as

m =
Z

dr 1
2c

r× jðrÞ: (13.1)

We note that m will be independent of the origin provided
Z

dr jðrÞ = 0, which implies that the

current distribution is over a closed loop and vanishes except at the origin. The Lorentz force on a
current distribution is

F = 1
c

Z
dr jðrÞ×BðrÞ: (13.2)

Because jðrÞ vanishes except at the origin, we can expand BðrÞ in a Taylor series and write

F = 1
c

Z
dr jðrÞ× ½Bð0Þ+ ðr . ∇!ÞBð0Þ+ :::�: (13.3)

Using vector identities, we can easily show from Eqs. (13.1) through (13.3) that (Problem 13.1)

F = ðm× ∇!Þ×B = ∇!ðm .BÞ, (13.4)

where B�Bð0Þ: Thus, the potential energy U of a dipole in an external magnetic field is

U = −m .B: (13.5)

When two dipoles are close to each other, they interact with each other’s magnetic fields.
The induction B produced by a magnetic dipole of moment m1 at a distance r, where a second

dipole of moment m2 is located, is given by

B = ∇! m1 . ∇
! 1

r

h i
=

3r̂ðm1 . r̂Þ−m1

r3
: (13.6)

From Eqs. (13.5) and (13.6), we obtain the expression for the direct dipolar interaction energy of
two magnetic dipoles separated by r,

U = 1
r3
½m1 .m2 − 3ðm1 . r̂Þðm2 . r̂Þ�: (13.7)

One can calculate the energy scale for the dipole interaction from Eq. (13.7), which is of the order
of 10−4 eV (equivalent to 1°K) for solids in which the distance between magnetic moments is of the
order of 2Å, while the electrostatic energy difference between two atomic states is on the order of
0.1–1.0 eV. Thus, dipolar interactions, which are important in explaining the phenomenon of
ferromagnetic domains, are not the source of magnetic interaction responsible for ferromagnetism.
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13.3 MODELS FOR FERROMAGNETISM AND ANTIFERROMAGNETISM
13.3.1 Introduction
Various models describe ferromagnetism and antiferromagnetism. The direct exchange model
assumes that the electrons of a lattice ion, which contribute to the magnetic moment, are tightly
bound so that the ions can be assumed to be isolated. However, the nearest neighbors are
sufficiently close enough for a significant exchange interaction between them. The spins of nearest
neighbors in the Bravais lattice of a ferromagnet (where electrons are tightly bound in the lattice
ion) are aligned parallel in the ground state by the exchange interaction. In the absence of such
interactions, the moments would be thermally disordered due to random orientations, and there
would be no magnetic moment.

In the superexchange model, an exchange between magnetic ions occurs over large distances in
an insulator, in which a paramagnetic ion between them facilitates the interaction. An example is
MnO, in which two metallic ions (Mn) with unfilled d-shells are linked by an oxygen atom that has
two p-electrons with spins in opposite directions. Each d-electron will interact with one of the two
p-electrons, and because the two p-electrons are linked by the Pauli principle, there is an effective
interaction between the two d-electrons that is known as the superexchange.

In the indirect exchange (RKKY) model (Refs. 10, 23, 31), the localized spins of a lattice ion
interact with the conduction electrons of a metal. Essentially, the electrons mediate between the
interaction of the lattice ions. This ion–ion interaction via conduction electrons plays a major role
in rare-earth metals, which have a variety of ordered magnetism.

In the transition metals, which form the most significant group of ferromagnetic metals, the
spins of itinerant electrons give rise to ferromagnetism. The d- and s-bands are only partly filled,
and hence, there is a superposition of 3d and 4s bands. We will discuss the occurrence of
ferromagnetism in transition metals as a special category.

13.3.2 Heitler–London Approximation
The Heitler–London (Ref. 6) approximation is
designed to describe the interaction between two
spins arising from Coulomb forces between the
two electrons of two adjacent atoms, as shown
in Figure 13.2. It was originally designed to
explain the bonding of a hydrogen molecule
and is also an example of the valence bond
method. We further note that the Heitler–
London theory does not yield good results for
the binding energy of the hydrogen molecule.
The reason is that when two protons are close,
the system looks like the helium atom with Z = 2,
whereas in the Heitler–London theory, the
electrons are in s states for Z = 1. However, it
features the essential ingredients of the exchange

→
R1

→
R2

FIGURE 13.2

The overlapping wave functions of electrons (of
opposite spin) of two adjacent hydrogen atoms. The
protons are located at R

!
1 and R

!
2. The arrows are

the directions of the spins of the electrons.
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interaction used in the theory of magnetism in insulators, and hence, we will discuss the theory in
some detail.

When the two hydrogen atoms (i= 1 and i= 2) are infinitely apart, the Schrodinger equation for
each atom can be written as

−
ħ2∇2

i

2m
− e2

jri −Rij
� �

ϕiðriÞ = ε0ϕiðriÞ, (13.8)

which is the spatial part of the wave function. The wave function of the two atoms is just the
product of the individual atomic wave functions. When the two atoms come much closer, there will
be considerable overlap, and a molecule is formed. The individual atomic wave functions will not
be orthogonal. In fact, Z

ϕ�
1ðrÞϕ2ðrÞdr = I, (13.9)

where I is the overlap integral, which can be positive or negative. The Hamiltonian can be written as

Ĥ =
−ħ2∇2

1

2m
−
ħ2∇2

2

2m
− e2

jr1−R1j −
e2

jr1−R2j −
e2

jr2−R1j −
e2

jr2−R2j +
e2

jR1−R2j +
e2

jr1−r2j : (13.10)

Here, the electrostatic interactions between the two electrons and the two protons, with all
permutations, have been included in the Hamiltonian of the molecule. It may be noted that the wave
function of the molecule is no longer the product of the individual atomic functions. The spin compo-
nent of the wave function has to be included such that the total wave function will be antisymmetric
when the particle numbers are exchanged. The spin operators commute with the spatial part of the
Hamiltonian. The spin eigenfunctions are the eigenfunctions of the commuting operators Ŝ

2
and Ŝz

and form either one singlet or three triplet states. The spin singlet state of the molecule is given by

χs =
1ffiffiffi
2

p ½ χ↑ð1Þχ↓ð2Þ− χ↓ð1Þχ↑ð2Þ�, (13.11)

which is antisymmetric, and the three-spin triplet states are

χt = χ↑ð1Þχ↑ð2Þ,
= 1ffiffiffi

2
p ½ χ↑ð1Þχ↓ð2Þ+χ↓ð2Þχ↑ð1Þ�,

= χ↓ð1Þχ↓ð2Þ;
(13.12)

which are all symmetric. Here, the symbols in the parentheses denote the spinors for the electrons at
r1 and r2. Thus, the normalized spatial part of the wave functions of the singlet and triplet spin states are

ψ s,tðr1, r2Þ = ½2ð1± I2Þ�− 1
2½ϕ1ðr1Þϕ2ðr2Þ±ϕ2ðr1Þϕ1ðr2Þ�, (13.13)

where the s, t symbols as well as the + ð−Þ signs are for the singlet (triplet) spin states.
From Eqs. (13.8) through (13.10) and Eq. (13.13), we obtain (Problem 13.3)

εs,t = < Ĥ>s,t = 2ε0 + e2

R12
+ e2

Z
dr1dr2 ψ

�
s,tðr1, r2Þ 1

jr1 − r2j −
1

jr1 −R2
− 1

jr2 −R1j
� �

ψ s,tðr1, r2Þ, (13.14)
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where

1
R12

� 1
jR1 −R2j : (13.15)

We define the Coulomb and exchange integrals as

VcðR12Þ = e2
Z

dr1dr2jϕ1ðr1Þj2jϕ2ðr2Þj2 1
jr1 − r2j −

1
jr1 −R1j −

1
jr2 −R2j

� �
(13.16)

and

VexðR12Þ = e2
Z

dr1dr2ϕ
�
1ðr1Þϕ�

2ðr2Þ 1
jr1 − r2j −

1
jr1 −R2j −

1
jr2 −R1j

� �
ϕ2ðr1Þϕ1ðr2Þ: (13.17)

From Eqs. (13.14) through (13.17), it can be shown that (Problem 13.4)

εs = 2ε0 + e2

R
+

VcðR12Þ + VexðR12Þ
ð1 + I2Þ (13.18)

and

εt = 2ε0 + e2

R
+

VcðR12Þ−VexðR12Þ
ð1− I2Þ : (13.19)

From Eqs. (13.18) and (13.19), we obtain

εt − εs =
2ðI2Ve −VsÞ

1− I4
= −J: (13.20)

Heitler and London (Ref. 6) found that J is negative, which implies that εt > εs: Because the singlet
state is of lower energy, the spins of the two atoms are in opposite directions, which is an example
of two-atom antiferromagnetism.

13.3.3 Spin Hamiltonian
Dirac and Heisenberg argued that the original Hamiltonian in Eq. (13.10) acts only on the spatial
degrees of freedom and yields two eigenvalues, εs and εt (one singlet and three degenerate triplet
states, depending on whether the spins of the two electrons are parallel or antiparallel). They
showed that the same results can be obtained by considering a Hamiltonian that involves only the
spin degrees of freedom and that is more useful in the study of magnetism.

The actual wave function of the Heitler–London problem (Ref. 6) is the product of the spin
(Eqs. 13.11 or 13.12) and spatial part of the wave function (Eq. 13.13), i.e.,

Ψs = ψsχs (13.21)

and

Ψt = ψtχt: (13.22)

It is much more convenient to represent the Hamiltonian in a spin representation as long as the
energy in the singlet ðεsÞ and triplet ðεtÞ states derived in Eqs. (13.18) and (13.19) by using the
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spatial Hamiltonian of the two-electron system are the same in the new representation. This is
possible because the coupling in the spin Hamiltonian depends only on the relative orientation of the
two spins but not on their directions on R1 −R2: If there are dipolar interactions or spin-orbit
coupling, which breaks the rotational symmetry of the Hamiltonian in the Heitler–London model, one
must add additional terms to the spin Hamiltonian. Thus, the spin Hamiltonian can be written as

Ĥ
spin

= λ1 + λ2Ŝ1 . Ŝ2, (13.23)

where λ1 and λ2 are such that

Ĥ
spinΨs = εsΨs (13.24)

and

Ĥ
spinΨt = εtΨt: (13.25)

We also note that for a two-electron system,

Ŝ1 . Ŝ2 =
1
2
½Ŝ+1 Ŝ

−
2 + Ŝ

+
2 Ŝ

−
1 �+ Ŝ

z

1Ŝ
z

2 , (13.26)

where

Ŝ
±
= Ŝx ± iŜy: (13.27)

It can be easily shown from Eqs. (13.11), (13.12), and (13.24) through (13.26) that (Problem 13.5)

Ŝ1 . Ŝ2χs = − 3
4
χs (13.28)

and

Ŝ1
. Ŝ2χt =

1
4
χt: (13.29)

From Eqs. (13.24) through (13.29), we obtain

Ĥ
spin

= 1
4
ðεs + 3εtÞ− ðεs − εtÞŜ1

. Ŝ2, (13.30)

such that

Ĥ
spinΨs = εsΨs (13.31)

and

Ĥ
spinΨt = εtΨt (13.32)

for each of the three triplet states. Comparing Eqs. (13.23) and (13.30), we obtain

λ1 =
1
4
ðεs + 3εtÞ (13.33)

and

λ2 = ðεs − εtÞ: (13.34)
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From Eqs. (13.18) through (13.20), (13.23), (13.33), and (13.34), we obtain

Ĥ
spin

= 2ε0 +
e2

R
+ 1

4
VcðR12Þ+VexðR12Þ

1+ I2
+ 3

VcðR12 −VexðR12Þ
1− I2

� �
− JŜ1

. Ŝ2: (13.35)

By shifting the zero of energy, we can rewrite Eq. (13.35) in the convenient form

Ĥ
spin

= −JŜ1 . Ŝ2: (13.36)

Because J = εs − εt (from Eq. 13.20), a positive value of J means that εt < εs. This implies that the
two spins are aligned in the same direction (ferromagnetism). Similarly, a negative value of J implies
that the spins are aligned in the opposite direction. This alternate change in the direction of the spins
is known as antiferromagnetism.

13.3.4 Heisenberg Model
Heisenberg (Ref. 5) extended Eq. (13.36) for the general case of a large collection of magnetic ions
placed in a lattice. He postulated that the Hamiltonian can be written as

Ĥ
spin

= −∑′
ij
JijŜi

. Ŝj, (13.37)

where the exchange integral Jij is a function of the positions of the lattice sites Ri and Rj (note that
Ri ≠RjÞ. We further note that the exchange integral Jij, which is a function of Ri −Rj, is large only
for one- or two-lattice spacing. It is not possible to “derive” the Heisenberg Hamiltonian, but there
have been many attempts to “derive” it or at least make reasonable attempts to justify it. Neverthe-
less, it remains the starting point for the theory of ferromagnetism and antiferromagnetism.

13.3.5 Direct, Indirect, and Superexchange
The Heisenberg model is the result of the direct overlap of wave functions of two magnetic ions.
This is due to the direct exchange interaction between localized spins of nearest neighbors, and the
basic assumption is that the electrons (of a lattice ion) are tightly bound such that the ion can be
considered as isolated, but the nearest neighbors are close enough for exchange interaction to occur.

However, there are other mechanisms for exchange. In indirect exchange, the localized spins of
the lattice ions interact with the conduction electrons of a metal. Thus, the information on the spin
over a given ion is passed on by an electron to another ion. Hence, the interaction between the two
ions is mediated by conduction electrons. This indirect ion–ion interaction is known as the RKKY
interaction (Refs. 10, 20, 23) and plays a major role in the rare-earth metals (Tm and Gd).

In the superexchange mechanism in an insulator, the exchange between magnetic ions often
occurs over large distances. A paramagnetic ion (an ion with closed electronic shells) between the
two magnetic ions facilitates the interaction. For example, in MnO, two metallic ions with unfilled
d-shells are linked by an oxygen atom. Each d-electron interacts with one of the two p-electrons of
the spin-saturated outermost electron pair of the oxygen atom. There is an effective interaction
between the two d-electrons, known as superexchange, because the two spins of the two p-electrons

416 CHAPTER 13 Magnetic Ordering



are linked by the Pauli principle. These three
types of interactions are shown schematically in
Figure 13.3.

13.3.6 Spin Waves in Ferromagnets:
Magnons

For ferromagnets, the ground state of the
Heisenberg model is such that all the Jij are
positive and all the spins point in the same direc-
tion. It can be easily shown from Eq. (13.35) that
if all the spins point in the same direction (for
instance, z), the ground-state energy is

<↑↑↑↑ . . . . jĤj↑↑↑↑ . . . . :::> = −∑′
<ii′>

Jii′
4
:

(13.38)

The ferromagnetic state of the ground state is
degenerate. Even though the spins have to point
in the same direction, there is no preference for
a particular direction like z direction. The low-
energy excitons can be constructed by slowly
twisting the local spin orientation while propagating through the crystal. These propagations are known
as spin waves.

13.3.7 Schwinger Representation
We note that in an excited state, the spin of one or more ions at a lattice site is reversed from ↑ to ↓.
Each time such a spin reversal occurs, the net spin change is 1. Thus, the appropriate operators to
represent such changes are Bose operators. Schwinger (Ref. 24) proposed a formal theory of spin
waves by using a representation in which the spins are represented by Bose operators even though the
Heisenberg Hamiltonian is a product of Fermion operators. In this representation, the Bose operators
are defined as

Ŝ
α
= 1

2
∑
ij
â†i σ

α
ijâj, (13.39)

where σα are the Pauli spin matrices (α = x, y, zÞ. It is easy to show from Eq. (13.39) that
(Problem 13.6)

Ŝ
x
= 1

2
ðâ†1â2 + â†2â1Þ,

Ŝ
y
= i

2
ðâ†2â1 − â†1â2Þ

Ŝ
z
= 1

2
ðâ†1â1 − â†2â2Þ:

, and (13.40)

(a)

(b)

(c)

FIGURE 13.3

(a) Direct exchange, (b) superexchange, and (c)
indirect exchange.
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It can be easily shown from Eq. (13.40) that

½Ŝx
, Ŝ

y� = iŜ
z
: (13.41)

If one introduces the operators

Ŝ
±
= Ŝ

x
± iŜ

y
, (13.42)

it can be shown from Eqs. (13.40) and (13.42) that

Ŝ
+
= â†1â2 (13.43)

and

Ŝ
−
= â†2â1: (13.44)

Because the total spin is 2S, one can write

â†1â1 + â†2â2 = 2S: (13.45)

Through use of the Holstein–Primakoff transformation (Ref. 7) (which is an unusual transforma-
tion to be used for operators, but seems to be valid), Eq. (13.45) becomes

â2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†1â1

q
: (13.46)

From Eqs. (13.40) and (13.46), we obtain

Ŝ
+
= â†1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†1â1

q
,

Ŝ
−
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†1â1

q
â1

Ŝ
z
= ðâ†1â1 − SÞ:

, and (13.47)

One can easily show that (Problem 13.7)

½Ŝ+
, Ŝ

−� = 2Ŝ
z
: (13.48)

13.3.8 Application to the Heisenberg Hamiltonian
If we assume that the direct exchange interaction between the nearest neighbors is dominant, for
simple lattices, Eq. (13.37) can be rewritten as

Ĥ = −J∑
i,δ
′Ŝi

. Ŝi+δ, (13.49)

where Rj = Ri +Rδ, Rδ ðδ = 1, 2, :::, zÞ is a vector to the nearest neighbor of the ith ion and
Ji,i+δ = J for all δ. If J is positive in Eq. (13.49), it leads to ferromagnetism. The ion spins are
assumed to be so aligned that in the ground state their z-components have the maximum values S.
If jS>n represents the spin of the nth ion in state s, the ground state can be written as

Φ0 = ΠnjS>n: (13.50)
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Eq. (13.49) can be rewritten in the alternate form

Ĥ = −J∑
i, j
′ ŜizŜjz +

1
2
ðŜ+

i Ŝ
−
j + Ŝ

−
i Ŝ

+
j Þ

h i
, (13.51)

where j = i+ δ: Thus, we obtain

ĤΦ0 = ε0Φ0 = ð−S2J ∑
i,i+δ

1ÞΦ0 = −JS2zNΦ0 , (13.52)

where N is the total number of sites, z is the coordination number of each site, and the application
of S+ to a function with maximum spin leads to zero. Here, N is the total number of ions. Thus,
we obtain the expression for the energy of the ground state for a ferromagnet,

ε0 = −JNzS2: (13.53)

However, if we consider the state Φm in which the mth spin is reduced by 1, the new state can be
written as

Φm = Ŝ
−
mΠnj S>n: (13.54)

From Eqs. (13.51) and (13.54), we can write

ĤΦm = −J∑
ij
′ Ŝ

z

i Ŝ
z

j Ŝ
−
m +

1
2
ðŜ+

i Ŝ
−
j Ŝ

−
m + Ŝ

−
i Ŝ

+
j Ŝ

−
mÞ

h i
Φ0: (13.55)

It can be easily shown by using the commutation relation of the spin operators (Problem 13.8) that

ĤΦm = E0Φm + 2JS∑
Rδ

ðΦm −Φm+δÞ: (13.56)

Thus, Φm is not an eigenstate of the spin Hamiltonian. In fact, the deviation of spin at one site spreads
into the neighboring sites, creating spin waves. To solve this, we take S to be large and expand in
powers of 1/S. For example, we obtain from Eqs. (13.47) and (13.51)

Ĥ = −J∑
i, j

ðS− â†i âiÞðS− â†j âjÞ+ 1
2
â†i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†i âi

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†j âj

q
âj

�

+ 1
2
â†j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†j âj

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†i âi

q
âi

�
,

(13.57)

where j = i+ δ, δ being the nearest neighbors. For large values of S, we can write

âi =
ffiffiffi
S

p
bi + ðâi −

ffiffiffi
S

p
biÞ, (13.58)

where ðâi −
ffiffiffi
S

p
biÞ is very small, and bi is determined by minimizing the Hamiltonian. The constants

bi are determined by minimizing the Hamiltonian while the series in 1/S is obtained by expanding the
remainder. Thus, Eq. (13.57) can be rewritten as

Ĥ = −J∑
ij
S2 1

2
ðb�i bj + bjb

�
i Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− jbij2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2− jbjj2

q
+ ð1− jbijÞ2ð1− jbjjÞ2

� �
: (13.59)

Here, it is tacitly assumed that i and j are nearest pairs. To obtain the ground-state energy, we
minimize the Hamiltonian with respect to all values of bi and bj: The only possible way in which the
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ground-state energy ε0 obtained from Eq. (13.59) will be the same as obtained in Eq. (13.53) is to
assume bi = bj = b (Problem 13.9). In fact, if the spins rotate in any direction as long as they all point
together, the ground-state energy is independent of b, which can therefore be chosen as b = 0. The
operator â is treated as small (Eq. 13.58) if we continue with the expansion of the Hamiltonian.

From Eqs. (13.53) and (13.59), we can write Ĥ (up to the first order in S), treating â as small,
b = 0, and multiplying the second term by 2 because <ij> is a sum over nearest-neighbor pairs and
each pair appears twice (Problem 13.10),

Ĥ = −JNzS2 − 2JS∑
<ij>

ðâ†i âj + â†j âi − â†i âi − â†j âjÞ: (13.60)

We make a Fourier transformation

âi =
1ffiffiffiffi
N

p ∑
k
b̂ke

−ik.Ri , (13.61)

where k (for cyclic boundary conditions) is limited to the N values inside a Brillouin zone in the k
space. From Eqs. (13.60) and (13.61), we obtain

Ĥ = −JNzS2 +∑
k
ħωkn̂k, (13.62)

where

n̂k = b̂
†

kb̂k (13.63)

and

ħωk = 2JS∑
l
ð1− cos k .RlÞ: (13.64)

Eq. (13.64) gives the spin-wave dispersion relation. Here, Rl are the nearest neighbors. The first
term in Eq. (13.64) is the energy of the ground state, the second term is the energy contained in the
magnons, and nk = b̂

†

kb̂k is the magnon particle number. The magnon energy can be expressed as

E = ∑
k

ħωk

eβħωk − 1
, (13.65)

where β = 1/kBT . In the isotropic case, ħωk ∝ k2 = γk2 (from Eq. 13.65), and we obtain

E = V
4π3

Zkmax

0

4πγk4dk
eγk2/kBT − 1

: (13.66)

At very low temperatures, when only a few magnons are excited, the upper limit of the integration
can be considered as infinity. Thus, Eq. (13.66) can be rewritten as

E =
γV
π2

kBT
γ

� �5/2Z∞
0

x4dx
ex2 − 1

= αT5/2, (13.67)

where α is a constant. Thus, the specific heat is proportional to T3/2, which agrees with the experimental
results.
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13.3.9 Spin Waves in Antiferromagnets
When J is negative in Eq. (13.49), the neighboring
spins are aligned in opposite directions. If all the
ions are of the same type, this leads to antiferro-
magnetism. In antiferromagnets, the neighboring
spins are antiparallel at zero temperature; this
is known as a Néel state (Ref. 21). The ground
state of an antiferromagnet is schematically illu-
strated in Figure 13.4.

The spin states can be described as two inter-
penetrating sublattices, A and B. Each spin state
in A has spins in the B sublattice as the nearest neighbors. One way of solving the complicated
problem is as follows. The spin Hamiltonian in the antiferromagnetic state can be obtained from that
of the ferromagnetic state by rotating all the spin operators on the B sublattice by 180° about the
x-axis, while keeping the spin operators intact in the A sublattice. Thus, x ! x, y ! −y, and z ! −z:
If all the Ri vectors are in the A sublattice and the Rj vectors are in the B sublattice, the spin operators
defined in Eqs. (13.40) and (13.42) for ferromagnets can be rewritten for antiferromagnets as

Ŝ
z

j ! −Ŝ
z

j (13.68)

and

Ŝ
±
j ! Ŝ

∓
j : (13.69)

The Hamiltonian in Eq. (13.51) for ferromagnets can be rewritten for antiferromagnets as
(Problem 13.11)

Ĥ = 2jJj∑
<ij>

−ŜizŜjz +
1
2
ðŜ+

i Ŝ
+
j + Ŝ

−
i Ŝ

−
j Þ

h i
, (13.70)

where the factor of 2 is multiplied because each neighboring pair <ij> appears twice in the summation
over i and j. Using a procedure adapted to obtain Eq. (13.57) with the modifications for antiferro-
magnets (Eqs. 13.68 through 13.70), we obtain (Problem 13.12)

Ĥ = 2jJj∑
<ij>

−ðS− â†i âiÞðS− â†j âjÞ+ 1
2
â†i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†i âi

q
â†j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†j âj

q�

+ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†i âi

q
âi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†j âj

q
âj

�
.

(13.71)

We follow a 1/S expansion method similar to the procedure outlined in Eq. (13.57) and from
Eqs. (13.70) and (13.71), we obtain (Problem 13.13)

Ĥ = −jJjNzS2 + 2jJjS ∑
<i, j>

½â†i âi + â†j âj + â†i â
†

j + âiâj�, (13.72)

where N is the number of lattice sites, and z is the number of nearest neighbors of each site. We define
the operators

âi =
1ffiffiffiffi
N

p ∑
k
eik

.Ri b̂k (13.73)

A  B A B A B

B  A B A B A

A  B A B A B

↑ ↓ ↑ ↓ ↑ ↓

↓ ↑ ↓ ↑ ↓ ↑

↑ ↓ ↑ ↓ ↑ ↓

FIGURE 13.4

The spins are divided into two interpenetrating
sublattices A and B in the Néel state.
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and

â†i =
1ffiffiffiffi
N

p ∑
k
e−ik

.Ri b̂
†

k: (13.74)

Substituting Eqs. (13.73) and (13.74) in Eq. (13.72), we obtain (Problem 13.14)

Ĥ = −jJjNzS2 + jJjSj∑
k,l
½2b̂†kb̂k + ðb̂†kb̂

†

−k + b̂kb̂−kÞ cos ðk .RlÞ�, (13.75)

where Rl are nearest-neighbor vectors. To diagonalize the Hamiltonian, we introduce two new operators
through the transformation,

b̂k = ðsinh βkÞĉ†−k + ðcoshβkÞĉk, (13.76)

where β is real. Substituting Eq. (13.76), we can show that the Hamiltonian in Eq. (13.75) is diagona-
lized provided (Problem 13.14)

tanh 2βk = − 1
z
∑
l
cosðk .RlÞ: (13.77)

Substituting Eqs. (13.76) and (13.77) in Eq. (13.75), we obtain

Ĥ = −NjJjzSðS+ 1Þ+ 2jJjzS∑
k

b̂
†

kb̂k +
1
2

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− tanh2 2βk

p
: (13.78)

Thus, the ground-state energy is given by

ε0 = −NjJjzSðS+ 1Þ+ jJjzS∑
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 1

z2
ð∑

l
cos k .RlÞ2

r
, (13.79)

and the energy of a magnon of wave number k is given by

εk = 2jJjzS
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− 1

z2
ð∑

l
cos k .RlÞ2

r
: (13.80)

13.4 FERROMAGNETISM IN SOLIDS
13.4.1 Ferromagnetism Near the Curie Temperature
The spontaneous magnetization of a ferromagnet vanishes above the Curie temperature. This
phenomenon can be explained by the exchange interaction by using the molecular field approxima-
tion. The Hamiltonian for the exchange interaction in the presence of an external field is given by

Ĥ = −∑′
ijJijŜi

. Ŝj − gμBB .∑
N

i=1
Ŝi: (13.81)
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In the mean-field approximation, of which the validity is in general questionable, one of the operators
appearing in the exchange integral is replaced by the mean value, so we can rewrite Eq. (13.81) as

Ĥ = −∑
N

i=1
ðgμBB+ ∑

N

j=1, j≠i
Jij<Ŝj>Þ . Ŝi, (13.82)

which we can rewrite in the alternate form

Ĥ = −∑
N

i=1
gμBðB+BMÞ: (13.83)

Here, BM is equivalent to the internal field originally introduced by Weiss to explain ferromag-
netism. Assuming nearest-neighbor interaction between the spins, we obtain from Eqs. (13.82)
and (13.83)

BM = zJ
gμB

<Ŝj>: (13.84)

If we further assume that <Ŝj> is in the same direction as the magnetization M,

M = NgμB<Ŝj> (13.85)

and

BM = λM, (13.86)

where λ is the constant originally introduced by Weiss, known as the Weiss constant. From
Eqs. (13.84) through (13.86), the relation between the Weiss constant λ and the exchange integral
J is given by

λ = zJ
Ng2μ2B

: (13.87)

We obtain an expression for the spontaneous magnetic moment M for ferromagnetic solids
ðB = 0Þ by following a procedure similar to that used earlier for the derivation of M for paramag-
netic solids in Eq. (12.45),

M = NgSμBBs
gμBSλM
kBT

� �
, (13.88)

where the Brillouin function BsðxÞ was defined in Eq. (12.46),

BSðxÞ = ð2S+ 1Þ
2S

coth 2S+ 1
2S

x
� �

− 1
2S

coth x
2S

: (13.89)

We note that for ferromagnetic solids, J is replaced with S in Eqs. (12.45) and (12.46). In addition, the
external field B= 0. We can easily check the accuracy of Eq. (13.89) by noting that when T= 0, coth
x= 1 and BS = 1. From Eqs. (13.88) and (13.89), we obtain the expression for saturation magnetization,

M = NgμBS: (13.90)
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When the temperature increases, the spins become randomly oriented, and the spontaneous
magnetization gradually decreases until it disappears. The critical temperature TC at which the sponta-
neous magnetization disappears is obtained from the following approximation for the Brillouin func-
tion BSðxÞ. When x ! 0, which occurs when M ! 0,

BSðxÞ≈ S+ 1
S

x
3
−

ð2S+ 1Þ4 − 1

ð2SÞ4
x3

45
: (13.91)

Substituting Eq. (13.91) in (13.88), we obtain ðT ! TCÞ,
M ≈Ng2μ2BSðS+ 1ÞλM/3kBTC, (13.92)

from which we obtain the expression for the critical temperature, known as the Curie temperature,

TC =
Ng2μ2BSðS+ 1Þλ

3kB
: (13.93)

In the paramagnetic phase, the temperature dependence of magnetization can be described by the
Curie law, provided the internal field is included along with the external field,

M = C
T
ðB + λMÞ (13.94)

or

M = C
T − λC

B: (13.95)

Further, we can write

M = χB = C
T − TC

B, (13.96)

from which we obtain the expression for the paramagnetic susceptibility χ,

χ = C
T − TC

, (13.97)

where TC is the Curie temperature. From Eqs. (13.95) and (13.96), the Curie constant to be inserted
in Eq. (13.97) is given by

C =
TC

λ
, (13.98)

where an expression for TC was obtained in Eq. (13.93).

13.4.2 Comparison of Spin-Wave Theory with the Weiss Field Model
Both the spin-wave theory and the Weiss field model use the concept of direct exchange interaction
between localized spins of nearest neighbors. The basic assumption in both models is that the electrons
of a lattice ion contributing to the magnetic moment are tightly bound for the ions to be isolated, but the
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nearest neighbors are sufficiently close for
a significant interaction to arise. However, the
results obtained by using the two models differ
significantly at low and high temperatures. For
example, from Eqs. (13.88) and (13.93), it can be
easily shown that (Problem 13.15)

MðTÞ
Mð0Þ = 1− 1

S
e−3TC /ðS+1ÞT , (13.99)

while the experimental results agree with the T3/2

law obtained by using spin-wave theory.
This result suggests that for temperatures

near the ground state (T = 0), the spin-wave
theory can be derived by using the method of
elementary excitations rather than using other
approximations. At higher temperatures, it is
more appropriate to use semiclassical methods
such as the Weiss field model, which can be justified by the general exchange-interaction concept.
However, many aspects of the behavior of a ferromagnet near the Curie temperature can be under-
stood by using the concept of magnons. Even at temperatures above the Curie temperature, para-
magnons can be used to understand the properties in the paramagnetic region. The temperature
dependence of the spontaneous magnetization, obtained from Eq. (13.88), is shown in Figure 13.5.

13.4.3 Ferromagnetic Domains
It is a common experience to note that a ferromagnetic material is not necessarily magnetized when the
temperature is lower than the Curie temperature. However, it is strongly attracted by magnetic fields
and can be “magnetized” by stroking it with a “permanent magnet.” The basic question is how the
atomic magnetic dipoles are aligned below the Curie temperature and yet produce zero magnetization.

The key to explain this phenomenon is the fact that we have only considered the Heisenberg
Hamiltonian while deriving an expression for the magnetization and neglected the magnetic dipolar
interaction between the spins introduced in Eq. (13.7). The main reason for omitting the latter is
that the dipolar coupling between nearest neighbors is much smaller than the exchange coupling.
However, the exchange interaction is very short-ranged and decreases exponentially with spin
separation in a ferromagnetic insulator. In contrast, the dipolar interaction falls off as the inverse
cube of the separation. The magnetic configuration of a macroscopic sample depends on both inter-
actions, especially when a large number of spins is involved where the dipolar energies that have
been hitherto neglected become quite significant.

It can be easily shown that the dipolar energy can be substantially reduced by dividing the ferromag-
netic solid into uniformly magnetized domains of much smaller size and of which the magnetization vec-
tors point in different directions. The concept of ferromagnetic domains was introduced by Weiss.
Figure 13.6 shows a schematic diagram of the domains in a ferromagnet (Ref. 7). The atomic dipoles are
aligned in the same direction within a domain but have no common link with the neighboring domains.
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FIGURE 13.5

Saturation magnetization as a function of
temperature.
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Figure 13.7 shows schematically a change in orientation of magnetic dipoles, in which each
dipole is slightly misaligned with the neighboring dipole. The change in the orientation of the dipoles
from the direction of one domain to that of the neighboring domain takes place over a distance of a
few hundred atomic spaces. This narrow region between the adjacent domains is called a Bloch wall.

13.4.4 Hysteresis
Figure 13.8 shows the magnetization curve that describes the process by which a ferromagnetic
material can be converted from a nonmagnetic state to a ferromagnetic state with the application of a
reasonably small magnetic field. This curve is known as the hysteresis curve (Ref. 27). The magneti-
zation curve is plotted as B versus H, where H is the external magnetic field and the magnetic induction,
B = H + 4πM. The external field H is applied to an initially unmagnetized sample until the
magnetization reaches the saturation value.

FIGURE 13.6

Ferromagnetic domains. The dimensions are 10 μm to 100 μm.

FIGURE 13.7

Schematic diagram of the change in orientation of magnetic dipoles in neighboring domains.
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After the sample has become fully magnetized,
the field is subsequently reduced, and the
magnetization decreases to a constant value when
the external field is zero. To return the sample
to its original state (i.e., to demagnetize it),
a magnetic field has to be applied in the opposite
direction until B = 0 when H = −Hc. Usually,
this is considered as the definition of the coercive
force.

13.4.5 Ising Model
The Ising model is a very simplified version of the
Heisenberg model. In this model, the Hamiltonian
is written as

Ĥ = −J∑
i, j
′ŜizŜjz − gμBB∑

N

i=1
Ŝiz: (13.100)

Thus, the terms S+ and S− are essentially dropped from the Heisenberg model, and the magnetic field is
taken in the z direction. Because all Ŝiz commute, the Hamiltonian Ĥ is diagonal in the representation in
which each Ŝiz is diagonal. Hence, all the eigenfunctions and the eigenvalues of the Hamiltonian
are known. Thus, the Ising model is very convenient in describing the statistical theory of phase transi-
tions—for example, in describing the system when the ferromagnetic state is changed to a paramagnetic
state at the Curie temperature. However, in spite of these simplifications, only by using a two-
dimensional Ising model for simple lattices (i.e., square, triangular, honeycomb) can one calculate the
exact free energy in zero magnetic field and the spontaneous magnetization. We will not discuss this
model in more detail.

13.5 FERROMAGNETISM IN TRANSITION METALS
13.5.1 Introduction
The problem of the origin of ferromagnetism in some transition metals, of which the common feature
is that they have narrow unfilled d-bands (3d) as well as filled s-bands ðs2Þ, remains one of the major
unsolved problems in solid state physics. There have been many theoretical explanations, but no
theory can satisfactorily explain why Fe, Co, and Ni are ferromagnetic metals while a large number
of transition elements with narrow unfilled d-bands are not ferromagnetic; i.e., they do not have
spontaneous magnetization. For example, the configurations of these elements are

Feð½Ar�3d64s2Þ, Coð½Ar�3d74s2Þ, Nið½Ar�3d84s2Þ:
These three elements (Fe, Co, and Ni) are ferromagnetic metals, whereas Mn and Pd become
ferromagnetic under certain conditions.

There have been many attempts to solve this problem of band ferromagnetism (Ref. 4). It is
indeed easy to understand the origin of an atomic magnetic moment arising out of an intra-atomic

B = H + 4πM

−Hc H

FIGURE 13.8

The hysteresis curve.
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exchange but difficult to explain the cooperative interaction that couples the moments on differ-
ent atoms. Such cooperative phenomena require a band model of ferromagnetism. However, one
of the essential features of the band model is to delocalize the moment from the atom. Thus, the
Heisenberg model is inappropriate for use in ferromagnetism in transition metals. We will discuss
the existing theories, with the cautionary note that not one of them is adequate in explaining
band ferromagnetism.

The magnetic moments of transition metals can indeed be calculated with reliable accuracy by
using a combination of band calculations and density functional theory. However, this approach
does not provide a specific model for band ferromagnetism.

13.5.2 Stoner Model
Stoner (Ref. 26) considered a collective electron model in which there is an interaction term
between the pairs of electrons of opposite spin. Thus,

Hi =
U
N

∑
k,k′

nk↑nk′↓, (13.101)

where nk↑ð↓Þ is the occupation number of the states jk↑ð↓Þ> . Each pair of electrons of opposite spin
contributes a positive “exchange” energy U/N. It should be made clear at this point that the nature of
this positive “exchange” energy between opposite spins in the same d-shell was neither explained by
Stoner nor has it been explained by any other group since then. In a later section, we will present an
alternate interpretation for U. The contributions from electrons of the same spin in the d-shell are
included in the definition of zero of energy and therefore not counted in Eq. (13.101). If we define
the total number of electrons nσ per atom of spin σ, the energy of an electron of ↑ð↓Þ spin is

εk↑ð↓Þ = εðkÞ∓ μBB+Un↓ð↑Þ: (13.102)

The number of electrons in each state is given by two Fermi–Dirac distributions with the same
chemical potential μ. Thus, we have

n↑ð↓Þ =
Z ∞

0
DðεÞf 0ðεk↑ð↓ÞÞdε, (13.103)

where f 0ðεk↑ð↓ÞÞ is the Fermi–Dirac distribution function, and DðεÞ is the density of states per spin.
The chemical potential is the same for the two electron distributions. To satisfy this, the following
conditions have to be met:

n<μ> = μB

Z∞
0

f f 0ðεk↑Þ− f 0ðεk↓ÞgDðεÞdε (13.104)

and

n =
Z∞
0

f f 0ðεk↑Þ+ f 0ðεk↓ÞgDðεÞdε: (13.105)

The magnetic moment is given by

M = μBðn↑ − n↓Þ: (13.106)
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From Eqs. (13.102), (13.103), and (13.106), we obtain

M = μB

Z∞
0

f f 0ðε− μBB+Un↓Þ− f 0ðε+ μBB+Un↑Þgdε, (13.107)

which can be written in the alternate form in the limit of B ! 0, T ! 0,

M ≈ ½MU + 2μ2BB�
Z∞
0

−∂f 0

∂ε
DðεÞdε

� �
: (13.108)

At T ! 0 , we have, for any function FðεÞ,

−
Z∞
0

∂f 0

∂ε
FðεÞdε = FðεFÞ: (13.109)

From Eqs. (13.108) and (13.109), we obtain

M ≈ ½ðMU + 2μ2B BÞDðεFÞ�: (13.110)

Eq. (13.110) can be rewritten in the alternate form

M ≈
2μ2BBDðεFÞ
1−UDðεFÞ : (13.111)

The magnetic susceptibility is easily obtained from Eq. (13.111),

χ = M
B

=
2μ2BDðεFÞ
1−UDðεFÞ : (13.112)

When the “exchange field” is sufficiently large so that

UDðεFÞ> 1, (13.113)

Eq. (13.112) is unstable. In the Stoner model, this leads to a transition to ferromagnetism. In addition,
from Eq. (13.106), to have a permanent magnetic moment,

n↑ ≫ n↓: (13.114)

However, Stoner’s model does not explain this
large difference between n↑ and n↓: In addition,
Stoner’s model neither explains the origin of the
positive “exchange interaction” U nor does it
explain why only Fe, Co, and Ni are ferromag-
netic metals among such a large number of ele-
ments in the transition group with narrow d-bands.

The typical density of states of iron and the
other transition metals in the same group with
3d narrow bands and 4s wide bands is shown in
Figure 13.9. Because the Fermi energy lies
inside the 3d band, the density of states at the
Fermi energy is very high.
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FIGURE 13.9

Schematic diagram of density of states of 3d and 4s
bands in iron and other transition metals.
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13.5.3 Ferromagnetism in Fe, Co, and Ni from Stoner’s Model and
Kohn–Sham Equations

In the 3d electrons in bulk transition metals, there is a significant overlap between neighboring atoms.
The 4s electrons form broad free-electron-like bands of width 20–30 eV, whereas the 3d electron
bandwidths are typically 5–10 eV. Due to hybridization and crystal environment, one electron is
transferred from s- to d-bands. Thus, there are 7, 8, and 9 electrons per atom, respectively, in the
d-bands in Fe, Co, and Ni. The predicted spin moments from Hund’s rule are μspinðFeÞ = 3 μB,
μspinðCoÞ = 2 μB, and μspinðNiÞ = μB. However, the actual values are noninteger and smaller because
of partial delocalization; i.e., μspinðFeÞ=2:12 μB, μspinðCoÞ = 1:58 μB, and μspinðNiÞ = 0:56 μB.

Due to the large density of states, there are many unoccupied states just above the Fermi energy,
which allows the promotion of electrons from minority spin to majority spin states at a modest
energy cost. We have obtained the Stoner criterion for ferromagnetic susceptibility,

UDðεFÞ> 1: (13.115)

The parameter U can be evaluated by perturbation theory based on non-spin-polarized solutions of
the Kohn–Sham equations of density functional theory described in detail in Section 7.8.

Janak9 showed that for infinitesimal Stoner splitting, one can write

U =
Z

dr γ2ðrÞjKðrÞ, (13.116)

where γðrÞ is essentially a normalized local density of states at the Fermi energy,

γðrÞ = ∑
i

δðεF − εiÞjψ iðrÞj2
DðεFÞ , (13.117)

and εi and ψ iðrÞ are the self-consistent energies and wave functions of the Kohn–Sham equations. K(r)
is a kernel giving the exchange-correlation enhancement of the field due to magnetization defined by

δ2Exc½nm�
δmðrÞδmðr′Þ
	 


m=0

= 2KðrÞδðr− r′Þ, (13.118)

where Exc½n;m� is the exchange-correlation functional, which is defined in Eq. (7.165) in the local
density approximation of Kohn and Sham. Here, n and m are defined in the usual manner,

nρðrÞ = ∑
i
θðεF − εiρÞjψ iρj2, (13.119)

nðrÞ = n↑ðrÞ+ n↓ðrÞ, (13.120)

and

mðrÞ = n↑ðrÞ− n↓ðrÞ: (13.121)

Janak (Ref. 9) calculated the values of both U and DðεFÞ as functions of atomic number Z. The
exchange-correlation-enhanced spin susceptibilities of 32 elements from Li through In were calculated
using the spin-polarized exchange-correlation functional of von Barth and Hedin. The methods of
Janak’s calculation are summarized in his paper, and the results are tabulated in Table 1 of the same
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paper [note that his results for Dðεf Þ are for both
spins]. He has also plotted U and DðεFÞ as a
function of atomic number Z in Figure 13.1 of
his paper. In Figure 13.10, we have plotted
1−UDðεFÞ versus Z, where DðεFÞ is the density
of states per spin. We note that according to
the data, both Fe (Z = 26) and Ni (Z = 28) are
ferromagnetic according to the Stoner criterion
while UDðεFÞ = 0:97 for Co (Z = 27). In con-
trast, calculations by Gunnarson (Ref. 4) indicate
that UDðεFÞ is in the range 1.6–1.8 for Co.

To summarize, the ferromagnetism of Fe,
Co, and Ni can be explained by using density-
functional theory through a combination of band
theory and Stoner criterion, but we still lack a
fundamental theory of ferromagnetism in transi-
tion metals.

13.5.4 Free Electron Gas Model
It is well known that the free electron gas model does not explain the ferromagnetism in metals.
However, one can derive conditions for the onset of ferromagnetism using the free electron gas
model without using spin-dependent interactions. The free electron gas model provides a simple the-
ory that is grossly inadequate but nevertheless provides a glimpse into the much harder and yet
unsolved problem. It deals with the itinerant aspect of exchange through the use of the Hartree–
Fock approximation of the uniform electron gas.

We derived in Eq. (7.44) an expression for the ground-state energy of the free electrons,

E = N e2

2a0
3
5
ðkFa0Þ2 − 3

2π
ðkFa0Þ

h i
, (13.122)

where a0 is the Bohr radius, the first term is the total kinetic energy, and the second term is the
exchange energy that is between the electrons of the same spin.

Eq. (13.122) was derived with the assumption that each occupied one-electron state was occu-
pied with two electrons of opposite spin. However, if it so happens that there is a spin imbalance,
then each one-electron state has k less than some k↑ with spin-up electrons and similarly k< k↓ for
some spin-down electrons. Because the exchange interaction is between electrons of the same spin,
we obtain from Eq. (13.122) an equation for each spin population,

Eð↑,↓Þ = Nð↑,↓Þ
e2

2a0
3
5
ðkð↑,↓Þa0Þ2 − 3

2π
ðkð↑,↓Þa0Þ

h i
: (13.123)

The total energy

E = E↑ +E↓, (13.124)
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Using data from Figure 1 of Janak (Ref. 9),
1−UDðεF Þ is plotted against Z (by Binns C and
Blackman JA, p.231 of Ref. 19.).

Reproduced from Misra19 with permission of Elsevier.

13.5 Ferromagnetism in Transition Metals 431



and the total number of electrons

N = N↑ +N↓ = V
k3↑ + k3↓
6π2

 !
=V

k3F
3π2

: (13.125)

If N↑ >N↓, the ground state will have a nonvanishing magnetic density

M = −gμB
N↑−N↓

V
, (13.126)

which leads to a ferromagnetic electron gas. In the other extreme, if

N↓ = N,
N↑ = 0,
E = E↓,
k↓ = 21/3kF ðfrom Eq: 13:125Þ:

(13.127)

From Eqs. (13.124), (13.125), and (13.127), we obtain

E↓ = N 3
5
22/3ðkFa0Þ2 − 3

2π
21/3ðkFa0Þ

h i
: (13.128)

Comparing Eqs. (13.122) with (13.128), we note that the energy of the fully magnetized state is
lower than the energy of the unmagnetized state when the exchange energy dominates the kinetic
energy. It can be shown from Eq. (13.128) that when E = E↓, transition to a fully magnetized state
occurs, in which case

kFa0 =
5
2π

1
21/3 + 1

: (13.129)

We earlier defined the electron density rs,

rs =
3V
4πN

� �1/3
= 1:92

kF
: (13.130)

From Eqs. (13.129) and (13.130), the condition for transition from a nonmagnetic to a ferromagnetic
state is

rs
a0

= 2π
5
ð21/3 + 1Þ 9π

4

� �1/3
= 5:45: (13.131)

The only metal with such a low conduction electron density is cesium. There are some metallic com-
pounds that also satisfy the criteria that rs/a0 > 5.45.

However, none of these are ferromagnetic metals, even though their band structures are reason-
ably described by the free electron model. Thus, one has to know the specific features of the band
structure and the itinerant exchange interactions to be able to account for magnetic ordering. The
starting point is the fact that the d-electrons form a narrow band. Next, we will briefly discuss a
few models for the theory of ferromagnetic metals.
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13.5.5 Hubbard Model
Hubbard (Ref. 8) proposed a simple model that yields both bandlike and localized behavior in
suitable limits. He proposed an extension of the tight-binding model by adding a term that includes
an energy penalty U for any atomic site occupied by more than one electron. Hubbard’s main argu-
ment was that because the off-diagonal elements of the Coulomb interaction were much smaller
than the diagonal elements, the Hamiltonian can be approximated as

Ĥ = ∑
<ij>,ρ

−t½â†iρâjρ + â†jρâiρ�+U∑
i
â†i↑âi↑â

†

i↓âi↓, (13.132)

where the sum <ij> is taken over nearest-neighbor pairs. Here, the off-diagonal states have nonvan-
ishing matrix elements t, known as the hopping parameter, between those pairs of states that differ
only by a single electron that has moved from an ion to one of its neighbors without change of
spin. This set of terms leads to a tight-binding model of one-electron Bloch levels. Even this
oversimplified Hamiltonian can be solved only by using mean-field theory.

Eq. (13.132) can be rewritten as

Ĥ = ∑
<ij>,ρ

−t½â†iρâjρ + â†jρâiρ�+U∑
i
n̂i↑n̂i↓: (13.133)

If we write

n̂iρ = nρ + ðn̂iρ − nρÞ, (13.134)

and consider the second term in Eq. (13.134) as small, Eq. (13.133) can be rewritten as

Ĥ = ∑
<ij>,ρ

−t½â†iρâjρ + â†jρâiρ�+U∑
i
ðn̂i↑n↓ + n↑n̂i↓ − n↑n↓Þ: (13.135)

Making a Fourier transformation of the type

âiρ =
1ffiffiffiffi
N

p ∑
k
eik

.Ri b̂kρ, (13.136)

from Eqs. (13.135) and (13.136), we obtain (Problem 13.17)

Ĥ = ∑
k,Rl ,ρ

−tb̂
†

kρb̂kρ cos Rl
.k+U∑

k
ðn̂k↑n↓ + n↑n̂k↓ − n↑n↓Þ, (13.137)

where Rl are nearest-neighbor vectors. The Hamiltonian in Eq. (13.137) becomes diagonal in k
space. Specific calculations for a ferromagnetic solid (Ref. 30) can be made depending on the
lattice structure and the dimension. In addition to the difficulties in making specific calculations in
the Hubbard model, its major drawback is that it was designed for solutions that lead to ferromag-
netism in metals.

We will present an alternate model for ferromagnetism in the transition metals starting with a
theory of magnetization of interacting Bloch electrons.
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13.6 MAGNETIZATION OF INTERACTING BLOCH ELECTRONS
13.6.1 Introduction
Recently, Tripathi and Misra29 derived a theory of magnetization of interacting electrons in the presence
of a periodic potential, spin-orbit interaction, and an applied magnetic field in the paramagnetic limits.
Starting from a thermodynamic potential, which includes both the quasiparticle and correlation contribu-
tions, they showed that the modifications brought about by the electron–electron interactions for the
magnetization in the quasiparticle approximation are precisely canceled by the contributions due to elec-
tron correlations. The magnetization is expressed as a product of the spin density and effective g factor,
due mainly to the spin-orbit interaction. Tripathi and Misra (Ref. 29) also showed the importance of the
self-energy corrections in the single-particle energy spectrum. By considering a variant of the Hubbard
Hamiltonian in the momentum space, their theory can predict whether or not the ground state of the
interacting electron system is magnetic. Tripathi and Misra’s model for ferromagnetism appears as a
variant of the Stoner model but from a very different perspective.

13.6.2 Theory of Magnetization
The magnetization of an interacting electron system is given by

Mv = − ∂Ω
∂Bv

, (13.138)

where Ω is the thermodynamic potential, and in Eq. (12.123), Misra et al. (Ref. 18) showed

Ω = Ωqp +Ωcorr , (13.139)

where

Ωqp =
1
β
Tr lnð−eGξlÞ = − 1

2iπ
Tr

I
C

FðξÞeGðξÞdξ, (13.140)

FðξÞ = − 1
β
ln

�
1+ e−βðξ−μÞ

�
, (13.141)

and the contour encircles the imaginary axis in a counterclockwise direction and Tr involves
summation over one-particle states.18 Misra et al.18 derived (Eq. 12.117)

½ξl − Ĥð κ!, ξlÞ�Ĝðk, ξlÞ = I, (13.142a)

where

κ! = k+ ih×∇k, (13.142b)

(from Eq. 12.119) and h = eB
2ħc (from Eq. 12.114).

Misra et al. (Ref. 18) also derived (Eqs. 12.130 through 12.132)

Ĥð κ!, ξlÞ = Ĥ0ðk, ξlÞ+ Ĥ′ðk, ξlÞ, (13.143)
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where

Ĥ0ðk, ξlÞ = 1
2m

ðp+ ħkÞ2 +VðrÞ+Σ0ðk, ξlÞ+ ħ2

8mc2
∇2V + ħ

4m2c2
σ! . ∇!V × ðp+ ħkÞ, (13.144)

and retaining terms up to the first order in the magnetic field in Eq. (12.132),

H′ðk, ξlÞ = −ihαβΠα∇β
k +

1
2
gμBB

μσμ +BμΣ1,μðk, ξlÞ: (13.145)

In Eq. (13.145), hαβ = ∈αβμ h
μ, where ∈αβμ h

μ, where ∈αβμ is the antisymmetric tensor of the third
rank and we follow Einstein summation convention.

Here, Π! was defined in Eq. (12.133),

Π! = ħ
m
ðp+ ħkÞ+ ħ2

4m2c2
σ!× ∇!V +∇kΣ

0ðk, ξlÞ: (13.146)

In addition, from Eqs. (12.134) through (12.136), Misra et al. (Ref. 18) derived

eGðk, ξlÞ = G0ðk, ξlÞ+G0ðk, ξlÞĤ′G0ðk, ξlÞ+ ::: (13.147)

and

∇α
kG0ðk, ξlÞ = G0ðk, ξlÞΠαG0ðk, ξlÞ, (13.148a)

where (from Eq. 12.135)

G0ðk, ξlÞ = 1
ξl − Ĥ0ðk, ξlÞ

: (13.148b)

From Eqs. (13.145) through (13.148), it can be shown that (Problem 13.18)

eGðk, ξlÞ = G0 −G0 ihαβΠα∇β
k −

1
2
gμBB

vFv
h i

G0, (13.149)

where

Fv = σv + 2
gμB

eΣ1,v
(13.150)

was defined in Eq. (12.147) and is the renormalized spin vertex in the presence of the electron–
electron interaction.

13.6.3 The Quasiparticle Contribution to Magnetization
From Eqs. (12.123) and (13.149), one can obtain the quasiparticle contribution to the thermo-
dynamic potential, after evaluating the trace and contour integration (Problem 13.19) as

Ωqp =
1
2
μBB

v ∑
nkρmρ′,m≠ n

gFv
nρ,nρ′ +

ie
ħcμB

∈αβv

Πα
nρ,mρ′Π

β
mρ′,nρ

Emn

" #
f ðEnkρÞ, (13.151)

where f ðEnkρÞ is the Fermi distribution function for an electron in band n and spin ρ,

Πα
nρ,mρ′ =

Z
cell

d3ru�nkρΠ
αumkρ′ (13.152)
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and

Emn = EmðkÞ−EnðkÞ: (13.153)

Using

Mv
qp = −

∂Ωqp

∂Bv
, (13.154)

and Eqs. (13.150) and (13.151), Tripathi and Misra (Ref. 29) obtain

Mv
qp = − 1

2
μB ∑

nkρρ′
gvnnðkÞσvnρ,nρ′ + 2

μB
eΣ1,v

nρ,nρ′

� �
f ðEnkρÞ, (13.155)

where

gvnnðkÞσvnρ,nρ′ = gσvnρ,nρ′ +
ie

ħcμB
∈αβv ∑

m≠ n,ρ′

Πα
nρ,mρ′Π

β
mv′,nρ

Emn
, (13.156)

and is the effective g factor in the presence of spin-orbit interaction. In the absence of spin-orbit
interactions, the second term in Eq. (13.156) vanishes, and the effective g factor reduces to the free elec-
tron g factor. In the absence of many-body interactions, the second term in the square brackets of
Eq. (13.155) vanishes. However, Tripathi and Misra (Ref. 29) showed that the inclusion of Mcorr would
precisely cancel this term, and the final expression for magnetization would be free from any explicit
many-body corrections—a surprising result that we will discuss in detail at the end of this section.

13.6.4 Contribution of Correlations to Magnetization
In Eq. (12.123), Misra et al. (Ref. 18) derived

Ωcorr =
1
β

�
−Tr eΣξl

eGξl +ϕðeGξlÞ
�
: (13.157)

The contribution of correlation to magnetization is (Ref. 29)

Mv
corr = −∂Ωcorr

∂Bv
= 1

β
Tr

∂eΣξl

∂Bv
eGξl : (13.158)

Simplifying Eq. (13.158) with the use of Eqs. (12.127), (12.128), (13.155), and the Luttinger–Ward
(Ref. 15) prescription for frequency summation, we obtain

1
β
∑
ξl

1
ðξl − Ĥ0Þm

= 1
2iπ

Tr

Z
Γ0

1
ðξ− Ĥ0Þm

f ðξÞdξ, (13.159)

where Γ0 encircles the real axis in a clockwise direction, and f ðξÞ is the Fermi distribution function
obtained (Problem 13.20) after evaluating the tr over a complete set of single particle states,

Mv
corr = ∑

nkρ

eΣ1,v

nρ,nρ′ f ðEnkρÞ . (13.160)
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From Eqs. (13.155) and (13.160),

Mv = − 1
2
μB ∑

nkρρ′
gvnnðkÞσvnρ,nρ′f ðEnkρÞ: (13.161)

Thus, the renormalization of the spin vertex by the electron–electron interactions in the quasiparticle
contribution is precisely canceled by Mv

corr. It may appear surprising that although both the spin
contribution to the susceptibility (Ref. 18) (see Chapter 12) and spin Knight shift (Ref. 28) are
exchange enhanced by electron–electron interactions, the self-energy corrections do not explicitly
appear in the expression for magnetization. The reason is that the magnetic susceptibility and
Knight shift arise from second-order effects in the magnetic field, where both the spin vertices are
renormalized, and the renormalization of only one of the vertices is canceled due to the electron
correlations. The renormalization of the other spin vertex, in a Hartree–Fock analysis, contributes to
the exchange enhancement of the spin contributions to the susceptibility (Chapter 12) and Knight
shift. In contrast, the single-particle energies appearing in Eqs. (13.144) and (13.145) depend on
electron–electron interaction and the magnetic field through the self-energy. In the next section, we
will show the consequences of these self-energy corrections on the single-particle spectrum in pre-
dicting whether or not the ground state of the interacting system is magnetic.

Assuming the effective magnetic field to be in the z direction and considering a single band,
Tripathi and Misra (Ref. 29) obtained a tractable expression by averaging over the g matrix and
denoting it as the effective g factor geff . They showed that Eq. (13.161) can be expressed as

M = − 1
2
μBgeff ∑

kρρ′
σρρ′f ðEkρÞ: (13.162)

Here, ρ and ρ′ take both ↑ and ↓ states. Eq. (13.162), therefore, can be rewritten as

M = − 1
2
μBgeff ðn↑ − n↓Þ, (13.163)

where

n↑ð↓Þ = ∑
k
f ðEk↑ð↓ÞÞ: (13.164)

13.6.5 Single-Particle Spectrum and the Criteria for Ferromagnetic Ground State
The single-particle energies Ekρ appearing in Eq. (13.154) are the eigenvalues of the field-independent
Hamiltonian described in Eq. (13.144). If the spin-orbit interaction is neglected, ρ becomes a pure
spin state, and Ekρ can be obtained by the following procedure. The many-body Hamiltonian can be
written as

Ĥ0 = ∑
kρ
εkc

†
kρckρ +

1
2

∑
qkk′ρρ′

VðqÞc†k+q,ρc†k′−q,ρ′ck′,ρ′ck,ρ, (13.165)

where c†kρ and ckρ are the creation and annihilation operators for an electron with wave vector k and
spin ρ, and VðqÞ is the Fourier transformation of the Coulomb interaction.
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Ekρ can be obtained by using the mean-field approximation,

Ekρ =
1
N

�
½ckρ, Ĥ0�, c†kρ
n o�

: (13.166)

From Eqs. (13.165) and (13.166), we obtain

Ekρ = εk −
1
N
∑
q
VðqÞf ðεk−q,ρÞ+ 1

N
Vð0Þ∑

k
½ f ðεkρÞ + f ðεk,−ρÞ�: (13.167)

Because V is assumed to be a constant U in the approximation of the averaged Coulomb interaction
ansatz, we can rewrite Eq. (13.167) as

Ekρ = εk +
1
N
U∑

k
f ðεk,−ρÞ� εk +Un−ρ, (13.168)

where

n−ρ =
1
N
∑
k
f ðεk,−ρÞ: (13.169)

Eq. (13.168) is the Hartree–Fock representation of the single-particle spectrum. If we write
n = n↑ + n↓ and m = n↑ − n↓ where n is the number of electrons/atoms and m is the average magne-
tization per atom in a Bohr magneton, the total energy per atom is

E = 1
N
∑
kρ
εk f ðEkρÞ+Un↑n↓: (13.170)

The nonmagnetic solution in the ground state is obtained from the criteria

f ðEkρÞ = 1 if Ekρ <EF

= 0 if Ekρ >EF:
(13.171)

The Fermi energy EF is determined from the condition that one has the right number ðnÞ of elec-
trons per atom. To study the stability of this state, let us transfer some electrons in an energy range
δE below EF from the down-spin states to the up-spin states. The change in the kinetic energy is

ΔT = DðEFÞðδE2Þ, (13.172)

where DðEFÞ is the density of states per atom per spin at the Fermi energy. The change in the inter-
action energy is

ΔEint = U n
2
+DδE

� �
n
2
−DδE

� �
− 1

4
Un2 �−UD2ðEFÞðδE2Þ: (13.173)

From Eqs. (13.172) and (13.173), the change in the total energy is

ΔE = DðEFÞðδEÞ2½1−UDðEFÞ�: (13.174)

The nonmagnetic state would be stable if UDðεFÞ< 1 and the condition for the ferromagnetic
stability is UDðεFÞ> 1. This appears similar to the Stoner condition for ferromagnetic stability
except that here U is well defined (Eq. 13.168) instead of an arbitrary positive attractive interaction
between electrons of opposite spin in an atom. It can be shown that the preceding conditions could
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also be obtained if one considers the second-order terms in the field in the thermodynamic potential
and calculates the magnetic susceptibility.

13.7 THE KONDO EFFECT
In 1936, de Haas and van den Berg observed in experiments with gold (probably containing a small
amount of iron impurities) that electrical resistivity dropped as the normal temperature decreased
until about 8º K, and below that it increased. This observation was in contrast to the theory of
electrical resistivity of normal metals (nonsuperconductors) where the resistance is supposed to fall
with temperature as the atomic vibrations decrease and, below about 10ºK, remain constant. This
low-temperature residual resistivity is due to scattering by defects in the material.

Kondo (Ref. 14) used second-order perturbation theory to calculate the scattering of the
conduction electrons of a noble metal by magnetic defects, using a Heisenberg model to describe
the interaction between conduction electron spins and the spin moments and the defects. Kondo
observed that spin-flip processes can occur in the second order, which results in a resistance that
increases logarithmically when the temperature is lowered. These results are valid above a tempera-
ture TK (known as the Kondo temperature), but the perturbation theory breaks down for T < TK . In
1963, Nagaoka20 published a self-consistent treatment that yielded solutions both above and below
the Kondo temperature and reproduced the resistance minimum.

13.8 ANDERSON MODEL
In 1961, Anderson (Ref. 1) proposed a model for the Hamiltonian of a single magnetic impurity to
a Fermi sea of electrons,

H = ∑
kσ
εkc

†
kσckσ + εd∑

σ
d†σdσ +∑

kσ
ðVdkd

†
σckσ +V�

dkc
†
kσdσÞ+Ud†↑d↑d

†
↓d↓: (13.175)

The first term is the kinetic energy of the electrons, where c†kσ and ckσ are the creation and annihila-
tion operators for electrons with spin σ in state k. The magnetic state is represented by a single
state with energy εd and electron operators d†σ and dσ . The third term represents the s− d hybridiza-
tion of the d-level with the conduction band. The fourth term represents the cost, in Coulomb
energy, of double occupancy of the d-level. U is assumed to be large and ε< εF , where εF is the
Fermi energy. In the absence of the hybridization term, we have a single occupied (magnetic)
d state. The Anderson model does not attempt to describe the details of the atomic 3d orbitals, but
it captures the essential physics of the Kondo problem.

The Anderson Hamiltonian leads to the spin exchange process. The electron can tunnel from the
localized impurity state to an unoccupied state just above the Fermi energy, and another electron from
the Fermi energy sea replaces it. If these two electrons have opposite spin, it is known as a spin-flip
process. An alternate spin-flip process involves double occupancy of the impurity state, with a cost of
Coulomb energy. When many such processes are taken together, a new many-body process known as
the Kondo resonance is generated. The Kondo resonance, which has a spin-singlet state, has a width of
kBTK and is pinned at the Fermi level, as schematically shown in Figure 13.11.
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The impurity state at εd is shifted and broadened through hybridization with electron states of the
Fermi sea. This is known as a d-resonance. The net effect is an alignment of the spins of the conduc-
tion electrons near the impurity atom so that the local moment is screened. It has been shown by
scaling laws and parameters of the Anderson model that

kBTK = 1
2
ðΓUÞ12 exp½πεdðεd+UÞ/ΓU�: (13.176)

13.9 THE MAGNETIC PHASE TRANSITION
13.9.1 Introduction
There are several types of phase transitions, but the most thoroughly investigated type is the
paramagnetic to ferromagnetic phase transition. When the temperature is lowered through a critical
temperature Tc of the system, a long-range order appears that was absent above Tc. The order,
which usually has an infinite derivative at Tc, rapidly increases below Tc. In the absence of external
fields, the ordering is not completely determined, and the transition is characterized by divergence
of certain quantities like the magnetic susceptibility and the specific heat.

kBTK

Γεd

εF

D (ε )→

ε↑

FIGURE 13.11

Schematic diagram of Kondo resonance of width kBTK . The impurity state is broadened to width Γ by
hybridization with the conduction electrons.
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13.9.2 The Order Parameter
In the case of magnetization, the order parameter σðrÞ, which describes the sudden appearance of
order in the phase transition, is defined as

σðrÞ = Mz/M0, (13.177)

where Mz is the magnetization that defines the z-axis, and M0 is the maximum possible value of
magnetization,

M0 = NgβS: (13.178)

The order parameter, which is zero above but not below Tc, can continuously approach zero as
T ! Tc from below if the transition is not of the first order. However, it is not completely deter-
mined below Tc in the absence of external fields.

13.9.3 Landau Theory of Second-Order Phase Transitions
According to Landau theory (Ref.15), the free energy is defined as a function of the order parameter

G = GðT , σÞ =
Z
gðrÞdr, (13.179)

where gðrÞ is the free energy density. The entropy S is given by

S = − ∂G
∂T

� �
σ
: (13.180)

Landau introduced a quantity hðrÞ, which is related to the external field H0ðrÞ by
hðrÞ = M0HðrÞ: (13.181)

Landau assumed that gðrÞ can be expanded as a power series in σ,

gðrÞ = g0ðTÞ− hðrÞσðrÞ+ αðTÞ½σðrÞ�2 + βðTÞ½σðrÞ�4 + γðTÞj∇σðrÞj2 + ::::: (13.182)

Here, g is minimized (which determines the most probable value of σ) by requiring that

δ

Z
gðrÞdr = 0, (13.183)

from which we obtain Z
dσ½−hðrÞ+ 2aσ + 4bσ3 − 2c ∇2σðrÞ�dr = 0: (13.184)

Eq. (13.184) yields

−2c∇2σðrÞ+ ½2a+ 4bσ2ðrÞ�σðrÞ = hðrÞ: (13.185)

If σ and h are assumed to be independent of r, Eq. (13.185) yields

½2a+ 4bσ2�σ = h: (13.186)

If h = 0, the two possible solutions are

σ = 0 (13.187)
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and

σ = ±ð−a/2bÞ1/2: (13.188)

From Eqs. (13.182) and (13.183), if a> 0, Eq. (13.187) minimizes the free energy, whereas if
a< 0, Eq. (13.188) minimizes the free energy. The free energy should describe a system with non-
zero magnetization in the absence of external fields for T < Tc. This suggests the assumption

aðTÞ = αðT − TcÞ, (13.189)

where α is a constant. From Eqs. (13.188) and (13.189), we obtain

σðTÞ≈ ðTc −TÞ1/2, ðT < TcÞ: (13.190)

Eq. (13.190) is consistent with the molecular field theory. To obtain the reduced susceptibility, we
consider h≠ 0. The reduced susceptibility is defined as

χr = ð∂σ/∂hÞT : (13.191)

From Eq. (13.186) and (13.191), we obtain

2aχr + 12σ2χr = 1: (13.192)

Because σ2 is small and, hence, can be neglected for T > Tc, Eq. (13.192) can be rewritten in the
alternate form with the help of Eq. (13.189),

χr = 1/2αðT − TcÞ, ðT > TcÞ: (13.193)

Eq. (13.193) is the Curie–Weiss law. Below Tc, from Eqs. (13.190) and (13.192), we obtain

χr = −1/4a = −1/4αðTc − TÞ, ðT < TcÞ: (13.194)

At a constant external field, the specific heat is obtained from the relation

CM = −T ∂2G
∂T2

� �
h

: (13.195)

First, we consider the case of zero external field ðh = 0Þ. Because σ = 0 for T > Tc,

C = C0 = −Td2/dT2

Z
g0ðrÞdr, ðT > TcÞ: (13.196)

For a uniform system below Tc, it can be shown that (Problem 13.22)

G =
Z
dr ½g0 − ða2/4bÞ�: (13.197)

Thus, from Eqs. (13.195) and (13.197), the specific heat is

C = C0 +T

Z
½ðα2/2bÞ− ½α2ðT − TcÞ2/4b2�db/dT �dr, ðT < TcÞ: (13.198)

Comparing Eqs. (13.196) and (13.198), we note that there is a finite contribution from magnetization
to the specific heat just below Tc that results in a finite discontinuity to C at Tc:
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PROBLEMS
13.1. Using vector identities, show from Eqs. (13.1) through (13.3) that

F = ðm× ∇!Þ×B = ∇!ðm .BÞ,
where B�Bð0Þ:

13.2. Show that the induction B produced by a magnetic dipole of moment m1 at a distance r,
where a second dipole of moment m2 is located, is given by

B = ∇! m1
. ∇! 1

r

h i
=

3r̂ðm1 . r̂Þ−m1

r3
:

13.3. From Eqs. (13.8) through (13.10) and Eq. (13.13), show that

εs,t = <Ĥ>s,t = 2ε0 +
e2

R12
+ e2

Z
dr1dr2 ψ

�
s,tðr1, r2Þ 1

jr1 − r2j −
1

jr1 −R2j −
1

jr2 −R1j
� �

ψ s,tðr1, r2Þ, (1)

where

1
R12

� 1
jR1−R2j : (2)

13.4. From Eqs. (13.14) through (13.17), show that

εs = 2ε0 +
e2

R
+

VcðR12Þ+VexðR12Þ
ð1+ I2Þ (1)

and

εt = 2ε0 +
e2

R
+

VcðR12Þ−VexðR12Þ
ð1− I2Þ : (2)

13.5. For a two-electron system, we can express

Ŝ1 . Ŝ2 =
1
2
½Ŝ+

1 Ŝ
−
2 + Ŝ

+
2 Ŝ

−
1 �+ Ŝ

z

1Ŝ
z

2, (1)

where

Ŝ
±
= Ŝx ± iŜy: (2)

Show that

Ŝ1 . Ŝ2χs = − 3
4
χs (3)

and

Ŝ1 . Ŝ2χt =
1
4
χt , (4)

where χs and χt are the spin singlet and triplet states.
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13.6. In the Schwinger representation, the Bose operators are defined as

Ŝ
α
= 1

2
∑
ii′
â†i σ

α
ii′âi′, (1)

where σα are the Pauli spin matrices ðα = x, y, zÞ. Show from Eq. (1) that

Ŝ
x
= 1

2
ðâ†1â2 + â†2â1Þ

Ŝ
y
= 1

2
ðâ†2â1 − â†1â2Þ

Ŝ
z
= 1

2
ðâ†1â1 − â†2â2Þ:

(2)

13.7. By using the Holstein–Primakoff transformation, we have obtained

Ŝ
+
= â†1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â1â1

p

Ŝ
−
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â1â1

p
â1

Ŝ
z
= ðâ†1â1 − SÞ:

(1)

Show that

½Ŝ+
, Ŝ

−� = 2Ŝ
z
: (2)

13.8. In Eq. (13.54), we defined

Φm = Ŝ
−
mΠnjS>n: (1)

From Eqs. (13.51) and (13.54), we can write

ĤΦm = −J∑
ij
′ Ŝ

z

i Ŝ
z

j Ŝ
−
m +

1
2
ðŜ+

i Ŝ
−
j Ŝ

−
m + Ŝ

−
i Ŝ

+
j Ŝ

−
mÞ

h i
Φ0: (2)

Show by using the commutation relation of the spin operators that

ĤΦm = E0Φm + 2JS∑
Rl

ðΦm −Φm+lÞ: (3)

13.9. Show that the only possible way in which the ground-state energy ε0 obtained from
Eq. (13.59) will be the same as obtained in Eq. (13.53) is to assume bi = bj = b.

13.10 . From Eq. (13.53) and (13.59), show that we can write Ĥ (up to the first order in S), treating
â as small, b= 0, and multiplying the second term by 2 because <ij> is a sum over nearest-
neighbor pairs (each pair appears twice),

Ĥ = −JNzS2 − 2JS∑
<ij>

ðâ†i âj + â†j âi − â†i âi − â†j ajÞ: (1)
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13.11. If all the Ri vectors are in the A sublattice and the Rj vectors are in the B sublattice, the
spin operators defined in Eqs. (13.40) and (13.42) for ferromagnets can be rewritten for
antiferromagnets as

Ŝ
z

j ! −Ŝ
z

j (1)

and

Ŝ
±
j ! Ŝ

∓
j : (2)

Show that the Hamiltonian in Eq. (13.51) for ferromagnets can be rewritten for
antiferromagnets as

Ĥ = 2jJj∑
<ij>

−ŜizŜjz +
1
2
ðŜ+

i Ŝ
+
j + Ŝ

−
i Ŝ

−
j Þ

h i
: (3)

13.12. Using a procedure adapted to obtain Eq. (13.57) with the modifications for antiferromagnets
(Eqs. 13.68 through 13.70), show that

Ĥ = 2jJj∑
<ij>

−ðS− â†i âiÞðS− â†j âjÞ+ 1
2
â†i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†i âi

q
â†j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†j âj

q�

+ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†i âi

q
âi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2S− â†j âj

q
âj

�
:

(1)

13.13. By following a 1/S expansion method similar to the procedure outlined in Eqs. (13.59) and
Eq. (13.70), derive from Eq. (1) of Problem 13.12

Ĥ = −jJjNzS2 + 2jJjS ∑
<i,j>

½â†i âi + â†j âj + â†i â
†

j + âiâj�: (1)

13.14. We derived

Ĥ = −jJjNzS2 + jJjSj∑
k,l
½2b̂†kb̂k + ðb̂†kb̂

†

−k + b̂kb̂−kÞ cos ðk .RlÞ�, (1)

where Rl are nearest-neighbor vectors. To diagonalize the Hamiltonian, we introduced two
new operators through the transformation,

b̂k = ðsinhβkÞ ĉ†−k + ðcoshβkÞ ĉk, (2)

where β is real. Show that by substituting Eq. (2), the Hamiltonian in Eq. (1) is
diagonalized provided

tanh2βk = − 1
z
∑
l
cosðk .RlÞ: (3)

13.15. Derive from Eqs. (13.88) and (13.91) that the ratio of saturation magnetization M(T) at
temperature T and M(0) at zero temperature is

MðTÞ
Mð0Þ = 1− 1

S
e−3TC /ðS+1ÞT : (1)
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13.16. The chemical potential is the same for the two electron distributions with up- and down-spins.
Show that, to satisfy this, the following conditions have to be met:

n<μ> = μB

Z∞
0

1
2
f f 0ðεk↑Þ− f 0ðεk↓ÞgDðεÞdε (1)

and

n =
Z∞
0

1
2
f f 0ðεk↑Þ+ f 0ðεk↓ÞgDðεÞdε: (2)

13.17. We derived in Eq. (13.135)

Ĥ = ∑
<ij>,ρ

−t½â†iρâjρ + â†jρâiρ�+U∑
i
ðn̂i↑n↓ + n↑n̂i↓ − n↑n↓Þ: (1)

Making a Fourier transformation of the type

âiρ =
1ffiffiffiffi
N

p ∑
k
eik

.Ri b̂kρ, (2)

show that

Ĥ = ∑
k,Rl,ρ

−tb̂
†

kρb̂kρ cos k .Rl +U∑
k
ðn̂k↑n↓ + n↑n̂k↓ − n↑n↓Þ: (3)

13.18. We derived in Eq. (13.145)

H′ðk, ξlÞ = −ihαβΠα∇β
k +

1
2
gμBB

μσμ +BμΣ1,μðk, ξlÞ: (1)

Here, Π! was defined in Eq. (12.133),

Π! = ħ
m
ðp+ ħkÞ+ ħ2

4m2c2
σ!× ∇!V +∇kΣ0ðk, ξlÞ: (2)

In addition, from Eqs. (13.147) and (13.148), we have

eGðk, ξlÞ = G0ðk, ξlÞ+G0ðk, ξlÞĤ′G0ðk, ξlÞ+ ::: (3)

and

∇α
kG0ðk, ξlÞ = G0ðk, ξlÞΠαG0ðk, ξlÞ: (4)

From Eqs. (1) through (4), show that

eGðk, ξlÞ = G0 −G0 ihαβΠα∇β
k −

1
2
g0μBB

vFv
h i

G0, (5)

where

Fv = σv + 2
gμB

eΣ1,v
(6)
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was defined in Eq. (12.147) and is the renormalized spin vertex of the electron–electron
interaction.

13.19. From Eqs. (12.123) and (13.149), the quasiparticle contribution to the thermodynamic
potential is obtained. After evaluating the trace and contour integration, show that

Ωqp =
1
2
μBB

v ∑
nkρmρ′,m≠ n

gFv
nρ,nρ′ +

ie
ħcμB

∈αβv

Πα
nρ,mρ′Π

β
mρ′,nρ

Emn

" #
f ðEnkρÞ, (1)

where f ðEnkρÞ is the Fermi distribution function for an electron in band n and spin ρ,

Πα
nρ,mρ′ =

Z
cell

d3ru�nkρΠ
αumkρ′ (2)

and

Emn = EmðkÞ−EnðkÞ: (3)

13.20. The contribution of correlation to magnetization is

Mv
corr = −∂Ωcorr

∂Bv
= 1

β
Tr

∂eΣξl

∂Bv
eGξl : (1)

Simplifying Eq. (1) with the use of Eqs. (12.127), (12.128), (13.145), (13.147), and the
Luttinger–Ward (Ref. 16) prescription for frequency summation,

1
β
∑
ξl

1
ðξl − Ĥ0Þm

= 1
2iπ

Tr

Z
Γ0

1
ðξ− Ĥ0Þm

f ðξÞ dξ, (2)

where Γ0 encircles the real axis in a clockwise direction, and f ðξÞ is the Fermi distribution
function, show that

Mv
corr = ∑

nkρ

eΣ1,v

nρ,nρ′ f ðEnkρÞ: (3)

13.21. The many-body Hamiltonian can be written as

Ĥ0 = ∑
kρ
εkc

†
kρckρ +

1
2

∑
qkk′ρρ′

VðqÞc†k+q,ρc†k′−q,ρ′ck′,ρ′ck,ρ, (1)

where c†kρ and ckρ are the creation and annihilation operators for an electron with wave
vector k and spin ρ, and VðqÞ is the Fourier transformation of the Coulomb interaction.
Ekρ can be obtained by using the mean-field approximation,

Ekρ =
1
N

�
½ckρ, Ĥ0�, c†kρ
n o�

: (2)
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From Eqs. (1) and (2), show that

Ekρ = εk −
1
N
∑
q
VðqÞf ðεk−q,ρÞ+ 1

N
Vð0Þ∑

k
½ f ðεkρÞ− f ðεk,−ρÞ�: (3)

13.22. Show that for a uniform system below Tc,

G =
Z

dr½g0 − ða2/4bÞ�: (1)

Hence, show by using Eq. (13.195) that the specific heat is

C = C0 + T

Z
½ðα2/2bÞ− ½α2ðT −TcÞ2/4b2�db/dT�dr: ðT < TcÞ (2)
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14.1 PROPERTIES OF SUPERCONDUCTORS
14.1.1 Introduction
The main source of electrical resistance in a metal is the electron–phonon interaction caused by the
scattering of the electrons due to vibrations of the ions. This is the lattice excitations in bulk metals,
which corresponds to small ionic vibrations ðd/L ≪ 1Þ, where d is the amplitude of the vibrations
and L is the lattice period. This is described as acoustic quanta (phonons) with energies,

εiph = ħΩiðqÞ, (14.1)

where q = ħk is the momentum of the phonon, and jkj = 2π/λ, where λ is the phonon’s wavelength.
Here, i corresponds to the various phonon branches (longitudinal, transverse, and optical). The elec-
tron–lattice interaction, i.e., the energy exchange between the electrons and lattice, is due to the radia-
tion and adsorption of phonons and is known as the electron–phonon interaction. As the temperature
is lowered, the amplitude of the ions becomes smaller, and the electrical resistance is reduced.

But the resistivity of a normal metal does not become zero at zero temperature because there are
other sources of electrical resistance due to the presence of impurities and imperfections in the crys-
tal structure. As the temperature is reduced, there is a residual resistivity ρ0 at absolute zero that is
approximately 1% of the resistivity of a pure sample. The temperature around which the resistivity
is constant is approximately 1°K. The resistivity of a metal can be expressed as

ρðTÞ = ρ0 +AT5, (14.2)

where ρ0 is the residual resistivity, and AT5 is the
term arising from electron–phonon scattering. The
variation of resistivity with temperature for a non-
superconducting metal is shown in Figure 14.1.

The phenomenon of superconductivity was
discovered by Kammerlingh Onnes in 1911.15

He measured the resistivity of platinum and
found that the resistivity followed a curve simi-
lar to the curve shown in Figure 14.1. However,
when he performed a similar experiment with a
sample of mercury, he found that the resistance
of the sample dropped sharply to a value of zero
at 4.2º K. The metals of which the resistivity
becomes zero at a particular temperature are
known as superconductors. The temperature at

ρ

ρ0

0 T

FIGURE 14.1

Variation of resistivity of a normal metal.
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or below which a metal becomes a superconduc-
tor is called the critical temperature, Tc. Thus,
there are two types of metals: some that become
superconductors at or below Tc and others that
continue to have resistivity even at 0º K. The
variation of resistivity with temperature for a
superconducting metal is shown in Figure 14.2.

14.1.2 Type I and Type II
Superconductors

The experimental results displayed in the pre-
vious section were for metals when there was
no external magnetic field. However, when an
external magnetic field H is applied, the super-
conducting state is destroyed above a critical
external magnetic field Hc: This type of a superconductor is called a type I superconductor. From
experiment results, one can obtain a relationship between the critical magnetic field HT , which
destroys superconductivity at a given temperature T,

HT = Hc 1− T
Tc

� �2" #
: (14.3)

This experimental result is plotted in Figure 14.3.
One can distinguish type I and type II superconductors in the following manner. In type I super-

conductors, the diamagnetism grows linearly with the magnetic field until the critical value is
reached. This is shown in Figure 14.4.

TTc

Superconducting

H

Hc

Normal

FIGURE 14.3

Variation of external magnetic field H against
temperature T in a type I superconductor.

ρ

TTc

FIGURE 14.2

Variation of resistivity with temperature of a
superconducting metal.

Bc B0

μ0M

FIGURE 14.4

Type I superconductor.
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In type II superconductors, the diamagnetiza-
tion is linear with the external field up to a
value Bc1, but the magnetization decreases when
the flux begins to penetrate the metal. This is
shown in Figure 14.5.

14.1.3 Second-Order Phase Transition
The transition from the normal (N) state to the
superconducting (S) state is known as a sec-
ond-order phase transition. In the first-order
phase transitions, the heat capacity is continu-
ous, whereas in second-order phase transitions,
the heat capacity is discontinuous. Figure 14.6
schematically shows the variation of heat capa-
city from a normal state to a superconducting
state.

14.1.4 Isotope Effect
It was discovered in 1950 that the different iso-
topes of the same element possess different tran-
sition temperatures to enter the superconducting
state,

TcM
α
i = constant, (14.4)

where Mi is the isotopic mass of the same ele-
ment. Usually, α≈ 1/2. This was a strong indi-
cation that the interaction of the electrons with
ions in the lattice was important for super-
conductivity.

14.1.5 Phase Diagram
Superconductivity is destroyed by application of
a large magnetic field. In addition, superconduc-
tivity is destroyed if the current exceeds a “criti-
cal current.” This is known as the Silsbee effect.
To summarize, superconductivity depends on
three factors: (a) the temperature T , (b) the
external magnetic field H, and (c) the current
density j. This type of dependence on three dif-
ferent experimental parameters is shown as a
three-dimensional curve in Figure 14.7.

μ0M

Bc1 Bc2

FIGURE 14.5

Type II superconductor.
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FIGURE 14.6

Second-order phase transition.

Normal

J

Tc

H

T

Superconducting

Jc

Hc

FIGURE 14.7

Critical surface separating the superconducting and
normal states.
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14.2 MEISSNER–OCHSENFELD
EFFECT

Meissner and Ochsenfeld observed that an exter-
nal magnetic field (as long as it is not too large)
cannot penetrate inside a superconductor.22

Thus, a superconductor behaves as a perfect
diamagnet. If a normal metal is cooled below the
critical temperature in a magnetic field, the mag-
netic flux is expelled abruptly. The transition to
the superconducting state in a magnetic field is
accompanied by the surface currents necessary to
cancel the magnetic field inside the specimen.
This scenario is shown in Figure 14.8.

14.3 THE LONDON EQUATION
London and London explained the Meissner–Ochsenfeld effect by adopting the two-fluid model of
Gorter and Casimir.18 The basic assumption of their model is that there are two types of electrons,
nsðTÞ (density of superconducting electrons) and n (density of total number of conducting electrons),
in a metal in the superconducting state. At temperatures T < Tc, only a fraction nsðTÞ/n of the total
number of conduction electrons can carry a supercurrent. nsðTÞ→ 0 as T ! Tc · n− ns cannot carry
an electric current without dissipation. In a small electric field, the normal electrons that flow parallel
to the superconducting electrons are inert and therefore ignored while discussing the motion of elec-
trons. In the presence of an electric field E,

m _vs = −eE, (14.5)

where vs is the mean velocity of superconducting electrons. Because the current density j = −evsns,
Eq. (14.5) can be rewritten in the alternate form

dj
dt

= nse2

m
E: (14.6)

From Eq. (14.6) and Faraday’s law of induction,

∇!× E = −
1
c
∂B
∂t

, (14.7)

we obtain

∂

∂t
∇!× j+

nse2

mc
B

� �
= 0: (14.8)

It is easy to show that Maxwell’s equation (neglecting the displacement current D as well as replacing
H with B because j is the mean microscopic current) can be written as (Problem 14.1)

∇!× B = 4π
c
j: (14.9)

B
→

J
→

FIGURE 14.8

Flux lines cannot pass through the current loop in a
superconductor.
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Because Eqs. (14.8) and (14.9) are consistent with any static magnetic field and the
Meissner–Ochsenfeld (Ref. 22) effect requires that the magnetic field be expelled in the supercon-
ducting state, London and London (Ref. 18) postulated that

∇!× j+
nse2

mc
B

� �
= 0: (14.10)

Using the vector identity,

∇!× ð∇!× VÞ = ∇!ð∇! .VÞ−∇2V, (14.11)

we obtain from Eqs. (14.9) through (14.11),

∇2B = 4πnse2

mc2
B (14.12)

and

∇2j = 4πnse2

mc2
j: (14.13)

Eqs. (14.12) and (14.13) predict that the magnetic fields and currents in a superconductor can exist
within a layer of thickness λL, known as the London penetration depth,

λL = mc2

4πnse2

� �1
2
: (14.14)

One can rewrite λL in the alternate form

λL = 41:9
rs
a0

� �3/2
n
ns

� �1/2
Å: (14.15)

Thus, when T << Tc, ðn ≈ nsÞ the surface currents that screen out the applied magnetic field occur
within a layer of 102 − 103 Å. The magnetic field drops continuously to zero within this layer. It has
indeed been observed experimentally that the field penetration is incomplete in superconducting
films that are thinner than λL:

14.4 GINZBURG–LANDAU THEORY
14.4.1 Order Parameter
Landau and Ginzburg17 described the superconductivity state through a position-dependent order para-
meter ΨðrÞ = jΨðrÞjeiϕðrÞ, which describes the macroscopic properties of a superfluid condensate.17 The
superfluid density nsðrÞ = jΨðrÞj2, suggesting that ΨðrÞ is a wave function that vanishes at Tc. Landau
and Ginzburg (Ref. 17) guessed that to be able to study the magnetic and thermodynamic properties of
superconductors, the total free energy Fs with respect to its value in the normal state Fn should be

Fs = Fn +
Z

dr αjΨj2 + β
2
jΨj4 + 1

8π
B2 + 1

2m�
��� ħ
i
∇!+ e�

c
AðrÞ

h i
ΨðrÞ

���2� �
: (14.16)
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Here, the first two terms are from Landau’s general theory of second-order phase transition borrowed
from their theory for liquid 4He. According to their phenomenological model, one assumes that the com-
plete ground-state wave function ψNðr1……rNÞ for N electrons is known. If an extra electron is added,
one knows ψN+1ðr1…:::rN+1Þ. We define

ΨðrÞ =
Z

dNrψ�
Nðr1……rNÞψN+1ðr1…:::rN , rÞ: (14.17)

Far away from r, ΨN and ΨN+1 coincide, but in its neighborhood ΨN+1 accommodates one extra parti-
cle. The last two terms are due to the fact that the superconducting electron wave function might interact
with the vector potential like a single macroscopic particle of effective charge e� (it was later found that
e� = 2e, consistent with Cooper pairs (Ref. 7)). Minimizing Eq. (14.16) with respect to A, we obtain

∇!×B = 4π
c
j, (14.18)

where

jðrÞ = −e�ħ
2im�

h
Ψ�∇!Ψ−Ψ∇!Ψ�

i
−

e�2
m�c

AΨ�Ψ: (14.19)

Minimizing Eq. (14.16) with respect to Ψ�, by first integrating such that all spatial derivatives act on Ψ
and then taking functional derivatives with respect to Ψ�, we obtain (Problem 14.3)

α+ βjΨj2 + 1
2m�

ħ
i
∇!+ e�

c
A

� �2� �
Ψ = 0: (14.20)

Eqs. (14.19) and (14.20) are known as the Landau–Ginzburg (Ref. 17) equations.

14.4.2 Boundary Conditions
No current can flow out of the boundary when a superconductor is in contact with a vacuum. Thus,
one can write

n̂ . ħ
i
∇!+ e�

c
A

� �
= 0: (14.21)

The additional boundary condition imposed by Landau and Ginzburg17 is that Ψ = 0 was not consid-
ered as an acceptable condition, because in that case, it would be impossible to obtain solutions for
thin superconducting films.

14.4.3 Coherence Length
The coherence length ξ specifies the scale for variation of the order parameter Ψ. The coherence
length is defined by

ξ = ħ2

2m�jαj
� �1

2
, (14.22)
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where α is defined in Eq. (14.20). If the external magnetic field vanishes, Eq. (14.20) can be
rewritten as

jΨj2 = Ψ2
0 = −

α
β

or jΨj2 = 0: (14.23)

Because β is positive (otherwise, F is minimized when Ψ ! ∞), α< 0, which corresponds to a
uniform superconducting state. The free energy per unit volume is given by Eq. (14.16),

Fs −FN = −
α2

2β
: (14.24)

It can be easily shown that

ΔF = FN −Fs =
H2
c

8π
: (14.25)

From Eqs. (14.24) and (14.25), we obtain

H2
c = 4πα2

β
: (14.26)

We can scale the order parameter for superconductors,

ψ = Ψ
Ψ0

: (14.27)

From Eqs. (14.20), (14.22), and (14.27), we obtain for A = 0,

−ξ2∇2ψ −ψ +ψ jψ j2 = 0: (14.28)

Thus, the coherence length ξ is the characteristic scale on which ψ varies (in the absence of a mag-
netic field).

14.4.4 London Penetration Depth
In Eq. (14.19), in the presence of a weak magnetic field, Ψ≈Ψ0 for x< 0: Thus, we obtain from
Eqs. (14.18) and (14.19),

j = c
4π

∇!×B = −
e�2
m�c

Ψ2
0A (14.29)

and

∇×∇×B = −
4π
c

e�2
m�c

Ψ2
0B = −

B
λ2L

: (14.30)

Because m� = 2m, e� = 2e, and Ψ2
0 = −

α
β
, λL is the London penetration depth defined in

Eq. (14.14). The parameter

κ = λL/ξ =
m�c
eħ

ffiffiffiffiffi
β
2π

r
(14.31)

is the only parameter in Landau–Ginzburg theory.
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It can be easily shown that the surface energy is positive if κ < 1/
ffiffiffi
2

p
and negative if κ > 1/

ffiffiffi
2

p
.

The magnetic flux can easily penetrate a superconductor if the surface energy is negative and can
form type II superconductors, which are interlocking regions of normal and superconducting metal.
Type I superconductors are those for which κ < 1/

ffiffiffi
2

p
and the flux cannot penetrate.

Consider a magnetic field H > Hc so that Ψ = 0 because superconductivity is destroyed. When
the field is gradually lowered, considering only the first-order terms in Ψ (because j= 0),

α+ 1
2m�

ħ
i
∇!+ e�

c
A

� �2� �
Ψ = 0: (14.32)

Eq. (14.32) is an eigenvalue equation of a charge (e� = 2e) in a constant magnetic field, the lowest
energy is ħωc/2, and because Hc2 is the largest magnetic field that permits a solution,

ωc =
e�Hc2

m�c
: (14.33)

From Eqs. (14.32) and (14.33),

−αΨ =
ħe�Hc2

2m�c
Ψ (14.34)

or

jαj = ħeHc2

m�c
: (14.35)

From Eqs. (14.26), (14.31), and (14.35), we obtain

Hc2

Hc
=

ffiffiffi
2

p
κ: (14.36)

14.5 FLUX QUANTIZATION
In Eq. (14.18), if we substitute

ΨðrÞ = Ψ0e
iϕðrÞ, (14.37)

where ϕðrÞ is real, we obtain from Eqs. (14.18) and (14.37)

j = −
Ψ2
0

m�
e�2
c

A+ e�ħ∇!ϕ

� �
, (14.38)

which can be rewritten in the alternate form

∇!ϕ = −
1
ħ

m�

e�Ψ2
0

j+ e�
c
A

 !
: (14.39)

If we consider a superconductor in the shape of a ring (Figure 14.9), which shows a path encir-
cling the aperture but lying well within the interior,I

j . dl = 0: (14.40)
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From Eqs. (14.23) and (14.24), we obtainI
∇!ϕ . dl = −

I
e�A
ħc

. dl: (14.41)

From Stoke’s theorem,I
A .dl =

I
∇!×A .dS =

I
B .dS =Φ, (14.42)

where Φ is the flux enclosed by the ring. We note
that because the magnetic field cannot penetrate a
superconducting material, the enclosed flux is inde-
pendent of the choice of the path. In addition, the
order parameter Ψ is single-valued, and hence, its
phase changes by 2πn (n is an integer) when the
ring is encircled. Thus, we haveI

∇!ϕ .dl = 2πn: (14.43)

From Eqs. (14.41) through (14.43), we obtain

−e�
ħc

Φ = 2πn: (14.44)

Defining a fluxoid or a flux quantum,

Φ0� hc
2e

= 2:0679 G cm2, (14.45)

we obtain from Eqs. (14.43) and (14.44)

jΦj = 2ne
e�

Φ0: (14.46)

The integrated magnetic flux that penetrates a hole through a superconductor is quantized in units of
ð2e/e�ÞΦ0. Thus, e� = 2e, confirming the fact that the microscopic theory of superconductivity
involves pairing of electrons. Flux quantization was experimentally observed independently by
Deaver and Fairbank8 and Doll and Nabauer.12

14.6 JOSEPHSON EFFECT
14.6.1 Two Superconductors Separated by an Oxide Layer
In 1962, Josephson (Refs. 13, 14) predicted that if two superconductors were separated by a small
strip of nonsuperconducting material (shown in Figure 14.10), the wave function would oscillate
because it would interfere with itself. The two superconductors would interact through their small
residues while decaying through the barrier. Due to tunneling, the change in energy Δε is given by

Δε =
Z

dr f ðrÞ
�
Ψ�
1ðrÞΨ2ðrÞ+Ψ1ðrÞΨ�

2ðrÞ
�
: (14.47)

FIGURE 14.9

A path encircling the aperture ring of
superconducting material.
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At some reference point in the bulk, if the
macroscopic wave functions are Ψ1 and Ψ2,

Δε = ∈ðΨ�
1Ψ2 +Ψ1Ψ�

2Þ, (14.48)

where ∈ is a very small quantity. The Schrodin-
ger equations for Ψ1 and Ψ2 can be written as

iħ ∂Ψ1

∂t
= ε1Ψ1 +∈Ψ2 (14.49)

and

iħ ∂Ψ2

∂t
= ∈Ψ1 + ε2Ψ2: (14.50)

The wave functions are taken of the form

Ψj =
ffiffiffiffi
nj

p
eiϕj , (14.51)

where nj ð j = 1 or 2Þ are the superconducting electron densities n =
ffiffiffiffiffiffiffiffiffi
n1n2

p
and n1 ≈ n2: Substituting

Eq. (14.51) in Eqs. (14.49) and (14.50), we obtain

iħ _n1ffiffiffiffiffi
n1

p + i
ffiffiffiffiffi
n1

p _ϕ1

� �
eiϕ1 = ðε1 ffiffiffiffiffi

n1
p

eiϕ1 +∈
ffiffiffiffiffi
n2

p
eiϕ2Þ (14.52)

and

iħ _n2ffiffiffiffiffi
n2

p + i
ffiffiffiffiffi
n2

p _ϕ2

� �
eiϕ2 = ðε2 ffiffiffiffiffi

n2
p

eiϕ2 +∈
ffiffiffiffiffi
n1

p
eiϕ1Þ: (14.53)

It can be easily shown from Eqs. (14.52) and (14.53) that

_n1 = 2∈n
ħ

sin ðϕ2 −ϕ1Þ = − _n2 =
j
e�

(14.54)

and

_ϕ2 −
_ϕ1 =

1
ħ
ðε1 − ε2Þ = e�

ħ
ðV2 −V1Þ: (14.55)

We note that the phase of a wave function changes when there is a magnetic field. To make a wave
function phase gauge-invariant, we have to add the line integral e�

ħc

R
0
dl .A, taken from some arbitrary

reference point, to the phase. Incorporating this and taking into account the fact that e� = 2e, we obtain

j = j0 sin  ϕ2 −ϕ1 +
2e
ħc

Z2
1

dl .A

0
@

1
A (14.56)

S1 S2

Oxide layer

FIGURE 14.10

The oxide layer between two superconductors S1
and S2.
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and

−
1
ħ
ðε2 − ε1Þ = 2eV

ħ
= ∂

∂t
ϕ2 −ϕ1 +

2e
ħc

Z2
1

dl .A

0
@

1
A:

(14.57)

Here, the energy difference ε2 − ε1 is the differ-
ence in energies of electron pairs, and V is the dif-
ference of the voltage between the two
superconductors.

14.6.2 AC and DC Josephson Effects
If we place two superconductors at different vol-
tages in contact, then ε1 − ε2 ≠ 0. Because
ϕ2 −ϕ1 drifts in time, n1 and n2 oscillate about
their mean values at 484 MHz/μV. This is
known as the AC Josephson effect.

However, if ε1 − ε2 = 0, ϕ1 −ϕ2 is independent of time. Because ϕ1 ≠ϕ2, there is a steady
current flow according to Eq. (14.56). This phenomenon is known as the DC Josephson effect. If
the electrons are injected into a Josephson junction, ϕ2 −ϕ1 adjusts to a nonzero value. The maxi-
mum value of ϕ2 −ϕ1 is π/2: Thus, there is a current flow in the absence of any voltage difference
(see Figure 14.11). This is a unique property of the superconductors and is a significant conse-
quence of the Josephson effect.

14.7 MICROSCOPIC THEORY OF SUPERCONDUCTIVITY
14.7.1 Introduction
In Figure 8.14g, the graph shows an electron emitting a virtual phonon that is absorbed by a second
electron. The lattice is deformed (polarized) in the vicinity of the first electron. A second electron
near this polarized cloud experiences a force of repulsion or attraction that is independent of the Cou-
lomb interaction between the two electrons. This is termed an effective electron–electron interaction
via virtual phonons and is responsible for superconductivity under certain conditions. In the graph of
Figure 8.14g, there are two possible intermediate states: electron k emits a phonon −q, which is
absorbed by electron k′; or electron k′ emits a phonon q, which is absorbed by electron k.

In Eq. (8.165), we derived an expression for electron–phonon coupling for longitudinal acoustic
(LA) phonons,

Ĥel−ph = ∑
kqs

Mqðâ†−q + âqÞĉ†k+q,sĉk,s: (14.58)

We note that the direction of the spin is not changed by this interaction.
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FIGURE 14.11

Maximum zero-voltage current in an Sn-SnO-Sn
junction at T = 1.9º K (sketch of results of R.C.
Jaklevic (Ref. 23)).
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14.7.2 Quasi-Electrons
We now consider a system of electrons and phonons and write a Hamiltonian of the form

Ĥ = ∑
k,s

EðkÞĉ†ksĉks +∑
q
ħωqâ

†
qâq +∑

kq
Mqðâ†−q + âqÞĉ†k+q,sĉk,s = Ĥ0 + Ĥ1, (14.59)

where Ĥ1 is the electron–phonon interaction term. We use a canonical transformation,

ĤS = e−ŜĤeŜ = Ĥ0 + ðĤ1 + ½Ĥ0, Ŝ�Þ+ 1
2
½ðĤ1 + ½Ĥ0, Ŝ�, Ŝ�+ 1

2
½Ĥ1, Ŝ�+ � � � : (14.60)

If we choose Ŝ such that

Ĥ1 + ½Ĥ0, Ŝ� = 0, (14.61)

the electron–phonon interaction Ĥ1 is eliminated apart from a higher-order term. We choose Ŝ of the
form

Ŝ = ∑
kqs′

Mqðαâ†−q + βâqÞĉ†k+q,s′ĉk,s′: (14.62)

From Eqs. (14.61) and (14.62), it can be easily shown that (Problem 14.5)

α−1 = EðkÞ−Eðk+qÞ− ħωq (14.63)

and

β−1 = EðkÞ−Eðk+ qÞ+ ħωq: (14.64)

From Eqs. (14.60) and (14.61), the next-order interaction term is 1
2 ½Ĥ1, Ŝ�, which is a sum of terms

that contain operator products of the form

â†±qâ±q′ĉ
†
k′+q′,s′ĉk′,s′ĉ

†
k+q,sĉk,s: (14.65)

One can show (Problem 14.6) that because q′ = −q (from momentum conservation), only one out
of all the possible combinations does not contain any phonon operators,

ĉ†k+q,sĉ
†
k′−q,s′ĉk′,s′ĉk,s, (14.66)

when

k′≠ k, k+ q: (14.67)

From. Eqs. (14.60), (14.62), and (14.66), the explicit form for this interaction is (Problem 14.7)

Ĥeff =
1
2

∑
k,k′,q,s,s′

jMqj2ðα− βÞĉ†k+q,sĉ†k′−q,s′ĉk′,s′ĉk,s: (14.68)

Substituting the values of α and β from Eqs. (14.63) and (14.64) in Eq. (14.68), we obtain (Problem
14.8)

< f jĤeff ji> = 1
2

∑
k,k′,q,s,s′

< f jVkqĉ
†
k+q,sĉ

†
k−q,s′ĉk′s′ĉk,sji>, (14.69)
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where

Vkq =
2jMqj2ħωq

½Eðk+qÞ−EðkÞ�2 − ðħωqÞ2
, (14.70)

and ji> and j f> are the initial and final states, respectively. Vkq is essentially the Fourier coefficient
of the effective interaction. When jEðk+ qÞ−EðkÞj< ħωq, Vkq is negative and the interaction is
attractive, whereas the interaction is repulsive when Vkq is positive.

Omitting all the terms in the transformed Hamiltonian that contains phonon creation or annihila-
tion operators, we obtain from Eqs. (14.59) and (14.70),

ĤS = ∑
ks
EðkÞĉ†k,sĉk,s + ∑

k,k′,q,s,s′
jMqj2

ħωq

½Eðk+qÞ−EðkÞ�2 − ðħωqÞ2
ĉ†k+q,sĉ

†
k′−q,s′ĉk′,s′ĉk,s: (14.71)

14.7.3 Cooper Pairs
We consider a state containing N noninteracting electron gas, which fills the Fermi sphere in
k− space. The ground state jG> is the filled Fermi sphere. We introduce two electrons k1 and k2
into this system and take as the interaction between these electrons the positive part of Vkq (Eq.
14.70), which is repulsive. Thus, the interaction involving phonon exchange will take place only
when jEðk+ qÞ−EðkÞj≤ ħωq. The wave function of the electron pair can be written as

ψ12 = ∑
k1k2s1s2

As1s2ðk1, k2Þĉ†k1s1
ĉ†k2s2

jG>: (14.72)

The summation over k1 and k2 is carried out subject to the condition that K= k1+ k2 = constant in
order to form a state with definite momentum. This scenario is shown in Figure 14.12.

If we consider two electrons just above the Fermi sphere, an interaction will occur only when
Eðk1Þ≤EF + ħωq. The regions in k space that are summed in Eq. (14.72) are shown in the shaded
areas because K = k1 + k2. These regions are at a maximum when K = 0.

Assuming that K = 0, and the electron spins are antiparallel, we can rewrite Eq. (14.72) as

ψ12 = ∑
k
bðkÞ ĉ†k,sc−k,−sjG>: (14.73)

We will explain later why only antiparallel spins
are included in Eq. (14.73). We make a further
approximation in Eq. (14.70) by considering Vkq
to be a constant in the range of attractive interac-
tion (Vkq = −U), and Vkq = 0 otherwise. In fact,
from Eq. (14.71), we obtain the condition

U ≠ 0, when jEðk+ qÞ−EðkÞj≤ ħωq: (14.74)

The Debye frequency ωD is the maximum value
of ωq in the Debye approximation.

EF

kF

k1 k2

KEF + hω q

FIGURE 14.12

Here, k vectors of two interacting electrons (K= k1+ k2)
that lie within a shell of thickness ħωq above EF.
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Substituting Eq. (14.74) in Eq. (14.71), we obtain

Ĥ = ∑
k,s

EðkÞĉ†k,sĉk,s − U
2
∑
k,q,s

ĉ†k+q,sĉ
†
−k−q,−sĉ−k,−sĉk,s: (14.75)

Here, we note that the factor ½ in the second term in Eq. (14.75) is due to the summation over only
one spin index. From Eqs. (14.73) and (14.75), we obtain an expression for the energy E,

E = <ψ jĤjψ> = 2∑
k
EðkÞjbðkÞj2 −U∑

k,q
b�ðk+qÞbðkÞ, (14.76)

where bðkÞ is obtained by varying E subject to the condition,

∑
k
jbðkÞj2 = 1: (14.77)

By varying E in Eq. (14.76), we obtain

∂

∂b�k′

h
E− β∑

k′
jbðk″Þj2

i
= 2Eðk′Þbðk′Þ−U∑

q
bðk′− qÞ− βbðk′Þ = 0, (14.78)

from which we have

½2EðkÞ− β�bðkÞ = U∑
k′
bðk′Þ: (14.79)

Here, β is Lagrange’s parameter and U ≠ 0 only for the energies EF to EF + ħωq. One can show
(Problem 14.9) that if we take the complex conjugate of Eq. (14.79), multiply by bðkÞ, and sum
over k, we obtain an equation that agrees with Eq. (14.76) provided β = E.

Similarly, the sum over bðk′Þ is over a small number of k′, such that we can write

∑
k′
bðk′Þ = B: (14.80)

From Eqs. (14.79) and (14.80), we obtain

∑
k
bðkÞ = B = ∑

EðkÞ
UB

2EðkÞ− β
(14.81)

or

∑
EðkÞ

U
2EðkÞ− β

= 1: (14.82)

We note that if we had considered parallel spins in Eq. (14.73), the constant B would have been
zero because of the antisymmetry of the spatial part of the wave function. If we take the complex
conjugate of Eq. (14.79), multiply by bðkÞ, and sum over k, we obtain an equation that agrees with
Eq. (14.76), provided β = E (Problem 14.9). Because U ≠ 0 only in the range EF and EF + ħωq, we
can rewrite Eq. (14.82) in the alternate form

U

ZEF+ħωq

EF

DðxÞdx
2x−E

= 1, (14.83)
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where DðxÞ is the density of states. We approximate DðxÞ by DðEFÞ in the narrow range of integra-
tion and obtain (Problem 14.10)

E = 2EF −
2ħωq exp½−2/DðEFÞU�
1− exp½−2/DðEFÞU� ≈ 2EF − 2ħωq exp½−2/DðEFÞU�: (14.84)

The expression on the extreme right in Eq. (14.84) is valid for weak interactions (small U). We
note that we have made the approximation Vkq = −U in the range of attractive interaction and zero
elsewhere. Thus, the energy of the electron pair is less than 2EF in the absence of the interaction. It
can be shown that all other solutions lead to energies greater than 2EF : Hence, the lowest energy
state of the electron pair is a bound state known as a Cooper pair (Ref. 7) that is formed from a
pair of electrons with opposite spin and opposite wave vector.

The formation of a bound state by the additional electron pair means that when two electrons from
states directly below the Fermi surface are excited into states above it, the energy is lowered. Thus,
the filled Fermi sphere is unstable, and one can gain energy by combining electrons into Cooper pairs.

14.7.4 BCS Theory
The theory of superconductivity was proposed by Bardeen, Cooper, and Schrieffer on the basic
assumption that electron–phonon interaction provides a means for creating Cooper pairs.2 A ground
state of a superconductor consists of a condensate, which is a single quantum state available only to
interacting Cooper pairs. The condensate is the product of the pair wave functions, and its center of
mass is stationary in the absence of electric and magnetic fields. If one wants to remove a pair of
electrons from the condensate, an energy 2Δ (the binding energy of the Cooper pair) is required to
“break” a pair.

The BCS model Hamiltonian (Ref. 2) can be written as

ĤBCS = ∑
k,s

Ekĉ
†
ksĉks +∑

kk′
Ukk′ĉ

†
k↑ĉ

†
−k↓ĉ−k′↓ĉk′↑: (14.85)

Bardeen et al.2 used the grand canonical ensemble and showed that the wave function for coherent
states can be written as

jΦ> = ∏
k
½1+ gkĉ

†
k↑ĉ

†
−k↓�jΘ> = Φ̂jΘ>, (14.86)

which creates all possible pairs of 2N particles with various weights through gk: They used a variational
procedure by using the constraint that the average particle number is maintained at N. However, we will
use the Bogoliubov–Valatin transformation and obtain the same result as the BCS theory.5

14.7.5 Ground State of the Superconducting Electron Gas
We can write the Hamiltonian in Eq. (14.75) in a simpler form,

H = ∑
k
EðkÞðĉ†kĉk + ĉ†

−kĉ−kÞ−U∑
kk′

ĉ†k′ĉ
†
−k′ĉ−kĉk, (14.87)

466 CHAPTER 14 Superconductivity



where a positive spin is associated with the index k, and a negative spin is associated with the
index −k. Eq. (14.87) is rearranged by introducing the following creation and annihilation operators:

α̂k = ukĉk − vkĉ
†
−k

α̂−k = ukĉ−k + vkĉ
†
k

α̂†k = ukĉ
†
k − vkĉ−k

α†
−k = ukc

†
−k + vkĉk:

(14.88)

In the preceding transformations, we use the conditions u2k + v2k = 1, uk = u−k, vk = −v−k: In addi-
tion, uk and vk are nonzero outside and inside the Fermi sphere, respectively. These conditions
guarantee that the commutation relations for the ĉ− operators also apply to the α̂− operators
(Problem 14.11). We avoid the confusion created by the situation that a hole in the state k has a
momentum −ℏk while an electron has a momentum ℏk by defining quasi-particles which have
momentum ℏk both outside and inside the Fermi sphere. Since a quasi-particle of momentum ℏk is
created by the operator c†k when it is outside the Fermi sphere and by c−k when it is inside the Fermi
sphere, we have in Eq. (14.88),

uk = 1, vk = 0 for k > kF
uk = 0, vk = 1 for k < kF :

(14.88a)

We also introduce the operator Ĥ = Ĥ −EFN̂ and the energy εðkÞ = EðkÞ−EF : The transition from
the ĉ− to the α̂− operators (Bogoliubov–Valatin transformation) leads to (Problem 14.12)

Ĥ = ∑
k
εðkÞ½2v2k + ðu2k − v2kÞðα̂†kα̂k + α̂†

−kα̂−kÞ+ 2ukvkðα†kα̂†−k + α̂−kα̂kÞ�
− U∑

kk′
f½ukvkuk′vk′ð1− α̂†

−k′α̂−k′ − α̂†k′α̂k′Þð1− α̂†
−kα̂−k − α̂†kα̂kÞ�

ð14:89Þ
+ ðu2k − v2kÞuk′vk′ð1− α̂†

−k′α̂−k′ − α̂†k′α̂k′Þðα̂−kα̂k + α̂†kα̂
†
−kÞ

+ ðu2kα̂−kα̂k − v2kα̂
†
kα

†
−kÞðu2k′α̂†k′α†−k′ − v2k′α̂−k′α̂k′Þg:

The last term of the first line in Eq. (14.89) vanishes from the condition that uk and vk are zero inside
and outside the Fermi sphere (Eq. 14.88 (a)). Normally, the first term (energy of the filled Fermi
sphere) and the second term (energy of the quasiparticles defined by α†kαk) remain, but in the ground
state, the second term vanishes. As we will show, the terms containing the products of α†kα

†
−k and

α−kαk can be eliminated by choosing different values of uk and vk: The last term in Eq. (14.89) con-
tributes very little to the final result and hence can be neglected.

Thus, in the ground state, Eq. (14.89) can be rewritten as

HG = 2∑
k
εðkÞv2k − U∑

k,k′
ukvkuk′vk′ +∑

k

h
2ukvkεðkÞ− ðu2k − v2kÞU∑

k′
uk′vk′

i
ðα̂†kα̂†−k + α̂−kα̂kÞ:

(14.90)

For the square bracket in Eq. (14.90) to vanish, we first introduce a constant,

Δ = U∑
k
ukvk, (14.91)
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and then set the condition,

2ukvkεðkÞ = Δðu2k − v2kÞ: (14.92)

In addition,

u2k + v2k = 1: (14.93)

From Eqs. (14.92) and (14.93), it is easy to show that

ξk =
εðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2ðkÞ+Δ2
q , (14.94)

u2k = 1
2
ð1+ ξkÞ

v2k = 1
2
ð1− ξkÞ:

(14.95)

From Eqs. (14.91), (14.94), and (14.95), one can show (Problem 14.12)

Δ = U∑
k
ukvk = U

2
∑
k

Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ðkÞ+Δ2

q : (14.96)

Because Δ≠ 0 (no vanishing interaction), U ≠ 0 only in the range jεðkÞj ≤ ħωq. Since the sum is
over one spin direction, the density of states is DðεÞ/2. Thus, while converting the summation over
k to an integration, we can write Eq. (14.96) in the alternate form

U
4

Zħωq

−ħωq

DðεÞdεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2

p ≈
UDðEFÞ

4

Zħωq

−ħωq

dεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2

p = 1: (14.97)

We obtain from Eq. (14.97)

Δ = 2ħωq exp½−2/DðEFÞU�: (14.98)

This is precisely the binding energy of the Cooper pair. Because the energy of the filled Fermi
sphere is

H0 = 2 ∑
k<kF

εðkÞ, (14.99)

from Eqs. (14.90) and (14.99), we obtain the difference between the Hamiltonians with and without
interactions (note that the coefficient of the square bracket in Eq. 14.90 is equal to zero), which, in
the absence of any operators, is the energy difference between the ground state of the interacting
and noninteracting electron gas:

E = HG −H0 = 2∑
k
εðkÞv2k − 2 ∑

k<kF

εðkÞ−U∑
kk′

ukvkuk′vk′: (14.100)
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Substituting the values of uk, vk, and ξk from Eqs. (14.94) and (14.95) in Eq. (14.100), we obtain

E = ∑
k<kF

jεj 1−
jεjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ε2 +Δ2
p

� �
+ ∑

k>kF

ε 1− εffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2

p
� �

−∑
k

Δ2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2

p : (14.101)

When we convert the sum over k to an integration (with only one spin direction),

E = DðEFÞ
Zħωq

0

ε− 1
2

2ε2 +Δ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2

p
� �

dε: (14.102)

After integrating Eq. (14.102) (see Problem 14.13), we obtain for weak interactions, ðΔ≪ ħωqÞ,

E =
DðEFÞ

2
ðħωqÞ2 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ Δ

ħωq

� �2s2
4

3
5≈−

DðEFÞΔ2

4
: (14.103)

E is known as the condensate energy of the ground state.

14.7.6 Excited States at T = 0
From Eqs. (14.89) and (14.90), we can write the Hamiltonian of the excited states, He, as

He = HG +∑
k

h
εðkÞðu2k − v2kÞ+U∑

k′
2ukvkuk′vk′

i�
α̂†kα̂k + α̂†

−kα̂−k
�
+ � � �: (14.104)

Eq. (14.104) can be expressed by using Eq. (14.91),

He = HG +∑
k

h
εðkÞðu2k − v2kÞ+ 2Δukvk

i�
α̂†kα̂k + α̂†

−kα̂−k
�
+ � � �: (14.105)

Eq. (14.105) can be rewritten with the help of Eq. (14.92),

He = HG +∑
k

2ukvk
Δ

�
ε2ðkÞ+Δ2

�
ðnk↑ + n−k↓Þ: (14.106)

From Eqs. (14.96) and (14.106), we obtain

E−E0 = ∑
k

h
ε2ðkÞ+Δ2

i1/2
nk: (14.107)

The energy of a quasiparticle is given by

εðkÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ðkÞ+Δ2

q
: (14.108)

Note that here the energy εðkÞ is measured from the Fermi surface:

εðkÞ = EðkÞ−EF : (14.109)

Thus, the ground and the first excited states are separated by an energy gap Δ. This is shown in
Figure 14.13.
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Because in a scattering process, a quasi-
particle is created in pairs, corresponding to the
electron-hole pair of the noninteracting electron
gas, the threshold energy of an excitation is 2Δ.
This leads to the conclusion that the Cooper
pairs must be broken up during the scattering
process. Thus, both Cooper pairs and single qua-
siparticles are present in the excited state, and
while individual particles are scattered, Cooper
pairs lead to a current that flows without resis-
tance. We now are back to a two-fluid model.

14.7.7 Excited States at T ≠ 0
The states k↑ and k↓ are fermions, and at temperatures T ≠ 0, replacing the particle numbers nk by
their statistical average, we obtain by taking the Fermi distribution as the occupational probability,

<nk>� fk = 1
eβεðkÞ + 1

, (14.110)

where the energy of the quasiparticles εðkÞ replaces the usual energy difference E− μ. We further
note that εðkÞ is always positive (from Eq. 14.108), except that εðkÞ is defined as εðkÞ = EðkÞ− μ
at T ≠ 0. Because nk ≠ 0 for T ≠ 0, the energy gap Δ is now temperature dependent, ΔðTÞ. Thus,
the bracket in Eq. (14.90) has to be replaced by the condition

2ukvkεðkÞ− ðu2k − v2kÞU∑
k′
uk′vk′ð1− 2fk′Þ = 0: (14.111)

Similarly, ΔðTÞ is defined as

ΔðTÞ = U∑
k′
uk′vk′ð1− 2fk′Þ = U

2
∑
k′

ΔðTÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ðk′Þ+Δ2ðTÞ

q ð1− 2fk′Þ: (14.112)

Because the critical temperature Tc is the highest one for which Eq. (14.112) has a solution for
which ΔðTÞ≠ 0, and the sum over k′ is over one spin state, we can eliminate ΔðTÞ from both
sides, and by using a procedure similar to Eq. (14.97), we obtain

UDðEFÞ
4

Zħωq

−ħωq

dεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2ðTÞ

q 1− 2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2ðTÞ

q
kBT

0
B@

1
CA

8><
>:

9>=
>; = 1: (14.113)

Eq. (14.113) can be rewritten in the alternate form

Zħωq

−ħωq

dεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2ðTÞ

q −

Zħωq

−ħωq

dεffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2ðTÞ

q 2f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2ðTÞ

q
kBT

0
B@

1
CA = 4

UDðEFÞ: (14.114)
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FIGURE 14.13

Energy εðkÞ of the quasiparticles plotted as a
function of εðkÞ = E ðkÞ− EF :
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Because Δð0Þ≪ ħωq, it can be shown from Eqs. (14.98) and (14.114) that (Problem 14.14)

ln
ΔðTÞ
Δð0Þ = −2

Z∞
0

dxffiffiffiffiffiffiffiffiffiffiffiffi
x2 + 1

p f
ffiffiffiffiffiffiffiffiffiffiffiffi
x2 + 1

p ΔðTÞ
Δð0Þ

kBT
Δð0Þ
� �

−1
 !

= F
ΔðTÞ
Δð0Þ ,

kBT
Δð0Þ

� �
: (14.115)

Because Eq. (14.115) is a function of two parameters ΔðTÞ/Δð0Þ and kBT /Δð0Þ, Tc is calculated from
the condition that ΔðTcÞ = 0 is linearly dependent on Δð0Þ. It can be shown by numerical integration that

kBTc ≈ 0:57Δð0Þ: (14.116)

Eq. (14.116) can be rewritten in the alternate form

2Δð0Þ
kBTc

≈ 3:53: (14.117)

Approximating ωq by ωD (the Debye frequency), replacing the Debye temperature θD = ħωD/kB, from
Eqs. (14.98) and (14.117), we obtain

Tc ≈ 1:13 θD exp −
2

DðEFÞU
� �

: (14.118)

[Be aware that in the notations of BCS theory, NðEFÞ = DðEFÞ/2 is the density of states per spin and
U=V .]

The BCS theory of superconductivity (Ref. 2) can be briefly summarized as follows. When a
uniform electric field is applied to a superconductor, a current is generated because all the pairs in
the condensate experience the same force and move in the same direction. When a voltage differ-
ence V exists across the two ends of the superconductor, an energy 2 eV would be gained by a
Cooper pair and different parts of the condensate would have different energy, and eventually, the
condensate would be lost. Thus, the condensate
must move and carry current without any poten-
tial difference; i.e., it must exist as a phase-
locked entity. The condensate cannot receive
any energy less than 2ΔðTÞ, the energy required
to break a single pair of the condensate. How-
ever, when the temperature is above zero, some
pairs are broken due to thermal excitation.
Because the density of Cooper pairs is large at
absolute zero, the initial reduction of numbers
has little effect on 2Δ, but as T approaches a
critical temperature T = Tc, 2ΔðTcÞ = 0 and the
condensate ceases to exist. The Cooper pairs are
broken into individual electrons, and supercon-
ductivity is destroyed. A diagram that displays
the reduced energy gap ΔðTÞ/Δð0Þ as a function
of the reduced temperature T/Tc is shown in
Figure 14.14.

0
0

0.4

0.8

1.0

0.4

Δ(
T

)/
Δ(

0)
 →

T/Tc →
0.8 1.0

FIGURE 14.14

Reduced energy gap Δ(T )/Δ(0) as a function of
reduced temperature T/Tc.
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It can also be shown that the condensation energy per unit volume is given by

W = −1/4 DðEFÞΔ2: (14.119)

If we distinguish the density of states in a normal conductor as DnðEÞdE and in its superconducting
state as DsðεðkÞÞdεðkÞ, where εðkÞ = E−EF (Eq. 14.108), because no states are lost,

DnðEÞdE = DsðεðkÞÞdεðkÞ, (14.120)

from which we obtain

DsðεÞ = DnðEÞ dEdε : (14.121)

Eq. (14.121) can be rewritten in the alternate form by using Eqs. (14.108) and (14.109),

DsðεÞ = DnðEÞ ε

ðε2−Δ2Þ1/2
, jεj>Δ,

= 0, jεj<0:
(14.122)

14.8 STRONG-COUPLING THEORY
14.8.1 Introduction
The BCS theory is based on a weak coupling approximation, i.e., the electron–phonon coupling
constant λ≪ 1 at T = 0. Here, λ reflects the strength of the electron–lattice interaction. However,
for many superconductors, λ≥ 1: For example, λ = 1:4 for lead, λ = 1:6 for mercury, and λ = 2:1
for Pb0:65Bi0:35. Thus, the more universal approach of the strong-coupling theory was developed
after the formulation of the BCS theory. The strong-coupling theory is based on the Green’s func-
tion method of the many-body theory, and we will introduce only the main results of this theory as
derived by McMillan21 and modified by Dynes (Ref. 11).

14.8.2 Upper Limit of the Critical Temperature, Tc
The electron–phonon coupling constant can be written as

λ = 2
Z
α2ðΩÞFðΩÞΩ−1dΩ, (14.123)

where Ω is the phonon frequency (we note that ħΩD = kBθD), FðΩÞ is the phonon density of states,
and α2ðΩÞ is a measure of the phonon-frequency-dependent electron–phonon interaction. The char-
acteristic phonon frequency eΩ is defined as

eΩ = <Ω2>1/2, (14.124)

where the average is determined by

< f ðΩÞ> = 2
λ

Z
f ðΩÞα2ðΩÞFðΩÞdΩ: (14.125)
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McMillan (Ref. 21) introduced a convenient expression for the coupling constant, λ,

λ = ν<I2>/MΩ2
, (14.126)

where ν is the bulk density of states,

ν = m�pF /2π2, (14.127)

and <I2> contains the average value of the electron–phonon matrix element I. The expression in
the strong-coupling limit, for the critical temperature Tc, obtained by McMillan21 (later modified by
Dynes (Ref. 11)) is given by

Tc =
θD
1:2

exp −
1:04ð1+ λÞ

λ− μ�ð1+ 0:62λÞ
� �

, (14.128)

and μ� can be expressed as the Coulombic pseudopotential ðε0 ≈EFÞ,
μ� = Vc½1+Vc lnðε0/eΩÞ�−1: (14.129)

When we use a rough estimate of upper limit, each of these values is θD ≈ 400° K, λ≈ 0:8, and μ� ≈ 0:1:
In Eq. (14.128), we obtain the upper limit for Tc ≈ 30° K in the strong coupling limit. In fact, until 1986,
Nb3Ge was the material that had the highest critical temperature, Tc = 23° K:

14.9 HIGH-TEMPERATURE SUPERCONDUCTORS
14.9.1 Introduction
A new class of superconducting materials, the
high Tc copper oxides (often called cuprates), was
discovered by Bednroz and Muller in 1986.3 They
found that La1:85Ba0:15CuO4 became supercon-
ducting at a critical temperature of Tc ≈ 30° K.
The atomic structure of this remarkable supercon-
ductor is shown in Figure 14.15.

La1:85Ba0:5CuO4 is very different from tradi-
tional superconductors in the sense that it is not a
conventional metal but brittle ceramic, which is an
antiferromagnetic insulator, carefully doped so as
to produce metallic and superconducting phases.
The discovery of La1:85Ba0:15CuO4 set out a
frenzy to discover more high Tc superconductors.
The synthesis of the similar compound
La1:82Sr0:18CuO4 moved the transition temperature
close to Tc ≈ 40° K: The first high-temperature
superconductor of which the critical temperature
exceeded the liquid nitrogen temperature is

La, Ba Cu O

FIGURE 14.15

The atomic structure of La1.85Ba0.15CuO4.
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YBa2Cu3O7−x (x = 0.1) with Tc ≈ 93° K, which
was discovered by Wu et al.29 in February 1987.
In fact, it was soon found that YBa2Cu3O7−x is
superconducting in the orthogonal structure
ð0≤ x≤ 0:6Þ although it is not superconducting in
the tetragonal structure ðx> 0:6Þ. This is the most
studied high Tc compound. The orthogonal
YBCO structure is shown in Figure 14.16. The
highest observed value of Tc is 150º K for the
HgBa2Ca2Cu3O8+x compound under pressure.

14.9.2 Properties of Novel
Superconductors (Cuprates)

All cuprates have a layered structure. The main
structural unit typical for the whole family is the
Cu-O plane (see Figure 14.16), where the pairing
originates and the charge reservoir is located. The
YBCO compound contains the Cu-O chains, and
the change in the oxygen content in the chain
layers leads to charge transfer between these two
subsystems. The charge transfer occurs through
the apical oxygen ion located between the chains
and the planes, as shown in Figure 14.16.

Whereas the undoped parent compounds of
the cuprates are insulators, the novel supercon-
ductors are doped materials. Doping leads to

conductivity and, for larger concentration, to superconductivity. The doping is provided either by
changing the oxygen content or by chemical substitution (La ! Sr substitution in La2−xSrxCuO4).
The dopants create electrons, whereas the holes are produced by doping, which removes electrons.
For example, some cuprates like YBCO contain carriers that are holes, whereas other cuprates like
Nd-Ce-Cu-O contain carriers that are electrons. The maximum value of Tc � Tmax

c is obtained for a
characteristic value nm of the carrier concentration. Tc < Tmax

c for both n< nm (the underdoped region)
and n> nm (the overdoped region).

14.9.3 Brief Review of s-, p-, and d-wave Pairing
Next, we will review the three possible choices for pairing—the s-, p-, and d-wave pairings—and
discuss the differences between these types of pairings. The Landau–Ginzburg (Ref. 17) order para-
meter ΨðrÞ (defined in Eq. 14.17) becomes nonzero only in the presence of superconductivity.
Under a gauge transformation,

A ! A+ ∇!ϕ, (14.130)

Ψ ! Ψe−2ieϕ/ħc: (14.131)

Copper chains

Copper planes

Copper planes

Ba

Copper
Oxygen

Apical oxygen

Ba

Y

FIGURE 14.16

Structure of the YBCO compound.
Reproduced from Kresin and Wolf 16 with the permission of the

American Physical Society.
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In fact, Gorkov showed that the pair potential Δr (used in Bogoliubov theory of superconductivity)
is proportional to the order parameter ΨðrÞ and also transforms as

Δr ! Δre
−2ieϕ/ħc: (14.132)

The implicit assumption in the BCS theory of superconductivity was that the effective potential U
was isotropic and ΨðrÞ depended only on the center-of-mass coordinate r = ðr+ r′Þ/2. This is
known as s-wave superconductivity. However, in general, the order parameter is a function of
Ψðr, r′Þ, and one can define R = r − r′. When Ψ is independent of the direction of R, the super-
conductor is called s-wave. When Ψ decays rapidly as a function of R, Ψ has the symmetry of
x! .R (proportional to cos θ, as in the case of superfluid 3He); this is called p-wave. When Ψ
depends on the direction of R, the symmetry is ð x! .RÞ2 − ð y! .RÞ2, which is proportional to
cos 2θ and is known as d-wave.

One can also gain insight into the nature of the pair-condensate state based on symmetry consid-
erations. For example, the parity of a superconductor with inversion symmetry can be specified
using the Pauli exclusion principle. Because the crystal structures of bulk superconductors are all
characterized by a center of inversion, they can be classified by the parity of the pair state. The
spin-triplet state (total spin S = 1) has a superconducting order parameter (gap function) with odd
parity, while the spin-singlet pair state (S = 0) corresponds to an orbital pair wave function ψ (k) α
Δ(k) with even parity, i.e., ΔðkÞ = Δð−kÞ. Because spin-orbit interaction is relatively small in cup-
rate superconductors, the spin-singlet and -triplet states are well defined. It can be shown from
group-theoretical considerations that the gap function ΔðkÞ for each pair state can be expanded as a
function of kx, ky, and kz: Some examples follow:

ΔsðkÞ = Δ0
s +Δ1

s ðcos kx + cos kyÞ+Δ2
s coskz + � � �, (14.133)

Δdx2−y2 ðkÞ = Δ0
dx2−y2

ðcoskx − coskyÞ+ � � �, (14.134)

ΔdxyðkÞ = Δ0
dxyðsinkx sinkyÞ+ � � �: (14.135)

Thus, the order parameters for both the possible d-wave pair states have node lines.
All cuprate superconductors are characterized by a relatively high ratio of c-axis to a-axis

lattice constants. For example, the c/a ratio is 3.0 for YBCO, 5.7 for BI-2212, and 7.6 for
Tl-2212. These ratios of c/a translate into a flattened Brillouin zone possessing the basic sym-
metric properties of the unit cell of a square/rectangular lattice. Recent studies of interplane
dc and ac intrinsic Josephson effects has shown that high Tc superconductors such as Bi-2212
act as stacks of two-dimensional superconducting CuO2-based layers coupled by Josephson inter-
actions (Ref. 13). It has also been shown that the vortex state can be understood in terms of
stacks of two-dimensional pancake vortices. The cores of these 2D vortices, localized in the
CuO2 layers, are connected by Josephson vortices with cores confined in the nonsuperconducting
charge-reservoir layers (see Figure 14.16). Thus, the pairing symmetry should reflect the underly-
ing CuO2 square/rectangular lattices. It is more convenient to consider our study of pairing sym-
metry in a square lattice. A k-space representation of allowed symmetry basis functions for the
C4v symmetry is shown in Figure 14.17.
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A schematic presentation in k space is shown
where black and white represent opposite signs
of the order parameter.

14.9.4 Experimental Confirmation of
d-wave Pairing

Angle-Resolved Photoemission
A number of both non-phase-sensitive and phase-
sensitive experimental techniques confirm that
pairing in cuprates is highly anisotropic with
a line of nodes in the superconducting gap.
We will first discuss the angle-resolved photo-
emission spectroscopy (ARPES), which has
the advantage of directly investigating the
momentum space of the gap. We will discuss
Bi2Sr2CaCu2O8+xðBi− 2212Þ, of which the com-
plex structure consists of a superlattice of ortho-
rhombic units. However, the basic orthorhombic
subunit of Bi2Sr2CaCu2O8+xðBi− 2212Þ has
essentially tetragonal symmetry with lattice para-
meters a≈ b. This pseudotetragonal subunit is
closely approximated by a body-centered tetrago-
nal structure of which the primitive cell is shown
in Figure 14.18. The key elements of this struc-
ture are the presence of two Cu-O sheets similar
to those in the 40° and 90° K materials, as well as
a double layer of edge-sharing Bi-O octahedrals,

Group-theoretic
notation

Order parameter
basis function

Wave function
name

A1g B1gA2g B2g

constant

s-wave g dx2-y2 dxy

xy(x2-y2) x2-y2 xy

ky

kx

Schematic
representation
of Δ(k) in
B.Z.

FIGURE 14.17

A k-space representation of allowed symmetry basis functions for the C4v symmetry.
Reproduced from Tsuei and Kirtley 27 with the permission of the American Physical Society.
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FIGURE 14.18

Primitive cell for body-centered tetragonal
Bi2Sr2CaCu2O8+x. O(1), O(2), and O(3) denote
oxygens in the Cu, Bi, and Sr planes, respectively.
The a and the b axes at 45° to x and y are shown.

Reproduced from Stavola et al.25 with the permission of the

American Physical Society.
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which fulfill a structural role that is analogous
to the Cu-O chains in YBa2Cu3O7: The main
band features at the Fermi level include a pair of
half-filled two-dimensional Cu-O 3d−2p bands
similar to those found in other Cu-O planar super-
conductors, as well as slightly filled 6p bands,
which provide additional carriers in the Bi-O
planes.

The ARPES study shows that the gap in
Bi2Sr2CaCu2O8+xðBi−2212Þ (Ref. 10) is largest
along the Γ−M direction (parallel to a or b) and
smallest among Γ− Y (the diagonal line between
them), as expected for a dx2−y2 superconductor.
Figure 14.19 shows the inferred value of the
energy gap as a function of the angle in the Fermi
surface (solid circles), compared to the prediction
of a simple d-wave model (solid line). There is
remarkable agreement between experimental and
theoretical results. However, ARPES is not phase-
sensitive and cannot distinguish between d-wave
and highly anisotropic s-wave pairing.

Nuclear Magnetic Resonance
Nuclear-magnetic-resonance (NMR) measure-
ments can probe the electronic properties of indi-
vidual atomic sites on the CuO2 sheets of the
high-temperature superconductors. There is no
Hebel-Slichter peak (found in normal superconductors due to density of states in the gap edge) and an
increase in the nuclear relaxation rate T−1

1 near Tc, for both Cu and O in-plane sites. These properties
can be explained by using a dx2−y2 model with Coulomb correlations that yield (a) a weaker quasiparti-
cle density-of-states singularity at the gap edge compared with an s-wave BCS gap, (b) the vanishing of
the coherence factor for quasiparticle scattering for q∼ ðπ, πÞ for a dx2−y2 gap, and (c) inelastic–scatter-
ing suppression of the peak, which is similar for both d-waves and s-waves. There has been excellent
agreement between the experimental results for both the anisotropy ratio ðT−1

1 Þab/ðT−1
1 Þc and the trans-

verse nuclear relaxation rate T−1
G for 63Cuð2Þ when a d-wave model is used, but absolutely no agree-

ment when an s-wave model is used for the theoretical calculations.

Josephson Tunneling
As we discussed earlier, Josephson first pointed out that Cooper pairs can flow through a thin insu-
lating barrier between two superconductors.13 A schematic representation of a Josephson tunnel
junction between a pure dx2−y2 superconductor on the left and a superconductor with some admix-
ture of s in a predominantly dx2−y2 state on the right is shown in Figure 14.20. The gap states align
with the crystal-line axes, which are rotated by angles θL and θR with respect to the junction nor-
mals nL and nR.

15

M
−

M
−

1

1

0
0

10

20

30

40

20

|Δ
| (

m
eV

)

40

FS angle (deg)

60 80

15

YE

Γ

FIGURE 14.19

Energy gap in Bi − 2212, measured with ARPES as
a function of an angle in the Fermi surface: solid
curve, with fits to the data using a d-wave order
parameter. Inset indicates the data points in the
Brillouin zone.
Reproduced from Ding et al.10 with permission of the American

Physical Society.
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The supercurrent Is, proportional to the tunneling rate of Cooper pairs through the barrier, was
given by Josephson as

Is = Ic sin γ, (14.136)

where γ is the gauge-invariant phase difference at the junction,

γ = ϕL −ϕR +
2π
Φ0

ZR
L

A . dl, (14.137)

where A is the vector potential, and dl is the element of line integration from the left electrode (L)
to the right electrode (R) across the barrier. It was shown by Cohen et al. (Ref. 6) that the supercur-
rent Is at zero temperature is given by

Is = ∑
k,l

jTk, lj2 ΔLðkÞΔRðIÞ
ELðkÞERðIÞ

1
½ELðkÞ+ERðIÞ� sin ðγL − γRÞ, (14.138)

where Tk,l is the time-reversal-symmetry-invariant tunneling matrix element,

EiðkÞ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∈2
i ðkÞ+Δ2

i ðkÞ
q

, (14.139)

and ∈ ðkÞ is the one-electron energy. Eq. (14.138) is used to determine the parity of superconduc-
tors. It was shown by Pals et al. (Ref. 24). that Is vanishes up to the second order in Tk,l, in tunnel
junctions between spin-singlet (even parity) and -triplet (odd parity) superconductors. However,
because pair tunneling exists for Josephson junctions made of a cuprate superconductor and low-Tc
conventional superconductor such as Nb or Pb, this confirms that the superconducting state in cup-
rates, just as in low-Tc conventional superconductors, is that of even-parity spin-singlet pairing.

π−Rings
The sign changes in the pair critical current Ic are arbitrary for a particular junction because an arbi-
trary phase can always be added to either side of the junction. However, the signs of the critical
currents in a closed ring of superconductors that is interrupted by Josephson weak links can be
assigned self-consistently. One can determine if a particular geometry is frustrated by counting
these sign changes. A frustrated geometry has a local maximum in its free energy with zero

θL θR

nL

nR

FIGURE 14.20

Schematic diagram of a Josephson junction showing the tunnel barrier sandwiched between two junction
electrodes, with order parameters ΔiðkiÞ = jΔi jeiϕi :

Reproduced from Tsuei and Kirtley with the permission of the American Physical Society.27
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circulating supercurrent in the absence of an external magnetic field. A negative pair-tunneling
critical current Ic can be considered as a phase shift of π at the junction interface, i.e.,

Is = −jIcj sinγ = jIcj sin ðγ + πÞ: (14.140)

A superconducting ring with an odd number of π shifts is frustrated.
In the Ginzburg–Landau formalism (Ref. 17), the order parameter is small near Tc, and hence,

the free energy of the Josephson junction can be expanded as a power series of the order parameter.
Further, the gap function can be expressed as a linear combination of the basis functions ðχjμÞ of the
irreducible representation ðΓjÞ, which corresponds to the highest Tc of the order parameter,

ΔðkÞ = ∑
lj

μ=1
ημχ

j
μðkÞ, (14.141)

where lj is the dimensionality of Γj, and the expansion coefficient ημ is invariant under all symme-
try operations of the normal-state group G.

The free energy per unit area of Josephson coupling between two superconducting electrodes
with order parameters ψL and ψR (Figure 14.20) can be written as

Fj = W

Z
ds
h
ψLψ

�
R exp

h
ið2π/Φ0Þ

ZR
L

A . dl
i
+ c:c:

i
, (14.142)

where W is a measure of the Josephson coupling strength, and the integral is over the junction
interface. By minimizing the total free energy with respect to ψL and ψR (Problem 14.15), we can
obtain an expression for the Josephson current density Js, flowing perpendicular to the junction
interface from superconductor L to R,

Js = tL,RχLðnÞχRðnÞjηLjjηRj sin γ = Jc sinγ: (14.143)

Here, Jc is the critical current density; χL,R, the basis function, is related to the gap function ΔðkÞ
through Eq. (14.141); ΔL,RðnÞ = ηL,RðnÞχL,RðnÞ, where n is the unit vector normal to the junction
interface, ηL,RðnÞ = jηL,RjeiϕL .R ; and γ is defined in Eq. (14.137). tL,R is a constant characteristic of
the junction. The basis functions χðnÞ of a Josephson junction electrode with tetragonal symmetry
(point group C4v) are listed in Table 14.1. Here, nx, ny are the projections of the unit vector n onto
the crystallographic axes x and y, respectively.

It can be shown from Eq. (14.143), for Josephson junctions between two d-wave superconductors,
χðnÞ = n2x − n2y , and of which the interface is clean and smooth,

Js = As cosð2θLÞ cosð2θRÞ sinγ, (14.144)

Table 14.1 Basis Functions χðnÞ for a Josephson Junction Electrode with Tetragonal Crystal
Symmetry

Irreducible A1g A2g B1g B2g

Representation s g dx2−y2 dxy
Basis function χðnÞ 1 nxnyðn2x − n2y Þ n2x − n2y nxny
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where θL and θR are the angles of the crystallographic axes with respect to the interface, and As is a
constant characteristic of the junction. However, in real Josephson junctions made with cuprates, the
electron wave vector normal to the junction interface can be significantly distorted by interface rough-
ness, oxygen deficiency, strain, and so on. In this limit,

Js = As cos2ðθL + θRÞ sin γ: (14.145)

Flux Quantization of a Superconducting Ring
The flux quantization of a superconducting ring can be written as

Φa + IsL+
Φ0

2π
∑
ij
γij = nΦ0, (14.146)

where Φa is due to the flux of an external field, Is is the supercurrent circulating in the ring

Is = Iijc ðθi, θjÞ sinγij, (14.147)

γij is defined in Eq. (14.137), and Φ0 is a flux quantum. It can be shown easily (Problem 14.16)
that the ground state of a superconducting ring containing an odd number of sign changes (π ring)
has a spontaneous magnetization of a half-magnetic flux quantum, IsL≈ ð1/2ÞΦ0, when the external
field is zero. Because Is = 0 in the ground state for an even number of π shifts, the magnetic-flux
state has an even number of quantization. To summarize,

Φ = nΦ0 forN even ð0 ringÞ, (14.148)

and

Φ = n+ 1
2

� �
Φ0 forN odd ðπ ringÞ, (14.149)

where N is an integer.

Tricrystal Magnetometry
The multiple-junction ring consists of deliberately oriented cuprate crystals for defining the direction
of the pair wave function. The presence or absence of the half-integer flux-quantum effect in such
samples as a sample configuration differentiates between various pairing symmetries. In the first tri-
crystal experiment of Tsuei et al. (Ref. 24), an epitaxial YBCO film (1200 Å thick) was deposited
using laser ablation on a tricrystal (100) SrTiO3 substrate. In addition to the three-junction ring
located at the tricrystal meeting point, two two-junction rings and one ring with no junction were
also made as controls. The design was such that IcL ≫ Φ0 for observing the half-integer flux quan-
tization. The magnetic flux threading through the superconducting cuprate rings in the tricrystal
magnetometry experiments were directly measured by a high-resolution SQUID microscope. A ser-
ies of tricrystal experiments with various geometrical configurations confirmed that only the dx2−y2
frustrated configuration showed the half-integer flux-quantum effect.

d-Wave Pairing Symmetry
The evidence from both phase-sensitive symmetry as well as non-phase-sensitive symmetry techni-
ques has conclusively proved that the cuprates have d-wave pairing symmetry. The identification of
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d-wave symmetry is based on group theory and the macroscopic quantum coherence phenomena of
pair tunneling and flux quantization. However, it does not necessarily specify a mechanism for
high-temperature superconductivity.

14.9.5 Search for a Theoretical Mechanism of High Tc Superconductors
The identification of d-wave pairing symmetry does not necessarily specify a mechanism for high-
temperature superconductors. The solution of this problem should include pairing symmetry, pairing
interactions (mediated by phonons, spin fluctuations, or some other bosons) in the presence of strong
correlations, and taking into consideration the anomalous normal state and charge segregation and the
stripe phase. The observation of a pseudogap in the normal state, with a d-wave-like k dependence of
many underdoped cuprate semiconductors, has generated renewed interest for a suitable theory.
Recently, Kresin and Wolf proposed some experiments that will unambiguously resolve the issue.16

Anderson noted, “The consensus is that there is absolutely no consensus on the theory of high-
Tc superconductivity.” Bardeen et al.2 proposed a microscopic theory of superconductivity in 1957,
which was unanimously accepted 46 years after Kammerlingh Onnes discovered superconductivity
in Hg in 1911.15 We do not know how long we have to wait for a satisfactory theory for high Tc
superconductivity, which was discovered by Bednroz and Muller in 1986.3

PROBLEMS
14.1. Show that Maxwell’s equation (neglecting the displacement current D as well as replacing

H with B because j is the mean microscopic current) can be written as

∇!× B = 4π
c
j: (1)

14.2. Minimizing Eq. (14.16) with respect to A, show that

∇!× B = 4π
c
j, (1)

where

jðrÞ = e�ħ
2im� ½Ψ�∇!Ψ−Ψ∇!Ψ��− e�2

m�c
AΨ�Ψ: (2)

14.3. Minimizing Eq. (14.16) with respect to Ψ�, by first integrating such that all spatial
derivatives act on Ψ and then taking functional derivatives with respect to Ψ�, show that

α+ βjΨj2 + 1
2m�

ħ
i
∇!+ e�

c
A

� �2� �
Ψ = 0: (1)

14.4. Substituting Eq. (14.54) in Eqs. (14.52) and (14.53), we obtained

iħ _n1ffiffiffiffi
n1

p + i
ffiffiffiffi
n1

p _ϕ1

� �
eiϕ1 = ðε1 ffiffiffiffi

n1
p

eiϕ1 +∈
ffiffiffiffiffi
n2

p
eiϕ2Þ (1)
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and

iħ _n2ffiffiffiffiffi
n2

p + i
ffiffiffiffiffi
n2

p _ϕ2

� �
eiϕ2 = ðε2 ffiffiffiffiffi

n2
p

eiϕ2 +∈
ffiffiffiffi
n1

p
eiϕ1Þ: (2)

Show from Eqs. (1) and (2) that

_n1 = 2∈n
ħ

sin ðϕ2 −ϕ1Þ = − _n2 =
j
e�

(3)

and

_ϕ2 −
_ϕ1 =

1
ħ
ðε1 − ε2Þ = e�

ħ
ðV2 −V1Þ, (4)

where n =
ffiffiffiffiffiffiffiffiffi
n1n2

p
:

14.5. If we choose Ŝ such that

Ĥ1 + ½Ĥ0, Ŝ� = 0, (1)

in which case, the electron–phonon interaction Ĥ1 is eliminated apart from a higher-order
term. If we choose Ŝ of the form

Ŝ = ∑
kqs′

Mqðαâ†−q + βâqÞĉ†k+q,s′ĉk,s′: (2)

From Eqs. (1) and (2), show that

α−1 = EðkÞ−Eðk+ qÞ− ħωq (3)

and

β−1 = EðkÞ−Eðk+ qÞ+ ħωq: (4)

14.6. From Eqs. (14.60) and (14.61), the next-order interaction term is 1
2 ½Ĥ1, Ŝ�, which is a sum of

terms that contain operator products of the form

â†±qâ±q′ĉ
†
k′+q′,s′ĉk′,s′ĉ

†
k+q,sĉk,s: (1)

Show that because q′ = −q (from momentum conservation), out of all the combinations,
only one does not contain any phonon operators,

c†k+q,sc
†
k′−q,s′ĉk′,s′ĉk,s, (2)

when

k′≠ k, k+ q: (3)

14.7. Show from Eqs. (14.60), (14.62), and (14.66) that the proper form of Eq. (2) is

Heff =
1
2

∑
k,k′,q,s,s′

jMqj2ðα− βÞĉ†k+q,sĉ†k′−q,s′ĉk′,s′ĉk,s: (1)
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14.8. Substituting the values of α and β from Eqs. (14.63) and (14.64) in Eq. (1) of Problem 14.7,
show that

< f jHeff ji> = 1
2

∑
k,k′,q,s,s′

< f jVkqĉ
†
k+q,sĉ

†
k−q,s′ĉk′s′ĉk,sji>, (1)

where

Vkq =
2jMqj2ħωq

½Eðk+ qÞ−EðkÞ�2 − ðħωqÞ2
: (2)

14.9. Show that if we take the complex conjugate of Eq. (14.79), multiply by bðkÞ, and sum over
k, we obtain an equation that agrees with Eq. (14.76), provided β = E.

14.10. In Eq. (14.83), we derived

U

ZEF+ħωq

EF

DðxÞdx
2x−E

= 1, (1)

where DðxÞ is the density of states. Show that if we approximate DðxÞ by DðEFÞ in the
narrow range of integration, we obtain

E = 2EF −
2ħωq exp½−2/DðEFÞU�
1− exp½−2/DðEFÞU� ≈ 2EF − 2ħωq exp½−2/DðEFÞU�: (2)

14.11. We introduced the α̂− operators in Eq. (14.88):

α̂k = ukĉk − vkĉ
†
−k

α̂−k = ukĉ−k + vkĉ
†
k

α̂†k = ukĉ
†
k − vkĉ−k

α†
−k = ukc

†
−k + vkĉk:

(1)

In addition, we use the conditions u2k + v2k = 1, uk = u−k, and vk = v−k: Show that these
conditions guarantee that the commutation relations for the c-operators also apply to the
α-operators.

14.12. From Eqs. (14.91), (14.94), and (14.95), show that

Δ = U
2
∑
k

Δffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2ðkÞ+Δ2

q : (1)

14.13. In Eq. (14.102), we obtained

E = DðEFÞ
Zħωq

0

ε− 1
2

2ε2 +Δ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε2 +Δ2

p
� �

dε: (1)
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After integrating Eq. (1), show that

E =
DðEFÞ

2
ðħωqÞ2 1−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1+ Δ

ħωq

� �2s2
4

3
5≈ −

DðEFÞΔ2

4
: (2)

14.14. Because Δð0Þ ≪ ħωq, from Eqs. (14.98) and (14.114), show that

ln
ΔðTÞ
Δð0Þ = −2

Z∞
0

dxffiffiffiffiffiffiffiffiffiffiffiffi
x2 + 1

p f
ffiffiffiffiffiffiffiffiffiffiffiffi
x2 + 1

p ΔðTÞ
Δð0Þ

kBT
Δð0Þ
� �

−1
 !

= F
ΔðTÞ
Δð0Þ ,

kBT
Δð0Þ

� �
: (1)

14.15. The free energy per unit area of Josephson coupling between two superconducting
electrodes with order parameters ψL and ψR (Figure 14.20) can be written as

Fj = W

Z
ds½ψLψ�R exp½ið2π/Φ0Þ

ZR
L

A . dl�+ c:c:�, (1)

where W is a measure of the Josephson coupling strength, and the integral is over the
junction interface. By minimizing the total free energy with respect to ψL and ψR, show that
the expression for the Josephson current density Js, flowing perpendicular to the junction
interface from superconductor L to R, is

Js = tL,RχLðnÞχRðnÞjηLjjηRj sin γ = Jc sin γ: (2)

Here, Jc is the critical current density; χL,R, the basis function, is related to the gap function
ΔðkÞ through Eq. (14.141); ΔL,RðnÞ = ηL,RðnÞχL,RðnÞ, where n is the unit vector normal to
the junction interface, ηL,RðnÞ = jηL,RjeiϕL.R ; and γ is defined in Eq. (14.137). tL,R is a
constant characteristic of the junction.

14.16. The flux quantization of a superconducting ring can be written as

Φa + IsL+
Φ0

2π
∑
ij
γij = nΦ0, (1)

where Φa is due to the flux of an external field, Is is the supercurrent circulating in the ring

Is = Iijc ðθi, θjÞ sin γij, (2)

where γij is defined in Eq. (14.137), and Φ0 is a flux quantum. Show that the ground state
of a superconducting ring containing an odd number of sign changes (π ring) has a
spontaneous magnetization of a half-magnetic flux quantum, IsL ≈ ð1/2ÞΦ0, when the
external field is zero. Because Is = 0 in the ground state for an even number of π shifts, the
magnetic-flux state has an even number of quantization. To summarize,

Φ = nΦ0 for N even (0 ring), (3)
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and

Φ = n+ 1
2

� �
Φ0 for N odd ðπ ringÞ, (4)

where N is an integer.
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15.1 INTRODUCTION
Heavy fermions, which are also sometimes referred to as heavy electrons, are a loosely defined
collection of intermetallic compounds containing lanthanide (mostly Ce, Yb) or actinide (mostly U,
Np) elements. They also include other compounds such as quasi two-dimensional CeCoIn5 and
“Skutterdites” such as PrOs4Sb12. The common feature of the heavy fermions is that they have
large effective mass m� (50–1000 times greater than the mass of a free electron) below a coherence
temperature T�. The effective mass is estimated through the electronic specific heat. In general, for
very low temperatures, the specific heat C of a metal can be expressed as

C/T = γ + βT2, (15.1)

where

γ = VmkFk
2
Bm

�/3ħ2: (15.2)

Here, Vm is the molar volume, kF is the Fermi vector, m� is the effective mass of the electron, T is the
absolute temperature, γ is the electronic contribution, and β is the contribution of the phonons to the
specific heat. There is an additional spin-fluctuation term δT3 ln T in the specific heat of UPt3 and UAl2.

For normal metals such as copper or aluminum, γ is of the order 1 mJ/mol K2 at low temperatures.
A generally accepted definition of heavy fermions is those systems that have γ > 400 mJ/f atom mol
K2 below the coherence temperature T�. γ is generally normalized to a mole of f atoms so that there
can be a comparison between systems with different structure. Some of the other properties of
heavy fermions include (a) an enhanced Pauli spin susceptibility indicating a large effective mass; (b) a
Wilson ratio of approximately one; (c) a huge T2

term in the electrical resistivity; and (d) highly
temperature-dependent de Haas–van Alphen oscil-
lation amplitudes at very low temperatures. The
Wilson ratio (Ref. 35) R is defined as

R =
π2k2Bχð0Þ

g2μ2BJðJ + 1Þγð0Þ : (15.3)

Here, χð0Þ and γð0Þ are the magnetic susceptibil-
ity and specific heat at zero temperature, J is the
total angular momentum, gJ is the Landé g factor,
and the other symbols have their usual meanings.

CeAl3, which earlier had been considered
a mixed-valence compound, was the first
heavy-fermion system discovered by Andres
et al. in 1975. They found that below 0.2° K,
γ = 1620 mJ mole/K2 and the coefficient of the
T2 term in ρ = AT2, A = 35 μΩ cm/K2. The
intense interest in heavy-fermion systems started
with the discovery of superconductivity in
CeCu2Si2 by Steglich et al.29 in 1979. Their
results are shown in Figures 15.1 and 15.2.
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Resistivity (main part) and low-field ac
susceptibility (inset) of CeCu2Si2 as a function of
temperature. Arrows give transition temperatures
Tc(ρ) = 0.60± 0.03°K and Tc(χ) = 0.54 ± 0.03°K.

Reproduced from F. Steglich et al.29 with permission of the

American Physical Society.
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The main part of Figure 15.2 shows, in a logarithmic scale, the molar specific heat of CeCu2Si2
at B = 0 as a function of temperature. The inset in Figure 15.2 shows in a C/T plot the specific
heat-jumps of two other CeCu2Si2 samples that do not look very profound.

The specific heat-jumps below the coherence temperature T*, which is characteristic of heavy-
fermion systems, are elegantly displayed when one plots C/T versus T2. Stewart30 plotted C/T ver-
sus T2 of nonsuperconducting single crystals of CeCu2Si2 and a piece of a superconducting single
crystal of UBe13. These results are reproduced in Figure 15.3, in which the line through UBe13
serves as a guide to the eye.

Since 1974, approximately 50 heavy-fermion compounds have been discovered, but there is no
uniformity in their properties. For example, UBe13 is a superconductor in the ground state with
non-Fermi-liquid properties in the normal state, whereas UPt3 orders antiferromagnetically below
the Néel temperature (TN), exhibits a heavy Fermi-liquid state well below TN, and has unconven-
tional superconductivity with a multicomponent superconducting parameter. CeAl2 and U2Zn17 are
antiferromagnets with weak moments at very low temperatures, and CeNiSn and Ce3Bi4Pt3 are
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narrow-gap semiconductors with quasiparticles having large effective masses. Some heavy-fermion
superconductors such as CeCoIn5 are quasi two-dimensional. The only common feature is the large
effective mass below the coherence temperature and the fact that all these are highly correlated elec-
tron systems. In addition, some heavy fermions such as CeRu2Si2 exhibit metamagnetism, which
has a wide variety of technological applications.

There are many factors that lead to the conclusion that the large effective mass of heavy
fermions below the coherence temperature is not due to band-structure renormalization. For exam-
ple, the magnitude of the nuclear relaxation rate of UBe13 and the ultrasonic attenuation in UPt3 in
the normal state are the same as ordinary metals. The thermal conductivity measurements in
CeCu2Si2, UBe13, and UPt3 yield results similar to ordinary metals.

There have been several powerful techniques applied to discuss the theory of these strongly
correlated systems. However, the theory of these systems lags behind the experiment. In this chapter,
we will discuss the properties of the wide variety of these correlated systems without going into the
details of the complex theories.

15.2 KONDO-LATTICE, MIXED-VALENCE, AND HEAVY FERMIONS
15.2.1 Periodic Anderson and Kondo-Lattice Models
It has been noted that the majority of the rare-earth and actinide compounds have local moments
and can be classified as systems in the magnetic regime. The f orbitals have no charge fluctuation
in this region and have integral valence. Therefore, they can be considered to be in a Mott
insulating stage. Weak residual spin polarization of the conduction electrons, Rudderman–Kittel–
Kasuya–Yosida (RKKY) interactions between the local moments (Refs. 12, 21, 36), magnetic tran-
sition at low temperatures, and spin-wave excitations occur. The spin waves scatter the conduction
electrons at low temperatures.

To correlate and to study their dependence on the various relevant parameters, the simplest Hamil-
tonian is the orbitally nondegenerate periodic Anderson model (Ref. 1). The periodic Anderson model
for a system consisting of a set of N sites is denoted by sites i, j. On each site, there are two orthogo-
nal nondegenerate orbitals that will be referred to as C and f . The Hamiltonian is assumed to have the
form

H = t∑
i≠j,σ

Ĉ
†

iσĈjσ +V ∑
i≠j,σ

ðĈ†

iσ f̂ jσ + f̂
†

jσĈiσÞ+ εf∑
i,σ
f̂
†

i,σ f̂ iσ +U∑
i
f̂
†

i↑ f̂ i↑ f̂
†

i↓ f̂ i↓: (15.4)

Here, t (which can be positive or negative) is the transfer (hopping) integral of the extended ortho-
gonal orbitals between sites i and j (restricted to nearest neighbors in our model). Ĉ

†

iσ and Ĉjσ are
the creation and annihilation operators for these extended orbitals at sites i and j with spin σ. There
is one extended orbital per site per spin with a mean energy that is the origin of the energy scale.
f̂
†

iσ and f̂ iσ are the creation and annihilation operators for the localized f orbitals (i denotes the site)
with energy εf : V is a positive hybridization parameter between the localized and the band orbitals
in neighboring sites. The third term represents the single-particle energy of the isolated f orbitals.
The fourth term is an interaction of the Hubbard type between electrons of the f orbitals on the
same site. U is the Coulomb repulsion between two electrons of opposite spin in the f orbital and
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describes a short-range interaction between them. U is positive, whereas t and εf can have either
sign. When we consider the f orbital only on a single site, the model (Eq. 15.4) is reduced to
a single-impurity Anderson model (Ref. 1), as discussed in Section 13.9, except that the localized
magnetic moment for rare-earth metals is due to s− f mixing instead of s− d mixing as originally
visualized in the single-impurity Anderson model.

The Hamiltonian (Eq. 15.4) can be augmented by additional terms such as second-neighbor hop-
ping or Coulomb repulsion between extended orbitals and f electrons, or between electrons on dif-
ferent sites. Because the orbital degeneracy is neglected, there is no Hund’s rule coupling between
the f orbitals in this model. However important such terms are in applications to real systems, they
are ignored here in the belief that they would contribute nothing really essential to the qualitative
physics.

When each f orbital is occupied by a single electron (either up-spin or down-spin), the system is
described as the Kondo regime. The empty sites and doubly occupied sites become virtual states.
The low-energy physics of the periodic Anderson model (Eq. 15.4) can be described by an effective
model where the f -electron degrees of freedom are represented by localized spins. Schrieffer and
Wolff (Ref. 24) (Problem 15.1) used a second-order perturbation with respect to V to obtain an
effective Hamiltonian

H = t∑
j≠i,σ

ðC†
iσCjσ +H:C:Þ+ J∑

i
Si . Sci , (15.5)

where

Si = 1
2
∑
σ,σ′

τσ,σ′f
†
iσ fiσ′, (15.6)

Sci =
1
2
∑
σ,σ′

τσ,σ′C
†
iσCiσ′, (15.7)

and τ are the Pauli spin matrices. Thus, Sci are the spin-density operators of the conduction elec-
trons, and Si are the localized spins. J is the exchange interaction, which is antiferromagnetic
ðJ > 0Þ and inversely proportional to U. Under symmetric conditions, J = 8V2/U.

Thus, the rare-earth compounds that have either localized four f -electrons (Ce, Yb) or five
f electrons (U, Np) can be considered as a Kondo-lattice (Ref. 9), where at each lattice site a local
moment interacts via an exchange coupling J with the spin of any conduction electron sitting at the
site. The Hamiltonian in Eq. (15.5) is also known as the Kondo-lattice model (Ref. 9). The
exchange coupling is the source of interesting many-body effects in the Kondo-lattice model. The
complexity of solving the Kondo-lattice model arises due to the complex correlation effect invol-
ving both the localized spin and the itinerant electron degrees of freedom. In fact, a conduction
electron undergoes a spin-flip process with a localized spin if the spin is antiparallel. The conduc-
tion electron leaves a trace of its spin exchange processes with the localized spins while moving
around the lattice. The direction of the localized spins is determined by the history of the electrons
that passed through this site. Thus, the conduction electrons are no longer independent. There are
similar correlation effects in the periodic Anderson model due to the dynamic aspects of the loca-
lized electrons. Because these systems are highly correlated, most of the theoretical models devel-
oped during the past 30 years are approximate treatments of the complex problem.
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15.2.2 Mixed-Valence Compounds
The properties of rare-earth metals and their compounds as well as the actinide compounds have
been the subject of a great deal of interest for the past 40 years. A subclass of these rare-earth and
the actinide compounds is known as mixed-valence compounds, which are poor metals but have a
fluctuating valence. Clear indication that two ionic valence states are present in these compounds is
provided by X-ray photoelectron spectra in which the two valence states are seen side by side.
They are also evident by both photoemission measurements as well as by isomer-shift measure-
ments. In these compounds, near the Fermi energy, the s and d electrons as well as the much
heavier f electrons are present. A simple explanation is that because in the ground state, both f n

and ð f n−1 + conduction electronÞ configurations are present, their energies must be very close. The
difference of energy is on the order of the hopping line width. The extra electron is assumed to go
into an extended state, so its energy is equal to the Fermi energy. The extra available f orbital can
be described as a localized state, with energy ∈f nearly equal to the Fermi energy EF , and that can
accept one electron but not two.

The mixed-valence compounds generally form with rare-earth elements only at the beginning,
the middle, and the end of the rare-earth series. The reason that the beginning and the end of the
rare-earth series are favored is that a closed shell screens the nuclear charge very effectively.
Hence, the 4f electron in Ce and the 4f hole in Yb are loosely bound and not far off from the 5d
configuration. The middle of the rare-earth series is favored because of the importance of Hund’s
rule coupling. The final occupied f-level, even for Sm, is not far below the d-level.

A typical example of a mixed-valence compound is SmS, which is a semiconductor at normal
pressure. Sm has the electronic structure [Xe] 4f 55d06s2, and S has the electronic structure
[Ne] 3s23p4. In compounds, the d-level broadens into a band and hybridizes with the 6s band, but
the f-levels are essentially unaffected. In a schematic electronic structure, one can visualize a
localized f 6-level in the gap between the 5d− 6s band and the s− p bands.

Under pressure, the lower of the crystal field split d-bands broadens and moves down in energy
relative to the f-level and ultimately crosses it. When the f – d gap goes to zero, a metal insulator
transition occurs. The electronic structure and the density of states for the metallic state are shown
schematically in Figure 15.5.

The f-levels hybridize with the d level on a neighboring atom because they cannot hybridize with the
d-level of the same atom (the f 6 configuration has a total J = 0). The “bandwidth” of the hybridized
f-band is very narrow so that in the density of states, over the smooth s – d background, there is a sharp-

peak attributable to the f -like atomic character in a
tight-binding representation. The wave functions
near this peak are linear combinations of f -like
and d-like wave functions and can be written as

ψkðrÞ = akϕdðrÞ+ bkϕf ðrÞ, (15.8)

where the proportion ak to bk varies rapidly near
the peak. The f 6-level, which is nondegenerate
due to correlation energy, accommodates only
one electron per atom. Because this peak is
derived from the f 6-level, the integrated density

5d − 6s band

s – p bands

f 6

FIGURE 15.4

Schematic structure of SmS in the semiconducting
phase.
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of states of f -like character in it is also
one-electron per atom. Hence, at T= 0, the Fermi
level is pinned to lie in the f peak. This character-
istic is in a sense the definition of mixed-valence
compounds. The wave function in Eq. (15.8)
represents the linear combination of the atomic
orbital states, which is partly f 5d and partly f 6.
The d electron is not affected by the local atomic
exchange and correlations because it is relatively
free. Thus, ψkðrÞ represents a linear combination
of 3+ and 2+ valence states on the rare-earth ion,
and the compound is known as a mixed-valence
system. The average valence can be defined as

Vav = ∑
k
jakj2=j∑

k
jbkj2, (15.9)

where the sum is over the occupied part of the
occupied band. However, the instantaneous
valence Vinst will be different from Vav because the
f electrons have a nonzero bandwidth.

15.2.3 Slave Boson Method
The slave boson method was developed for the U=∞ periodic Anderson model that had the
constraint nf ≤ 1 at each site. The essential feature of this method is that the localized electron
operators are written as a composition of a fermion f̂ and a boson b̂, where we may consider the
boson as an f vacancy. Every site is occupied either by an f̂ fermion or a b̂ boson. The localized
electron operators are written as a composition of a boson b̂ and a fermion f̂ : One defines

f †iσ = f̂
†

iσb̂i and fiσ = b̂
†

i f̂ iσ: (15.10)

The operator equality,

∑
σ
f̂
†

iσ f̂ iσ + b̂
†

i b̂i = 1, (15.11)

satisfies the preceding condition. The Anderson lattice Hamiltonian can be written as

H = ∑
k,σ

εkc
†
kσckσ + εf∑

i,σ
f̂
†

iσ f̂iσ +V∑
i,σ
ðc†iσ b̂

†

i f̂iσ + f̂
†

iσ b̂iciσÞ+∑
i
λi
�
∑
σ
f̂
†

iσ fiσ + b̂
†

i bi − 1
�
: (15.12)

Here, λi is a Lagrangian multiplier for the site i and is needed to impose the local constraints. The
properties of the Hamiltonian (Eq. 15.12) are usually discussed in a mean-field approximation. It is
assumed that the bosons have Bose condensations, <b̂i> = b0, and the Lagrange multiplier λi = λ0
for all sites. Thus, the constraint is obeyed only on the average over the whole system.

f n−2 f n−1

E

EF

f n f n+1

s − d band

FIGURE 15.5

Electronic energy levels for mixed-valence materials.
A wide sd band overlaps one of the configurations of
the multiplet splitting of f electrons.
Reproduced from Varma32 with the permission of the American

Physical Society.
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15.2.4 Cluster Calculations
To correlate the mixed-valence, Kondo, and heavy-fermion behavior and to study how they corre-
spond to different regimes of one fundamental phenomenon (at least in Ce systems), Misra et al.17

considered the application of the periodic Anderson model to finite clusters with periodic boundary
conditions. Although the phrase “periodic Anderson model” is somewhat inappropriate when
applied to a small system, they used it in reference to a four-atom cluster in which each site has a
localized orbital and an extended orbital with appropriate Coulomb repulsion, hybridization, and
transfer matrix elements. In a later paper, they extended the number of electrons to eight particles,
but the results were similar. The value of small cluster calculations is that exact solutions of the
Hamiltonian are obtained. However, it has to be recognized that in some respects, small clusters are
not representative of bulk materials. For example, at sufficiently low temperatures the specific heat
of a cluster model will vanish exponentially, and the magnetic susceptibility will either be infinity
or zero. The large number of states obtained even for a small cluster suggests that statistical
mechanics may give results that fairly represent a large system over a reasonable range of
temperatures.

Misra et al. (Ref. 17) applied the periodic Anderson model (Eq. 15.4) to four-site tetrahedral clus-
ters of equal length with periodic boundary conditions, thereby including the band structure effects.
For example, their model Hamiltonian for a tetrahedron is identical to that of an fcc lattice if the Bril-
louin zone sampling is restricted to four reciprocal-lattice points, the zone center Γ, and the three
square-face-center points X. They studied the region of crossover between the magnetic, Kondo, and
mixed-valence regimes by varying the different parameters U/|t |, V/|t|, and Ef /|t|, and their results for
the tetrahedron, which reflect the properties of cerium alloys, are presented in Figure 15.6.

One can distinguish the three regimes by considering n electrons per site. Consider the non-f
electrons to constitute an electron reservoir. In Figure 15.6, Ed is the Fermi level when there are n
non-f electrons per site, and Ed′, is the Fermi level when there are n− 1 electrons per site (if there
is no interaction with the f electrons). EF is the chemical potential when the f electrons are in con-
tact with the electron reservoir. Let Ef be the energy boundary such that at T = 0, the ion will be in
the f 0 state if EF <Ef and in the f 1 state if EF >Ef . Ef +U is another ionization boundary separat-
ing the f 1 state from the f 2 state. The crossover from one regime to another depends sensitively on

the various parameters U,V, and Ef as well as
on the geometry (band structure).

The Hamiltonian (Eq. 15.4) is conveniently
considered on a basis of states diagonal in occupa-
tion numbers; Misra et al. (Ref. 17) calculated the
many-body eigenstates and eigenvalues. Because
spin is a good quantum number, the states can be
classified as spin singlets, triplets, and quintets.
For n = 4, there are 784 singlet, 896 triplet, and
140 quintet states. For n = 8 (Ref. 3), there are
12,870 states available for eight particles. These
rather large numbers of states should tend to make
the results somewhat representative of large sys-
tems except at extremely low temperatures (lower

Ef + U
E

Ef

Ed 

EF 

Ed′

f2

f1

f0

FIGURE 15.6

A schematic diagram illustrating the dependence of
the three different regimes on the position of the f-level.
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than the separation between the ground state and the first excited state). The significant results are pro-
jected through the diagram in Figure 15.7.

Misra et al. (Ref. 17) constructed a computer program to diagonalize the Hamiltonian within
subspaces of fixed values of Sz: They calculated the f-state occupation (nf ), temperature dependence
of specific heat (Cv), and the magnetic susceptibility ( χf ) of the f electrons (by using a canonical
ensemble) for a large number of parameters. In Figure 15.8, a typical example is presented by plot-
ting Cv /T against T for Ef ranging from −5:0 to −4:0 (nf varies from 0.9943 to 0.9788).

We notice that for Ef = −5:0, Cv/T increases very rapidly at very low temperatures (which
mimics the onset of heavy-fermion behavior) but gradually decreases as Ef is increased until the

1.0

0.1
0.5

1.5

0.1
0.5

1.5

2.0

2.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
−8 −6 −4 −2 0

N
f

Ef / t

2 4 6

FIGURE 15.7

The f occupation number per site, nf, in the four-electron ground state in terms of Ef and various
hybridization energies V for t = −1, U= 50 for a tetrahedron.

Reproduced from Misra et al.17 with the permission of the American Physical Society.
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heavy-fermion feature has practically disappeared when Ef = −4:2. To explain the unusual increase
in Cv/T, Misra et al. (Ref. 17) plotted the energy-level diagram (Figure 15.9) of the first few many-
body states for each of these Ef as well as for Ef = −3:0.

In Figure 15.9, for Ef = −5:0, the ground state is a singlet, but the next two higher-energy states
are a triplet and a quintet, which are nearly degenerate with the ground state. The low-temperature
rise in Cv is determined by these three levels. As Ef increases, the separation between the lowest
three levels increases, and the rise in Cv/T correspondingly decreases. Thus, the heavy-fermion
behavior is obtained when the many-body ground state is a singlet but nearly degenerate to two
other magnetically ordered states. The same pattern is repeated for a tetrahedron for t =1, except
that in some cases the ground state is a magnetically ordered triplet state. In such cases, the ground
state of the heavy-fermion system would be magnetically ordered.

In Figure 15.10, Misra et al. plotted kBχf T /ðgμ2BÞð� χf TÞ versus T/|t| to compare their results with
the benchmark results for the single-impurity Anderson model. They defined a “frozen-impurity”
regime ð χf T = 0Þ, a free orbital regime ð χf T ≈ 0:125Þ, a valence-fluctuation regime ð χf T ≈ 0:167Þ,
and a local moment regime ð χf T ≈ 0:25Þ. In addition, they defined an “intermediate regime” for
which 0< χf T < 0:125, but χf T essentially remains a constant in this regime.

We note from Figure 15.10 that when Ef = −5:0 (nf = 0.994), there is a transition from the
frozen-impurity to the local-moment regime. For Ef = −3:0 (nf = 0.725), there is a transition from
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FIGURE 15.8

Cv/T/|t| versus T/|t| for various Ef for E negative, U= 50, and V= 0.1 for a tetrahedron. Curve (a), Ef = −5.0;
curve (b), Ef = −4.8; curve (c), Ef = −4.6; curve (d), Ef = −4.4; curve (e), Ef = −4.2; curve (f), Ef = −4.0.
(All parameters in units of |t |.)

Reproduced from Misra et al.17 with the permission of the American Physical Society.
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the frozen-impurity to the valence-fluctuation regime. When Ef is further increased, the transition is
from the frozen-impurity to the free orbital regime. The high-temperature results are in excellent
agreement with the single-impurity “benchmark” results.

When we compare the specific heat curves with the χT curves for the same parameters, the spe-
cific heat maxima generally occur below the temperature at which χT reaches its high-temperature
value (i.e., the crossover temperature from enhanced Pauli- to Curie-like susceptibility). The main
reason is that at low temperatures where Cv is a maximum, the many-body states with magnetic
moments are still just becoming thermally populated. The same broad features have also been
observed experimentally.

It was generally believed that as Ef is increased from far below Ed (Figure 15.6), there would be
a transition from the magnetic to the Kondo-lattice regime. However, Misra et al. (Ref. 17) found
that for some choice of parameters, the system undergoes a transition from a Kondo-lattice to a
magnetic regime as Ef is increased. Subsequently, it reenters a Kondo-lattice regime for higher
values of Ef . This unusual feature of reentry to the Kondo-lattice regime is very sensitive to the
hybridization parameter and occurs only for low V/|t| values, which are the most important para-
meters in determining nf as well as the thermodynamic properties.
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15.3 MEAN-FIELD THEORIES
15.3.1 The Local Impurity Self-Consistent Approximation17

The dynamical mean-field theory is a very powerful tool for studying the strongly correlated sys-
tem. In this approach, a lattice model is replaced by a single-site quantum impurity problem
embedded in an effective medium determined self-consistently. This leads to an intuitive picture of
the local dynamics of a quantum many-body problem. Because the impurity problem has been
extensively studied, the self-consistency condition incorporates the translation invariance and the
coherence effects of the lattice. This approach is now popularly known as the local impurity self-
consistent approximation (LISA). The LISA freezes spatial fluctuations but includes local quantum
fluctuations and is therefore characterized as a dynamical mean-field theory. The on-site quantum
problem is still a many-body problem that can be addressed by using a variety of techniques. The
dynamical mean-field theory becomes exact in the limit of large spatial dimensions d→∞ or in the
limit of large lattice coordination.

In the mean-field theory, a lattice problem with many degrees of freedom is approximated by a
single-site effective problem. The dynamics at a given site are the interaction of the degrees of free-
dom at this site with an external bath created by the degrees of freedom on the other sites. A simple
example is an application to the Hubbard model in which the Hamiltonian is

H = − ∑
<ij>,σ

tijðC†
iσCjσ +C†

jσCiσÞ+U∑ni↑ni↓: (15.13)

An imaginary-time action (the local effective action) for the fermionic degrees of freedom ðCoσ ,C
†

oσÞ
at site o is

Seff = −
Zβ
0

dτ

Zβ
0

dτ′∑
σ
C†

oσðτÞg−10 ðτ− τ′ÞCoσðτ′Þ+U

Zβ
0

dτnσ↑ðτÞnσ↓ðτÞ: (15.14)

Here, g0ðτ− τ′Þ, the generalized “Weiss function,” is the effective amplitude for a fermion to be
created on the isolated site at time τ (coming from the “external bath”) and destroyed at time τ′
(going back to the bath). Because g0 is a function of time, it accounts for local quantum fluctua-
tions. It can be shown that (Problem 15.2)

g0ðiωnÞ−1 = iωn + μ+GðiωnÞ−1 −R½GðiωnÞ−1�: (15.15)

GðiωnÞ, the on-site interacting Green’s function, is calculated from

Gðτ− τ′Þ = −<TCðτÞC†ðτ′Þ> Seff (15.16)

GðiωnÞ =
Zβ
0

dτGðτÞeiwnτ,ωn � ð2n+ 1Þπ
β

: (15.17)

Here, R(G) is the reciprocal function of the Hilbert transform of the density of states corresponding
to the lattice. As an example, in the Hubbard model,

DðεÞ = ∑
k
δðε− εkÞ, εk = ∑

ij
tije

i k
!.

�
Ri
!− Rj

!�
: (15.18)

498 CHAPTER 15 Heavy Fermions



The Hilbert transform DðξÞ and its reciprocal function R are defined by

DðξÞ�
Z∞
−∞

dε
DðεÞ
ξ− ε

, R½DðξÞ� = ξ: (15.19)

Eqs. (15.14) through (15.16) are the basic equations of the LISA method. However, the major difficulty
lies in the solution of Seff : It can be shown that solving these equations yields the local quantities, and
all the k

!
-dependent correlation functions of the original lattice Hubbard model can be obtained.

It may be noted that the LISA approach freezes spatial fluctuations but retains local quantum
fluctuations. Each site undergoes transition between the four possible quantum states
j0〉, j↑〉, j↓〉, j↑, ↓〉 by exchanging electrons with the rest of the lattice or “the external bath.” As an
example, one can consider ðCoσ,C

†

oσÞ as an impurity orbital. The bath can be described as a “con-
duction band” described by the operators ðalσ , a†lσÞ, and the Hamiltonian is the well-known single-
impurity Anderson Hamiltonian

HAM = ∑
lσ

e2l a
†

lσalσ +∑
lσ
Vlða†lσCoσ +C†

oσalσÞ− μ∑
σ
C†
oσCoσ +Unσ↑nσ↓: (15.20)

Eq. (15.20) is quadratic in a†lσ , alσ , and integrating these gives rise to Seff of the form given in
Eq. (15.14), provided

g−10 ðiωnÞAM = iωn + μ−
Z∞
−∞

dω
ΔðωÞ
iωn −ω

(15.21)

and

ΔðωÞ = ∑
lσ
V2
l δðω−eεiÞ: (15.22)

If the parameters Vl, eεl are chosen to obtain g0, the solution of the mean-field equations, HAM

becomes the Hamiltonian representation of Seff. Here, eεl’s are effective parameters and not εk, the
single-particle energy. In addition, Δ(ω), the conduction bath density of states, is obtained when the
self-consistent problem is solved.

Thus, by using the LISA approach, one obtains the Anderson impurity embedded in a self-
consistent medium from the Hubbard model. The dynamical mean-field equations are solved such
that the proper g0 is obtained. When this g0 is inserted into the Anderson model, the resulting
Green’s function should obey the self-consistency condition in Eq. (15.15). The mapping onto
impurity models, which have been studied by a variety of analytical and numerical techniques, is
used to study the strongly correlated lattice models in large dimensions. However, it is important to
solve Seff by using reliable methods.

15.3.2 Application of LISA to Periodic Anderson Model
We will now briefly describe the application of the LISA method to heavy-fermion systems and the
Kondo insulators (Ref. 20). This is done by using the periodic Anderson model (PAM). This model
describes a band of conduction electrons that hybridize with localized f – electrons at each lattice
site. The PAM Hamiltonian can be written as

H = ∑
kσ
∈kC

†
kσCkσ +V∑

iσ
ðC†

iσfiσ + f †iσCiσÞ+∈f∑
iσ
f †iσfiσ +U∑

i
ðnfi↑ − 1/2Þðnfi↓ − 1/2Þ, (15.23)
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where the terms were defined in Section 15.2. In the d→∞ limit, the local interaction gives rise to
k-independent self-energy, and the various Green’s functions are obtained in the form

Gcðiωn,kÞ−1 = iωn −∈k −
V2

iωn −∈f −∑f ðiωnÞ ,

Gf ðiωn, kÞ−1 = iωn −∈f −Σf ðiωnÞ− V2

iωn −∈k
,

Gcf ðiωn,kÞ−1 = 1
V
f½ðiωn −∈kÞðiωn −∈f −Σf ðiωnÞ�−V2g ,

(15.24)

where Σf ðiωnÞ is the self-energy of the f electrons, and μ, the chemical potential, is absorbed in the
definitions of ∈k and ∈f : It can be shown by reducing to a self-consistent single-site model that the
effective action is

Seff = −
Z β

0
dτ

Z β

0
dτ′∑

σ
f †σ ðτÞg−10 ðτ− τ′Þfσðτ′Þ+U

Z β

0
dτ½nf ↑ðτÞ− 1/2�½nf ↓ðτÞ− 1/2�: (15.25)

The f self-energy is obtained from

Σf = g0 −G−1
f ,Gf �−<Tff †> Seff : (15.26)

Because the self-consistency condition requires that the Green’s function of the impurity problem
must be equal to the local f Green’s function of the lattice model, we obtain

Gf ðiωnÞ =
Z ∞

−∞

d∈Dð∈Þ
iωn −∈f −∑f ðiωnÞ−V2

�ðiωn −∈Þ : (15.27)

Here, Dð∈Þ is the density of states (noninteracting) of the conduction electrons.
The temperature dependence of the electronic transport of the heavy-fermion systems can be

calculated by using a self-consistent second-order perturbation theory in terms of the Coulomb
repulsions U.

15.3.3 RKKY Interaction
There are two competing interactions in the heavy-fermion system: the indirect exchange between the
moments mediated by the RKKY interaction (Refs. 12, 21, 36) and the Kondo exchange between
the conduction electrons and the moments. The conducting electrons and the moments retain their
identities and interact weakly. The RKKY interaction is described in the following section.

Ruderman and Kittel21 considered the problem of nuclear-spin ordering in a metal and used
second-order perturbation theory to derive an expression for the indirect nuclear spin–spin interac-
tion (Problem 15.5),

HRKKY = − 9π
8
n2c

J2

εF
∑
<ij>

Si
.Sj

r3ij
2kF cosð2kFrijÞ−

sin ð2kFrijÞ
rij

� �
, (15.28)

where kF is the Fermi wave vector, and nc is the density of conduction electrons. The spin–spin
interaction is long ranged and changes its sign depending on the distance between the pair of spins.
Kasuya discussed the magnetic properties of rare-earth metals based on Eq. (15.28).12 Yosida36
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showed that the oscillatory behavior originates from the Friedel oscillation of the spin polarization
of conduction electrons induced by a localized spin. Therefore, Eq. (15.28) is known as the RKKY
interaction.

For rare-earth metals, the Fourier transform of the RKKY interaction is given by χ(q), the
susceptibility of the conduction electrons for wave number q. The ground state is usually ferromag-
netic if χ(q) is maximum at q = 0. If the maximum of χ(q) occurs at q =Q, the antiferromagnetic
wave vector, the ground state becomes antiferromagnetic. The ground state may have a spiral spin
ordering if χ(q) becomes maximum at a general wave vector. The Kondo effect is suppressed when-
ever there is any type of magnetic ordering. The low-energy physics of the Kondo effect is given
by the Kondo temperature

TK = εFe
−1/JρðεFÞ: (15.29)

However, the characteristic energy of the RKKY interaction is given by J2/εF: This energy
dominates over the Kondo temperature in the weak-coupling regime.

In the strong-coupling regime, the local moments are quenched because of the formation of local
singlets. The Kondo effect or the effect of singlet formation is not considered for the derivation of
the RKKY interaction. The relation between RKKY interaction and the Kondo effect depends on
the conduction electron density, dimensionality, and the exchange coupling. As an example, we
consider two localized spins, S1 and S2. The direct exchange coupling between the two spins can
be expressed as

H = JRKKYS1 .S2, (15.30)

where JRKKY, the intersite coupling constant, is arbitrary. For J > 0, the Kondo coupling is antiferro-
magnetic, and the ground state is a singlet. When J > JRKKY, each of the two localized spins forms
a singlet with conduction electrons, and hence, the interaction between the singlets is weak. When
JRKKY» J, the two localized spins form a singlet by themselves, and J is no longer important. There
is a difference among theorists as to whether the change between the two regimes is smooth or
sharp.

15.3.4 Extended Dynamical Mean-Field Theory16

The extended dynamical mean-field theory (EDMFT), which is an extension of DMFT, is particu-
larly suitable to solve problems such as the competition between the exchange interaction and
kinetic energy. In the EDMFT, the local quantum fluctuations are treated on the same level as the
intersite quantum fluctuations. This is achieved by reducing the correlated lattice problem to a
novel effective impurity problem corresponding to an Anderson impurity model with additional
self-consistent bosonic baths. These bosonic baths reflect the influence of the rest of the lattice on
the impurity site. As an example, they represent the fluctuating magnetic fields induced by the inter-
site spin-exchange interactions in the magnetic case. The intersite quantum fluctuations are included
through self-consistency.

Smith and Si28 applied the EDMFT method to the two-band Kondo-lattice model

H = ∑
<ij>,σ

tijC
†
iσCjσ +∑

i
JK Si
! . sci

!−∑
<ij>

Jij Si
! . Sj

!
, (15.31)
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where Si
!

is the impurity spin at site i, and s!ci is the spin of conduction ðc−Þ electrons at site i, tij is
the hopping integral, and Jij is the spin-exchange interaction. In the large D (dimension) limit, with
t0 = tij

ffiffiffiffi
D

p
and J0 = Jij

ffiffiffiffi
D

p
, they derived an expression for the impurity action

SMF = Stop +
Z β

0
dτJK S

!
i
. s!c −

Z β

0
dτ

Z β

0
dτ′

h
∑
σ
C†

σðτÞG−1
0 ðτ− τ′ÞCσðτ′Þ+ S

!ðτÞ . χ−1s,0ðτ− τ′Þ S!ðτ′Þ
i
,

(15.32)

where Stop is the Berry phase of the impurity spin. The Weiss fields G−1
0 and χ−1s,0 are determined by

the self-consistency equations,

G−1
0 ðiωnÞ = iωn + μ−∑

ij
ti0t0j½GijðiωnÞ−Gi0ðiωnÞG0jðiωnÞ

�
GlocðiωnÞ� (15.33)

and

χ−1s,0 = ∑
ij
Ji0J0jð χs,ij − χs,i0 χs,0j=χs,locÞ: (15.34)

Here, χs is the spin susceptibility. Smith and Si (Ref. 28) also showed that the effective action can
be written in terms of the impurity problem,

Himp = ∑
kσ
Ekη

†

kσηkσ +∑
q
wq ϕ
!†

q
. ϕ
!

q − μ∑
σ
C†

σCσ

+ t∑
kσ
ðC†

σηkσ +H:C:Þ+ JK S
! . s!c + g∑

q
S
! . ðϕ!q + ϕ

!†

−qÞ,
(15.35)

where Ek, t,wq, and g are determined from the Weiss fields G−1
0 and χ−1s,0 specified by

iωn + μ− t2∑
k
1
�ðiwn −EkÞ = G−1

0 ðiωnÞ (15.36)

and

g2∑
q
wq

�½ðiνnÞ2 −w2
q� = χ−1s,0 ðiνnÞ: (15.37)

15.4 FERMI-LIQUID MODELS
15.4.1 Heavy Fermi Liquids
A number of universal features are associated with the coherent Fermi-liquid state in heavy-fermion
systems. They can be summarized as follows:

a. The dimensionless Wilson ratio (Ref. 35)

R =
χð0Þ�g2JJðJ + 1Þμ2B

γð0Þ�π2k2B
is close to the value of unity.

b. The specific heat CV has a rapid downturn with increasing temperature, which has been fit to a
function of the form T3 ln T .

c. The resistivity ρ is proportional to T2:
d. The low-T susceptibility χT also appears to vary as T2.
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In addition, the evidence of universal behavior of heavy fermions is the observation of
Kadowaki and Woods that ρ/T 2≡ A is the same multiple of γ2 for essentially all materials.11

A large number of the heavy-fermion systems become heavy Fermi liquids at low temperatures
in the sense that Landau’s Fermi-liquid theory is still adequate to describe the physics, provided the
large effective mass is included. In the Fermi-liquid theory, the specific-heat enhancement Cv/Cv0 is
related, at low temperatures, to the quasiparticle density of states at the Fermi surface. This is
equivalent to an average Fermi velocity or to that of an average mass. In view of the above, the
effective mass is defined as

Cv

Cv0
= m�

m
: (15.38)

Here, it is important to comment on the physical interpretation of the quasiparticles. The f electrons
are supposed to be hopping from site to site. There are a large number of f electrons, and the Lut-
tinger theorem (described later) requires the Fermi surface to contain the total number of states and
not a volume containing the mobile holes in the f-band. The f electrons have very large mass due to
the weak effective hybridization. Thus, the quasiparticles are essentially f electrons, and the quasi-
particle bands are f -bands that have moved up to the Fermi energy and have been narrowed by cor-
relation. The heavy Fermi liquid arises due to the Kondo screening of the localized moments at
each lattice site. In a sense, the localized moments “dissolve” into the Fermi sea.

We will now summarize the concepts of the various heavy Fermi-liquid models by following the
elegant but brief review of Senthil et al.25 The Kondo-lattice model can be written as

HK = ∑
k
εkC

†
kαCkα +

JK
2
∑
r
Sr

.C†
rασαα′Crα′: (15.39)

Here, nc is the density of conduction electrons with dispersion εk, C
†

kα and Ckα are the creation and
annihilation operators of conduction states, k is the momentum, and α = ↑,↓ is a spin index. The
conduction electrons interact with f electron spins Sr via the antiferromagnetic Kondo exchange
coupling constant JK . Here, r is a lattice position, and σ are the Pauli spin matrices.

In the heavy-fermion liquid models, the charge of the frα electrons is fully localized on the
rare-earth sites. These electrons occupy a flat dispersionless band, as shown in Figure 15.11a.
Because this band is half filled, it is placed at the Fermi level. The Crα electrons occupy their own
conduction band. The Kondo exchange turns on a small hybridization between these two bands. The
hybridization can be represented by a bosonic operator

br ∼∑
α
C†

rα frα: (15.40)

Because <br> is nonzero, renormalized bands are formed (Figure 15.11b) due to the mixture of the
two bands.

Because the f-band was initially dispersionless, the renormalized bands do not overlap. One
now applies the Fermi-surface sum rule by Luttinger (Ref. 13), also known as the Luttinger theorem
(Ref. 14). According to Luttinger, the volume enclosed by the Fermi surface is entirely determined by
only the electron density. The volume is independent of the type and strength of an interaction, if the
system remains a Fermi liquid and no phase transition occurs. Using this theorem leads to the conclu-
sion that the occupied states are entirely within the lower band, and a single Fermi surface is obtained
within wave vector kF . The volume within kF is obtained by the total density of f and c electrons.

15.4 Fermi-Liquid Models 503



The Fermi surface is in a region (Figure 15.11b) where the electrons primarily have an f character,
and the band is flat. According to this model, this accounts for the large effective mass of the fermio-
nic quasiparticles.

Because the charge fluctuations are quenched at the f electron sites, every rare-earth site has a
constraint

∑
α
f †rα frα = 1, (15.41)

(a)

f

c

k kkF

(b)

FIGURE 15.11

A completely flat f electron “band”—the dashed line in (a)—mixes with the conduction electrons to obtain
the renormalized bands in (b). The single Fermi surface at kF in the Fermi-liquid state contains states of
which the wave number equals the sum of the c and f electrons.

Reproduced from Senthil, Sachdev, and Vojta25 with the permission of Elsevier.

Hot Fermi
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Cold Fermi
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Spinon Fermi
surface

Fractionalized Fermi liquid

Small electron
Fermi surface

Fermi liquid

FIGURE 15.12

Fermi-surface evolution from FL to FL*: The FL phase has two Fermi-surface sheets (the cold c and the hot
f sheets) close to the transition. The f sheet becomes the spinon Fermi surface while the c sheet is the
small conduction-electron Fermi surface on the FL* side.

Reproduced from Senthil, Vojta, and Sachdev27 with the permission of the American Physical Society.
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which is obeyed at each rare-earth site. This implies that the theory is invariant under the space-
time-dependent U(1) gauge transformation

f †rα ! frαe
iϕrðτÞ, (15.42)

where τ is imaginary time.

15.4.2 Fractionalized Fermi Liquids
Senthil et al.26,27 showed the existence of nonmagnetic translation-invariant small-Fermi-surface
states, originally with a focus on two-dimensional Kondo lattices. These states are obtained when a
local-moment system settles into a fractionalized spin liquid ðFL�Þ due to intermoment interactions.
A weak Kondo coupling to conduction electrons leaves a sharp (but small) Fermi surface of quasi-
particles (FL) of which the volume counts the conduction density, but the structure of the spin
liquid is undisturbed. These states have fractionalized excitations that coexist with conventional
Fermi-liquid-like quasiparticles.

In this paper, Senthil et al. considered a three-dimensional lattice by using Uð1Þ states. They
focused on a three-dimensional Uð1Þ spin-liquid state with fermionic spinons that form a Fermi
surface. The Uð1Þ spin-liquid state is stable to a weak Kondo coupling to conduction electrons. The
Uð1ÞFL� state consists of a spinon Fermi surface coexisting with a separate Fermi surface of
conduction electrons. Senthil et al. used a mean-field theory to describe a Uð1ÞFL� state and its
transition to a heavy FL. They considered a three-dimensional Kondo–Heisenberg model on a cubic
lattice,

H = ∑
k
∈kC

†
kαCkα +

JK
2
∑
r
S
!

r
.C†

rα σ
!

αα′Crα′ + JH ∑
<rr′>

S
!

r
. S
!

r′: (15.43)

Here, Ckα is the conduction electron destruction operator, S
!

r are the spin-1/2 local moments, and
summation over repeated spin indices α is implied. In a fermionic “slave-particle” representation of
the local moments

S
!

r = 1/2 f †rα σ
!

αα′ frα′, (15.44)

where frα is a spinful fermion destruction operator at site r. The decoupling of the Kondo and the
Heisenberg exchange is made using two auxiliary fields by a saddle-point approximation, and the
mean-field Hamiltonian is

Hmf = ∑
k
∈k C

†
kαCkα − χ0 ∑

<rr′>
ð f †rα fr′α +H:C:Þ+ μf∑

r
f †rα frα − b0∑

k
ðC†

kα fkα +H:C:Þ: (15.45)

Here, b0 and χ0 are assumed to be real, and additional constants to H are dropped. The mean-field
parameters b0, χ0, and μf are obtained from (Problem 15.3)

1 =< f †rα frα>, (15.46)

b0 = JK
�
2<C†

rα frα>, (15.47)

χ0 = JH
�
2< f †rα fr′α>, (15.48)
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where r and r′ are nearest neighbors. At zero temperature, in the Fermi-liquid (FL) phase, χ0, b0,
and μ0 are nonzero. In the FL* phase, b0 = μ0 = 0 but χ0 ≠ 0: In this state, the conduction electrons
are decoupled from the local moments and form a small Fermi surface. The local-moment system is
described as a spin fluid with a Fermi surface of neutral spinons.

The mean-field is diagonalized by the transformation (Problem 15.4),

Ckα = ukγkα++ vkγkα− (15.49)

and

fkα = vkγkα+− ukγkα−: (15.50)

The Hamiltonian can be written in terms of the new fermionic operators γkα±,

Hmf = ∑
kα
Ek+ γ

†
kα+ γkα+ +Ek−γ

†
kα−γkα−, (15.51)

where

Ek± =
∈k +∈kf

2
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∈k −∈kf

2

� �2
+ b20:

r
(15.52)

Here, ∈kf = μf − χ0∑a=1,2,3 cosðkaÞ: The uk, vk are determined by

uk = − b0vk
Ek+−∈k

, u2k + v2k = 1: (15.53)

For the FL* phase, b0 = μ0 = 0 but χ0 ≠ 0: The conduction-electron dispersion ∈k determines the
electron Fermi surface and is small. The spinon Fermi surface encloses one spinon per site and has
volume half that of the Brillouin zone. Senthil et al. assumed that the conduction‒electron filling is
less than half, and the electron Fermi surface does not intersect the spinon Fermi surface. In the FL
phase near the transition (small b0), there are two bands corresponding to Ek±: one derives from the
c electrons with f character (c-band), whereas the other derives from the f particles with weak c
character ( f-band).

As shown in Figure 15.12, for small b0, the Fermi surface consists of two sheets because both
bands intersect the Fermi energy. The total volume is large because it includes both local moments
and conduction electrons. When b0 decreases to zero, the transition moves to FL*, the c-Fermi
surface expands in size to match onto the small Fermi surface of FL*, and the f-Fermi surface
shrinks to match onto the spinon Fermi surface of FL*.

15.5 METAMAGNETISM IN HEAVY FERMIONS
The name metamagnetism was originally introduced for antiferromagnetic (AF) materials where, at
low temperatures, for a critical value of the magnetic field (H), the spin flips, which gives rise to a
first-order phase transition. This was extended to paramagnetic (Pa) systems where field reentrant
ferromagnetism (F) would appear in itinerant magnetism. Eventually, it was used to describe a
crossover inside a persistent paramagnetic state between low-field Pa phase and an enhanced
paramagnetic polarized (PP) phase.
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In heavy-fermion systems, the f electrons are located near the border between itinerant and local
moment behavior, as shown in the phase diagram in Figure 15.13. Doniach considered a one-
dimensional analog of a system of conduction electrons exchange-coupled to a localized spin in
each cell of a lattice.6 He suggested that a second-order transition from an antiferromagnetic to a
Kondo spin-compensated ground state would occur as the exchange coupling constant J increased
to a critical value Jc. For J near to, and slightly smaller than Jc, there would exist antiferromagnets
with very weak, “nearly quenched” moments, even though the f electrons are in a state with a well-
defined local nonzero spin state. The existence of this transition can be understood by comparing
the binding energy of the Kondo singlet

WK ∼Nð0Þ−1e−1/Nð0ÞJ , (15.54)

with that of an RKKY antiferromagnetic state

WAF ∼CJ2Nð0Þ, (15.55)

where N(0) is the density of conduction electron state, and C is a dimensionless constant that depends
on the band structure. As shown in Figure 15.13, for JN(0) less than a critical value, the RKKY state
dominates, whereas above this, the Kondo singlet binding dominates. The RKKY binding again takes
over at large J, but the weak coupling formula (Eq. 15.54) breaks down in this regime.

The heavy fermions that exhibit metamagnetism are CeRu2Si2, Sr3Ru2O7, CeCu6−xAux, UPt3,
UPd2Al3, URu2Si2, CePd2Si2, YbRh2Si2, and CeIr3Si2:

There have been many theories proposed for metamagnetism of heavy fermions, but no satis-
factory model is yet available. A review of the various theoretical models was made by Misra.16
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FIGURE 15.13

Comparison of AF with Kondo energies.
Reproduced from Doniach6 with the permission of Elsevier.

15.5 Metamagnetism in Heavy Fermions 507



15.6 CE- AND U-BASED SUPERCONDUCTING COMPOUNDS16

15.6.1 Ce-Based Compounds
Since 1979, approximately 25 unconventional superconductors have been discovered in heavy-
fermion systems. Although most of these systems are Ce- and U-based compounds, a few others
are quasi-two-dimensional in nature and filled skutterdites. The multiphase diagrams in UPt3 and U
(Be1−xThx)13 indicate unusual superconductivity with multicomponents. In fact, UPt3 is the first odd-
parity superconductor to be discovered in heavy-fermion systems. UPd2Al3 and UNi2Al3 are uncon-
ventional superconductors coexisting with the AF phase and are considered to have even- and
odd-parity pairing states, respectively. There is coexistence of hidden-order and unconventional
superconductivity in URu2Si2. UPt3, URu2Si2, UNi2Al3, and UPd2Al3 have the following common
features: (a) they order antiferromagnetically below TN, ranging from 5 to 17°K; and (b) they exhibit,
well below TN and coexisting with AF order, a heavy Landau Fermi-Liquid (LFL) state that becomes
unstable against a superconducting transition at Tc (ranging between 0.5 and 2°K).

Recently, a variety of heavy-fermion Ce-based superconductors were discovered due to progress
in experiments under pressure. They include CeCu2Ge2, CePd2Si2, CeRh2Si2, CeNi2Ge2, and CeIn3.
These materials, which have the same ThCr2Si2-type crystal structure as CeCu2Si2 (except CeIn3),
are AF metals at ambient pressure, whereas under high pressures, the AF phases abruptly disappear
accompanied by SC transitions.

The family of CeTIn5 (T =Co, Rh, and Ir), which has a HoCoGa5-type crystal structure (Ref. 16),
has attracted a great deal of attention because they possess a relatively high transition temperature
(Tc) such as Tc = 2.3° K for CeCoIn5, which is the highest among Ce- and U-based heavy-fermion
superconductors. It has been proposed that valence fluctuations are responsible for the superconduc-
tivity in some Ce-based compounds. This is due to the fact that in metallic cerium, the phase diagram
shows a first-order valence discontinuity line. This line separates the γ-Ce with a 4f shell occupation
nf = 1.0 from the α-Ce with nf ≈ 0:9. The valence transition is isostructural, and the line has a critical
end point in the vicinity of pcr = 2 GPa and Tcr = 600° K. In cases in which pcr is positive, either
Tcr is very high or Tcr is negative, and only a crossover regime is accessible even at T= 0. The excep-
tions are CeCu2Si2 and CeCu2Ge2, for which Tcr is likely positive although small. In such a situation,
the associated low-energy valence fluctuations can mediate superconductivity.

Holmes et al.10 proposed that the superconducting phase diagram for CeCu2(Ge,Si)2, shown
in Figure 15.14, exhibits a maximum in the transition temperature in close vicinity to a valence-
changing critical point. Miyake (Ref. 16) has argued that superconductivity may develop around the
region where the critical end point is suppressed to zero, to become a quantum critical point.

The heavy-fermion superconductor CeCoIn5 is a quasi-two-dimensional (2D) system, and the de
Haas–van Alphen effect data indicate a quasi-2D Fermi surface. These properties have led to the
possibility of a Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) (Refs. 7, 13) superconducting state in
CeCoIn5. These states result from the competition between superconducting condensate energy and
the magnetic Zeeman energy that lowers the total energy of the electrons in the normal state. This
competition is strong when the superconductivity is of a spin-singlet nature. In this case, the super-
conducting Cooper pairs form with opposite spins, and the electrons cannot lower the total energy
of the system by preferentially aligning their spins along the magnetic field. This effect, called
Pauli limiting, leads to suppression of superconductivity in the magnetic field. The characteristic
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Pauli field HP determines the upper limit of the superconducting upper critical field Hc2. When
Pauli limiting is the dominant mechanism for suppression of superconductivity, a new inhomoge-
neous superconducting FFLO state would appear at high fields between the normal and the mixed,
or the vortex, state below the critical temperature TFFLO with planes of normal electrons that can
take advantage of Pauli susceptibility. In the FFLO state, pair breaking due to the Pauli paramag-
netic effect is reduced by the formation of a new pairing state (k↑, –k + q↓), with |q| ~ 2μBH/ħvF
(vF is the Fermi velocity) between the Zeeman split parts of the Fermi surface. One of the intriguing
features is the T and H phase dependence of the phase boundary between the FFLO and non-FFLO
superconducting state. H اا

FFLO (H اا ab) exhibits an unusually large shift to higher fields at higher
temperatures. The results of Bianchi et al.2 are shown in Figure 15.15.

15.6.2 U-Based Superconducting Compounds
The first two U-based heavy-fermion superconductors, UBe13 (Tc= 0.9°K) and UPt3 (Tc= 0.54°K),
were discovered in 1983 by Ott et al. (Ref. 19) and in 1984 by Stewart et al.,31 respectively. It was
evident within a few years that UPt3 had three superconducting phases, which created great impetus
for further study of this unusual heavy-fermion superconductor.

UBe13 was the first actinide-based heavy-fermion compound that was found to be a bulk super-
conductor below approximately 0.9° K. The cubic UBe13 is also one of the most fascinating HF
superconductors because superconductivity develops out of a highly unusual normal state character-
ized by a large and strongly T-dependent resistivity. In addition, upon substituting a small amount
of Th for U in U1−xThxBe13, a nonmonotonic evolution of Tc and a second-phase transition of Tc2
below Tc1, the superconducting one, is observed in a critical concentration range of x.

It was also shown that the superconducting state is formed by heavy-mass quasiparticles. This
was demonstrated by plotting Cp/T versus T (at low temperatures), which is shown in Figure 15.16.
The anomaly at Tc is compatible with the large γ parameter in the normal state at this temperature.

The temperature dependence of the specific heat of UBe13 well below Tc was the first indication of
the unconventional superconductivity. Figure 15.17 shows the nonexponential but power-law-type
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Tc Tc

Ce3+ Ce

SCAFM
SC

4+

FIGURE 15.14

Schematic phase diagram for CeCu2(Ge,Si)2 illustrating a possible valence fluctuation critical point
beneath the superconducting dome at high pressures.

Reproduced from P. Coleman, (Ref. 5), with the permission of Elsevier.
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(a) Electronic specific heat of CeCoIn5 divided by temperature with H اا [110] collected with the
temperature decay method, as a function of field and temperature. (b) Contour plot of the data in (a) in the
H-T plane. Gray lines indicate the superconducting phase transitionTc and the FFLO-mixed stateTFFLO
anomaly. The color scale is the same in (a) and (b).

Reproduced from Bianchi et al.2 with the permission of the American Physical Society.
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Electronic specific heat of UBe13 below 7°K. The solid line represents the BCS approximation of the
anomaly at and below Tc.

Reproduced from Ott18 with the permission of Elsevier.
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Normalized electronic specific heat of UBe13 below Tc, plotted versus Tc /T. The solid and broken lines
represent calculations assuming point nodes in the gap.

Reproduced from Ott18 with the permission of Elsevier.
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decrease of CpðTÞ that was interpreted as being the consequence of nodes in the gap of the electronic
excitation spectrum.

It was also found that when small amounts of U atoms in UBe13 were replaced with other ele-
ments, there was a substantial reduction of the critical temperature. Tc is also first substantially
reduced with the alloys U1−xThxBe13 as x is increased. However, when x > 0.018, Tc increases
again until it passes over a willow maximum at x = 0.033 and gradually decreases with a reduced
slope when x is further increased. Further, in the range 0.019 < x < 0.05, a second transition at Tc2
below Tc was discovered by measuring the specific heat of these alloys at very low temperatures.
Measurements of ρ(T) and χ(T) confirmed that the phase at temperatures below the second anomaly
of Cp(T) was superconducting.

The phase diagram of superconductivity of U1−xThxBe13, from these observations as well as
from thermodynamic arguments, is shown in Figure 15.18. One can identify three different super-
conducting phases: F, L, and U.
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FIGURE 15.18

An x, T phase diagram for superconducting U1−xThxBe13 as derived from the measurements of the specific
heat. The letters F, L, and U denote three superconducting phases.

Reproduced from Ott18 with the permission of Elsevier.
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Superconductivity has also been discovered in
UPt3, and its alloys, URu2Si2; and in UPd2Al3
and its alloys, UNi2Al3, UGe2, URhGe, and UIr.

The discovery of superconductivity in UGe2
in single crystals of UGe2 under pressure below
Pc ∼ 16 kbar was very surprising. The sensational
part of this discovery is that the pressure P∼ 12
kbar, where the superconducting temperature
TS = 0.75°K is strongest, the Curie temperature
TC ∼ 35°K is two orders of magnitude higher
than TS; superconductivity occurs in a very
highly polarized state (μ(T → 0°K)∼ μB).

The superconductivity in UGe2 disappears
above a pressure Pc ≈ 16 kbar that coincides
with the pressure at which the ferromagnetism
is suppressed. The pressure-temperature phase
diagram of UGe2 is shown in Figure 15.19.

15.7 OTHER HEAVY-FERMION SUPERCONDUCTORS
15.7.1 PrOs4Sb12
The filled skutterdite PrOs4Sb12 becomes superconducting at Tc = 1:85°K. It appears to involve
heavy-fermion quasiparticles with effective mass m� ∼ 50 me. There is speculation that the quadru-
polar fluctuations play a role in the heavy-fermion superconductivity of PrOs4Sb12. The ground
state of Pr3+ ions in the cubic CEF appears to be the Γ3 nonmagnetic doublet. Therefore, the
heavy-fermion behavior possibly involves the interaction of the Pr3+ Γ3 quadrupole moments and
the charges of the conduction electrons. In such a case, the quadrupolar fluctuations would play a
role in the heavy-fermion superconductivity of PrOs4Sb12.

The variation of C at low temperature and the magnetic phase diagram inferred from C, the resis-
tivity and magnetization, show that there was a doublet ground state. The two distinct superconducting
anomalies in C provide evidence of two superconducting critical temperatures at TC1 = 1.75°K and
TC2 = 1.85° K. This could arise from a weak lifting from of the ground-state degeneracy, which
supports the theory of quadrupolar pairing; i.e., superconductivity in PrOs4Sb12 is neither of electron–
phonon nor of magnetically mediated origin.

The H-T superconducting phase diagram of PrOs4Sb12 determined by specific heat measure-
ments is shown in Figure 15.20.

15.7.2 PuCoGa5
The discovery of superconductivity in the transuranium compound PuCoGa5 with Tc≈ 18.5°K, which
is by far the highest critical temperature for any heavy-fermion superconductor, has attracted consider-
able attention. PuCoGa5 crystallizes in the HoCoGa5 structure, the same type as the CeMIn5 materials.
The H-T phase diagram of PuCoGa5, inferred from the heat capacity data as a function of temperature
in a magnetic field applied along the three orthogonal directions, is shown in Figure 15.21.
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FIGURE 15.19

The pressure-temperature phase diagram of UGe2.
Reproduced from Demuer et al.4 with permission of Elsevier.
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H-T superconducting phase diagram of PrOs4Sb12. The field dependences of Tc1 and Tc2 are identical. The
dashed-dotted line is the same fit with the same parameters as the other lines but without paramagnetic
limitation.

Reproduced from Measson et al.15 with the permission of Elsevier.
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Reproduced from J.L. Sarrao et al. (Ref. 23), with the permission of Elsevier.

514 CHAPTER 15 Heavy Fermions



15.7.3 PuRhGa5
The discovery of superconductivity in PuRhGa5 with Tc ≈ 9° K was reported by Wastin et al.
(Ref. 34). PuRhGa5 crystallizes in the tetragonal HoCoGa5 structure with the lattice parameters a =
4.2354 Å and c = 6.7939 Å. This structure has a two-dimensional feature, where alternating PuGa3
and RhGa2 layers are stacked along the c-axis. There are two crystallographically inequivalent Ga
sites in this structure, which are denoted Ga(1) (the 1c site) and Ga(2) (the 4i site), respectively.
The Ga(1) site is surrounded by four Pu atoms in the c plane, whereas the Ga(2) site is surrounded
by two Pu and two Rh atoms in the a plane.

The high-pressure measurements on PuRhGa5 are shown in Figure 15.22, in which the electrical
resistance is plotted against temperature for pressures up to 18.7 GPa. This figure displays a metal-
lic shape in the normal state, but an NFL behavior (ρ(T)∼ T1.3) develops up to 50–60°K. The inset
of Figure 15.22 shows the plot of Tc of both PuRhGa5 and PuCoGa5 against pressure.

The variation of Tc as a function of pressure (Figure 15.22) suggests that the pairing mechanism
is differently affected by pressure for the two materials. The layered crystal structure associated
with the quasi-2D Fermi surface calculated for these materials suggests that anisotropic properties
might be the cause for this difference.
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Evolution of the electrical resistance of PuRhGa5 crystal up to 18.7 GPa. The inset shows Tc behavior of
PuCoGa5 as a function of the applied pressure.

Reproduced from Griveau et al.8 with the permission of Elsevier.
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The (T-P) phase diagram of PuRhGa5 and PuCoGa5 can be compared to that of CeCoIn5. In
these isostructural compounds, the superconducting transition temperature increases with increasing
pressure and reaches a maximum before decreasing at higher pressure. The NFL behavior is also
maintained over a large range of pressure.

15.7.4 Comparison between Cu and Pu Containing High-Tc Superconductors
Recently, Wachter33 compared the Cu “high Tc superconductors” with equivalent measurements on
“high Tc” PuCoGa5 and PuRhGa5. He observed the following common features. First, in all materi-
als, spin pseudogaps were observed, which necessitates at least antiferromagnetic short-range order,
i.e., in clusters. Second, all Cu and Pu superconductors are of mixed valence, as photoemission data
have shown. The majority ions (Cu or Pu) are magnetic, and the minority ions are nonmagnetic and
act as spin holes. Only short-range correlations remain because these spin holes have a concentra-
tion of 10% and hence dilute the antiferromagnetic order. According to Wachter, two dimensionality
is not essential and n- or p-type conductivity is not important.

15.8 THEORIES OF HEAVY-FERMION SUPERCONDUCTIVITY
The superfluid 3He, the physical properties of which were extensively studied prior to the discovery
of heavy-fermion superconductivity, exhibited gap anisotropy and nodal structures like some
heavy-fermion compounds. After the discovery of heavy-fermion superconductors, it was natural to
compare them with superfluid 3He to be able to understand the former. However, there are many
differences between the two systems. For example, the presence of a crystal field and the fact that
charged particles are paired in heavy fermions instead of pairing of the neutral atoms in 3He are
important. In addition, the strong correlation effects and the spin-orbit interaction in heavy-fermion
systems are major factors to be considered.

In heavy-fermion compounds, the f-shell electrons are strongly correlated. These f electrons deter-
mine the properties of the quasiparticles at the Fermi level, which gives rise to a large effective mass. It
is generally believed that superconductivity is mainly by the heavy quasiparticles. These quasiparticles
with f characters would have difficulty forming ordinary s-wave Cooper pairs, characteristic of the BCS
theory of superconductivity, due to the strong Coulomb repulsion. To avoid a large overlap of the wave
functions of the paired particles, the system would rather choose an anisotropic channel, such as a
p-wave spin triplet (as is done in superfluid 3He) or a d-wave spin singlet state to form pairs.

We cannot review here in detail the theory of superconductivity of each heavy-fermion compound.
In addition, heavy-fermion systems are one of the areas in physics where the experimentalists are well
ahead of the theorists and superconductivity in various heavy-fermion compounds has a different origin.

15.9 KONDO INSULATORS
15.9.1 Brief Review
The strongly correlated f-electron materials called Kondo insulators have recently attracted much
attention because of their unusual physical properties. At high temperatures, they behave like metals
with a local magnetic moment, whereas at low temperatures, they behave as paramagnetic insulators
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with a small energy gap at the Fermi level. It appears that a gap in the conduction band opens at
the Fermi energy as the temperature is reduced. Despite intensive theoretical and experimental stu-
dies, the mechanism of gap formation is still unclear, and there is considerable controversy on how
to describe the physics of Kondo insulators. We will concentrate on the 4f and 5f compounds, i.e.,
those f-element compounds that are in a certain sense “valence” compounds. The general properties
of these materials are characterized by a small gap. The f elements that are present in these com-
pounds have unstable valence, with the valence corresponding to the nonmagnetic f state of the ele-
ment satisfying the valence requirements of the other elements in the material. The Kondo insulator
can be viewed as a limiting case of the correlated electron lattice: exactly one half-filled band inter-
acting with one occupied f-level. This can also be viewed as the limiting case of the Kondo lattice
with one conduction electron to screen one moment at each site. However, there has been no clear
definition of Kondo insulators, and this situation stems from the confusion over how to understand
various types of Kondo insulators consistently.

Following is a variety of Kondo insulators, some of which are semiconductors that become Kondo
insulators with application of pressure: CeNiSn, Ce3Bi4Pt3, CeRhAs, CeRhSb, CeNiSn, CeRu4Sn6,
URu2Sn, CeFe4P12, CeRu4P12, CeOs4Sb12, UFe4P12, TmSe, URu2Sn, YbB12, SmB6, and SmS.

A detailed review of the experimental properties of each one of these Kondo insulators is
available in Misra.16

15.9.2 Theory of Kondo Insulators
The Anderson Lattice Model
The Anderson lattice model provides a basic description of the electronic properties of the heavy-
fermion materials. The solution of the model at half-filling is expected to exhibit an indirect gap in
the density of states. The chemical potential lies directly in the gap making the system semiconduct-
ing. Thus, if there are four states per atom—two states per atom in the upper hybridized band and
two states per atom in the lower hybridized band—then at half-filling, two electrons per atom com-
pletely fill the doubly degenerate lower hybridized band and the noninteracting system is semicon-
ducting. According to Luttinger’s theorem, if the interactions are turned on adiabatically so that
perturbation theory converges, the ground state of the interacting system will remain insulating. The
Hamiltonian can be written as

H = Hf +Hd +Hfd, (15.56)

where Hf is the Hamiltonian of the lattice of localized f electrons, Hd is the Hamiltonian of the
conduction electron states, and Hfd is the hybridization Hamiltonian,

Hf = ∑
i,α
Ef f

†
i,α fi,α + ∑

i,α,β

Uff

2
f †i,α f

†

i,β fi,β fi,α, (15.57)

Hd = ∑
k,α

εdðkÞd†k,αdk,α, (15.58)

and

Hfd = N−1/2
s ∑

i,k,α
½VðkÞexpð−ik .RiÞf †i,αdk,α +V�ðkÞexpðik .RiÞd†k,α fi,α�: (15.59)
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Here, Ef is the binding energy of a single f electron to a lattice site, and Uff is the Coulomb
repulsion between a pair of f electrons located on the same lattice site. Due to the spin and
orbital degrees of freedom, the total degeneracy of each f orbital is 14. This degeneracy can be
lifted by spin-orbit coupling and crystal field splitting. We will consider the degeneracy of the
lowest f multiplet to be N = 2. The operators f †iα( fiα) create (destroy) an f electron at site i with a
combined spin-orbit label α. The summation is over all lattice sites and all degeneracy labels.
εdðkÞ is the dispersion relation for the d-bands; the operators d†kαðdkαÞ create and annihilate an
electron in the αth d sub-band state labeled by the Bloch wave vector k. The hybridization
between the f states and the states of the d-band is governed by Hfd. The first term represents a
process in which a conduction electron in the Bloch state k hops into the f orbital located at
site i. However, α is conserved in the process. The Hermitian conjugate term describes an
electron in the f orbital at site i tunneling into the conduction band state labeled by the Bloch
state k. The summation runs over the total number of lattice sites Ns and over the k values of the
first Brillouin zone.

Riseborough’s Theory
Riseborough (Ref. 20) showed that the noninteracting Hamiltonian (Uff !0) is exactly soluble and
the electronic states fall into two quasiparticle bands of mixed f and conduction band character. He
showed that in this limit, the binding energy of the f-levels falls within the width of the unhybri-
dized conduction band, which has a width of 2 W = 12t in the tight-binding approximation. The
indirect gap is between the zone boundary of the upper branch and the k = 0 state of the upper
branch. The direct gap occurs for k values halfway along the body diagonal and has a magnitude of
2V . A sketch of the hybridized bands is shown in Figure 15.23. Each band can contain a maximum
of 2N electrons.

Thus, the noninteracting system is a semi-
conductor. If the interactions are turned on adia-
batically, Luttinger’s theorem implies that the
ground state of the system will be an insulator.
In the mean-field approximation, one can use
the slave boson technique described earlier. This
approach to the Uff ! ∞ limit of the Anderson
lattice model projects the states of double f
occupancy. The f electron operators are replaced
by a product of an f quasiparticle operator and a
slave boson field,

f †i,α = ef †

i,αbi,

fi,α = b†i ef †

i,α,
(15.60)

where bi and b†i are the annihilation and creation
operators for the site i, and the f quasiparticle
operators are ef †i,α and ef i,α: These operators satisfy
the constraints

∑
α

ef †i,αef i,α + b†i bi = Qi = 1: (15.61)
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FIGURE 15.23

Sketch of the hybridized band structure, for k vectors
along the body diagonal of the first Brillouin zone.

Reproduced from Riseborough20 with the permission of

Taylor & Francis Ltd.
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The slave boson field satisfies the equation of motion

iħ ∂
∂t
ðb†i Þ = λib

†
i +

1
N1/2

s

∑
k,α

VðkÞexp½ik .Ri� ef †

i,αdk,α: (15.62)

The lowest-order approximation, the terms of zeroth order in the boson fluctuation operators bi, is
retained. If b0 is finite, this corresponds to a time-independent macroscopic equation of the k = 0
state that is equivalent to assuming that the boson field has undergone Bose–Einstein condensation.
In this approximation, Eq. (15.62) can be written as (Problem 15.6)

λib
�
0 =

−1
N1/2
s

∑
k,α

VðkÞexp½ik .Ri�h ef †

i,αdk,αi: (15.63)

Here, b0 and λi can be determined self-consistently from Eqs. (15.62) and (15.63). The hybridization
matrix element is renormalized through eVðkÞ = b0VðkÞ, (15.64)

and the f -level energy is renormalized througheEf = Ef + λ: (15.65)

This moves the quasiparticle component of the f structure from the incoherent bare f -level com-
ponent of the density of states to a position near the chemical potential. It can be shown that the
quasiparticle dispersion relations are obtained as (Problem 15.7)

E±ðkÞ = 1
2
½eEf + εdðkÞ± ð½eEf − εdðkÞ�2 + 4jeVðkÞj2Þ1/2�: (15.66)

In this formulation, the amplitude of the slave boson condensate bi is temperature dependent and
vanishes at a critical temperature, Tc, for the semiconductor system. It can be shown that

kBTc = 1:14W exp
Ef − μ

NΔ

� �
, (15.67)

where Δ = jV j2/W , W represents approximately half the width of the conduction band, and the
direct gap has a magnitude of 2V. It is interesting to note that this temperature dependence is related
to the Kondo temperature, in which the effects of both band edges are taken into account.

It may be noted that the slave boson mean-field theory is exact only when the degeneracy of the
f-level approaches infinity. In addition, it is valid only when the lower band is fully occupied,
which is true only for some Kondo insulators but not others, such as SmB6. The effect of the mag-
netic field gives rise to a Zeeman splitting of the quasiparticle bands, reducing the hybridization
gap. It has been shown by using the periodic Anderson lattice (in the limit of infinite spatial dimen-
sions, d ! ∞) that the semiconductor-to-metal transition associated with the high field closing the
gap may be of the first order.

PROBLEMS
15.1. The Schrieffer-Wolff transformation24 can be easily used to relate the Anderson model of a

localized magnetic moment to that of Kondo. The two models can be shown to be equivalent
in small s− f mixing. The Anderson Hamiltonian for a single localized orbital f is

Ĥ = ∑
kσ
∈k nkσ +∑

σ
∈f nf σ +Unf ↑nf ↓ +∑

kσ
½Vkf Ĉ

†

kσĈf σ +V�
kf Ĉ

†

f σĈkσ� = Ĥ0 + Ĥ1, (1)
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where ∈k and ∈f are the one-electron energies of the conduction and localized orbitals,
measured relative to the Fermi energy, and Ĥ0 is the sum of the first three terms in Eq. (1).
The model can be characterized by two dimensionless ratios

r± �Γ±

�j∈±j, (2)

where

∈f = ∈f +U, α = +,
= ∈f , α = −, (3)

and

Γα = πNð∈αÞjVkf j2AVE: (4)

Nð∈αÞ is the density of band states in the perfect crystal at energy ∈α, and the matrix
elements are averaged over k states of this energy. If ∈+ > 0 and ∈− < 0, then for Vkf ! 0,
the ground state is given by the filled Fermi sea and a single electron occupying the f orbital.
A localized moment occurs even at zero temperature because the states with f -electron spin ↑
and ↓ are degenerate. For rα ≪ 1, these two spin states are mixed by electrons hopping on and
off the f orbital due to V . Because arbitrarily small energy denominators ∈k −∈k′ ≃ 0 occur in
fourth and higher orders of V , V cannot be treated directly by perturbation theory. However,
the interactions that dominate the dynamics of the system for rα ≪ 1 can be isolated. Show
that one can perform a canonical transformation,

H� eSHe−S, (5)

by requiring that Vkf is eliminated to the first order, where

½H0, S� = H1: (6)

Show from Eqs. (4) and (6) that

S = ∑
kσα

Vkf

∈k −∈α
nαf ,−σC

†
kσCf σ −H:C:, (7)

where the projection operators nαf ,−σ are defined by

nαf ,−σ = nf ,−σ, α = + ,
= 1− nf ,−σ , α = −: (8)

Show also that in the limit rα ≪ 1,

H ≈H0 +H2, (9)

where

H2 = 1
2
½S,H1�≈Hex = −∑

kk′
Jk′kðΨ†

k′SΨkÞ . ðΨ†

f SΨf Þ, (10)

where 2S = τ are the Pauli spin matrices, Ψk and Ψf are the field operators

Ψk =
ck↑
ck↓


 �
, Ψd =

cf ↑
cf ↓


 �
, (11)
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and

Jk′k = Vk′f Vfkfð∈k −∈+ Þ−1 + ð∈k′ −∈+ Þ−1 − ð∈k′ −∈−Þ−1 − ð∈k′ −∈−Þ−1g: (12)

For k and k′≃ kF , Jkk′ is given by

JkFkF � J0 = 2jVkFf j2 U
∈f ð∈f +UÞ : (13)

This coupling is antiferromagnetic. If there is an f electron at every site of the lattice, from
Eq. (10), the f-electron degrees of freedom are represented by localized spins.

15.2. Show that

g0ðiωnÞ−1 = iωn + μ+GðiωnÞ−1 −R½GðiωnÞ−1�: (1)

Here, GðiωnÞ, the on-site interacting Green’s function, is calculated from the effective action
Seff defined in Eq. (15.14),

Gðτ− τ′Þ = −< TCðτÞC†ðτ′Þ> Seff (2)

GðiωnÞ =
Zβ
0

dτGðτÞeiωnτ,ωn � ð2n+ 1Þπ
β

: (3)

Here, RðGÞ is the reciprocal function of the Hilbert transform of the density of states
corresponding to the lattice. The noninteracting density of states is

Dð∈Þ = ∑
k
δð∈−∈kÞ, (4)

where

∈k �∑
ij
tije

ik.ðRi−RjÞ: (5)

The Hilbert transform DðξÞ and its reciprocal function R are defined by

DðξÞ =
Z ∞

−∞
d∈

Dð∈Þ
ξ−∈

(6)

and

R ½DðξÞ� = ξ: (7)

In principle, G can be computed as a functional of g0, using the impurity action Seff . Thus,
Eqs. (15.14), (1), and (2) form a complete system of functional equations for the on-site
Green’s function G and the Weiss function g0:

15.3. The Hamiltonian of a three-dimensional Kondo–Heisenberg model on a cubic lattice is

H = ∑
k
∈k C

†
kαCkα +

JK
2
∑
r
S
!

r
.C†

rα σ
!

αα′Crα′ + JH ∑
<rr′>

S
!

r
. S
!

r′: (1)
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Here, Ckα is the conduction electron destruction operator, S
!

r are the spin-1/2 local moments,
and summation over repeated spin indices α is implied. In a fermionic “slave-particle”
representation of the local moments

S
!

r = 1/2f †rα σ
!

αα′frα′, (2)

and frα is a spinful fermion destruction operator at site r. The decoupling of the Kondo and
the Heisenberg exchange is made using two auxiliary fields by a saddle-point approximation,
and the mean-field Hamiltonian is

Hmf = ∑
k
∈k C

†
kαCkα − χ0 ∑

<rr′>
ð f †rα fr′α +H:c:Þ+ μf∑

r
f †rα frα − b0∑

k
ðC†

kα fkα +H:C:Þ: (3)

Here, b0 and χ0 are assumed to be real and additional constants to H are dropped. Show that
the mean-field parameters b0, χ0, and μf are obtained from

1 = < f †rα frα>, (4)

b0 = JK /2<C†
rα frα>, (5)

χ0 = JH /2< f †rα fr′α>, (6)

where r and r′ are nearest neighbors. At zero temperature, in the Fermi-liquid (FL) phase,
χ0, b0, and μ0 are nonzero. In the FL* phase, b0 = μ0 = 0, but χ0 ≠ 0: In this state, the
conduction electrons are decoupled from the local moments and form a small Fermi surface.
The local-moment system is described as a spin fluid with a Fermi surface of neutral spinons.

15.4. In Problem 15.3, the mean-field is diagonalized by the transformation (Senthil et al.26),

Ckα = ukγkα++ vkγkα− (1)

and

fkα = vkγkα+− ukγkα−: (2)

Show that the Hamiltonian (Eq. 3 in Problem 15.3) can be written in terms of the new
fermionic operators γkα±,

Hmf = ∑
kα
Ek+ γ

†
kα+ γkα++Ek−γ

†
kα−γkα−, (3)

where

Ek± =
∈k +∈kf

2
±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∈k −∈kf

2

� �2

+ b20:

r
(4)

Here, ∈kf =μf − χ0∑a=1,2,3 cosðkaÞ: The uk, vk are determined by

uk = − b0vk
Ek+−∈k

, u2k + v2k = 1: (5)

15.5. The metals of the rare-earth (lanthanide) group have very small 4f n magnetic cores immersed in
a sea of conduction electrons from the 6s–6p bands. The magnetic properties of these metals
can be understood in detail in terms of an indirect exchange interaction between the magnetic
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cores via the conduction electrons. If the spins of the local magnetic moments at r = ri are Si

and at r = rj are Sj, the second-order interaction between the two spins is given by

H″ðxÞ = ∑
kk′ss′

′< ks jHj k′s′><k′s′ jHj ks>
εk − εk′

: (1)

Here,

H = ∑
kk′ss′

Z
d3xϕ�

k′s′ðxÞAðx− riÞS .SiϕksðxÞ
� �

c†k′s′cks, (2)

where Aðx− riÞ is the interaction (which is proportional to the delta function) between the spin
of the electron S and the spin Si of the local moment at site ri: Here, ϕks are the Bloch functions
ϕks = ϕkjs>, and S operates on the spin part of ϕks: Show that Eq. (2) can be rewritten as

H = 1
2
∑
k,k′

eiðk−k′Þ
.Ri Jðk′,kÞ½S†i c†k′↓ck↑ + S−i c

†
k′↑ck↓ + Szi ðc†k′↑ck↑ − c†k′↓ck↓�, (3)

where

Jðk,k′Þ =
Z

d3x ϕ�
k′ðxÞAðxÞϕkðxÞ: (4)

If

AðxÞ = JδðxÞ, (5)

Jðk′,kÞ = J: (6)

From Eqs. (1), (2), and (6), show that

H″ðxÞ = ∑
s
ðS .SiÞðS .SjÞmJ2ħ−2ð2πÞ−6P

ZkF
o

d3k

Z∞
kF

d3k′ e
−iðk−k′Þ:x

k2 − k′2
+ cc: (7)

The sum over electron spin states is done with the help of the standard relation between Pauli
operators,

ðσ . SiÞðσ .SjÞ = Si
. Sj + iσ .Si × Sj: (8)

Because the trace of any component of σ vanishes,

∑
s
ðS . SiÞðS .SjÞ = 1

2
Si
.Sj: (9)

From Eqs. (7) and (9), by performing the integrations, show that

H″ðxÞ = 4J2mk4F
ð2πÞ3ħ2r4ij

½2kFrij cosð2kFrijÞ− sinð2kFrijÞ�Si
. Sj: (10)

The density of conduction electrons,

nc =
k3F
3π2

: (11)
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From Eqs. (10) and (11), we obtain the RKKY interaction,

HRKKY = − 9π
8
n2c

J2

εF
∑
<ij>

Si
.Sj

r3ij
2kF cos ð2kFrijÞ−

sin ð2kFrijÞ
rij

� �
, (12)

where a factor of ½ has been multiplied to avoid double counting of i and j. The spin–spin
interaction is long ranged and changes its sign depending on the distance between the pair of
spins.

15.6. The slave boson field satisfies the equation of motion

iħ ∂
∂t
ðb†i Þ = λib

†
i +

1
N1/2
s

∑
k,α

VðkÞexp½ik .Ri� ef †

i,αdk,α: (1)

The lowest-order approximation, the terms of zeroth order in the boson fluctuation operators
bi, is retained. If b0 is finite, this corresponds to a time-independent macroscopic equation of
the k = 0 state, which is equivalent to assuming that the boson field has undergone Bose–
Einstein condensation. In this approximation, show that Eq. (1) can be rewritten as

λib
�
0 =

−1
N1/2

s

∑
k,α

VðkÞexp½ik .Ri�hef †i,αdk,αi: (2)

15.7. Show that in the slave boson mean-field theory, the quasiparticle dispersion relations are
obtained as

E±ðkÞ = 1
2
½eEf + εdðkÞ± ð½eEf − εdðkÞ�2 + 4jeVðkÞj2Þ1/2�: (1)

References
1. Anderson PW. Localized Magnetic States in Metals. Phys Rev B 1961;124:41.
2. Bianchi A, Movshovich R, Caban C, Pagluso PG, Sarrao JL. A possible Fulde-Ferrel-Larkin-Ovchinnikov

superconducting state in Ce Co In5. Phys Rev Lett 2003;91:187004.
3. Callaway J, Chen DP, Kanhere DG, Misra PK. Cluster Simulation of the Lattice Anderson Model. Phys

Rev B 1988;38:2583.
4. Demuer A, Sheikin I, Braithwaite D, Fak B, Huxley A, Raymond S, Flouquet J. J. Magn. Matter

2001;17:226.
5. Coleman P. Physica B 2006;378–380:1160.
6. Doniach S. The Kondo lattice and weak antiferromagnetism. Physica B 1977;91:231.
7. Fulde P, Ferrell RA. Superconductivity in Strong Spin-Exchange Field. Phys Rev A 1964;135:550.
8. Griveau J-C, Boulet P, Collineau E, Wastin F, Rebizant J. Pressure effect on PuMGd5(M=Co, Rh, Zr).

Physica B 2005;359–361:1093.
9. Hewson AC. The Kondo problem in heavy fermions. Cambridge: Cambridge University Press; 1993.
10. Holmes AT, Jaccard D, Miyake K. Signatures of Valence Fluctuations in CeCu2Si2 under high pressure.

Phys Rev B 2004;69:024508.
11. Kadowaki K, Woods SB. A universal relationship of the resistivity and specific heat of heavy-Fermion

compounds. Solid State Commun 1986;58:507.

524 CHAPTER 15 Heavy Fermions



12. Kasuya T. A Theory of Metallic Ferro- and Antiferromagnetism in Zener’s model. Prog Theor Phys
(Kyoto) 1956;16:45.

13. Larkin AI, Ovchinnikov YN. Inhomogeneous state of superconductor. Sov Phys JETP 1965;20:762.
14. Luttinger JW. Fermi Surface and Some Simple Equilibrium Properties of a system of Interacting Fermions.

Phys Rev 1960;119:1153.
15. Measson M-A, Brison JP, Seyfarth G, Braithwaite D, Lapertat G, Salce B, et al. Superconductivity of the

filled skutterdite-PrOs4Sb12. Physica 2005;359–361:827.
16. Misra PK. Heavy-fermion systems. Amsterdam: Elsevier; 2008.
17. Misra PK, Kanhere DG, Callaway J. Periodic Anderson Model for four-site clusters. Phys Rev B

1987;35:5013.
18. Ott HR. Heavy-electrons and non-Fermi liquids, the early times. Physica B 2006;378–380:1.
19. Ott HR, Rudigier H, Delsing P, Fisk Z. UBe3:An unconventional Actinide Superconductor. Phys Rev Lett

1983;50:1595.
20. Riseborough PS. Heavy fermion semiconductors. Adv Phys 2000;49:257.
21. Ruderman MA, Kittel C. Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction

Electrons. Phys Rev 1954;96:99.
22. Sarrao JL, Morales LA, Thompson JD, Scole BL, Stewart GR, Wastin F, et al. Plutonium-based Supercon-

ductivity with a transition temperature above 18K. Nature 2002;420:297.
23. Sarrao JL, Brauer ED, Morales LA, Thompson JD. Structural tuning and anisotropy in PuCoGa5. Physica

B 2005;359–361:1144.
24. Schrieffer JR, Wolff PA. Rekation between the Anderson and Kondo Hamiltonian. Phys Rev 1966;149:491.
25. Senthil T, Sachdev S, Vojta M. Quantum phase transition out of the heavy Fermi liquid. Physica

2005;359–361:9.
26. Senthil T, Sachdev S, Vojta M. Fractionalized Fermi liquids. Phys Rev Lett 2003;90:216403.
27. Senthil T, Vojta M, Sachdev S. Weak magnetism and non-Fermi liquids near heavy-fermion critical points.

Phys Rev B 2004;69:035111.
28. Smith JL, Si Q. Spatial correlations in dynamical mean-field theory. Phys Rev B 2000;61:5184.
29. Steglich F, Aarts J, Bredl CD, Lieke W, Meschede D, Franz W, et al. Superconductivity in the Presence of

Strong Pauli Paramagnetism: CeCu2Si2. Phys Rev Lett 1979;43:1892.
30. Stewart GR. Heavy-fermion systems. Possibility of Coexistence of Bulk Supercon. Rev Mod Phys

1984;56:755.
31. Stewart GR, Rudigier H, Delsing P, Fisk Z. Possibility of Coexistence of Bulk Supercon. Phys Rev Lett

1984;52:679.
32. Varma CM. Mixed-Valence Compounds. Rev Mod Phys 1976;48:219.
33. Wachter P. Similarities between Cu and Pu containing “high-Tc Superconductor.” Physica C 2007;453:1.
34. Wasrtin F, Boule P, Rebizant J, Collineau E, Lander GH. Advances in the preparation and characterization

of transuranium systems. J. Phys. Condens. Matter 2003;15:S2279.
35. Wilson KG. The renormalization group: Critical phenomena and the Kondo problem. Rev Mod Phys

1975;47:773.
36. Yosida K. Magnetic Properties of Cu-Mn Alloys. Phys Rev 1957;106:893.

References 525





CHAPTER

16Metallic Nanoclusters

CHAPTER OUTLINE

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
16.1.1 Nanoscience and Nanoclusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
16.1.2 Liquid Drop Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
16.1.3 Size and Surface/Volume Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
16.1.4 Geometric and Electronic Shell Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 530

16.2 Electronic Shell Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
16.2.1 Spherical Jellium Model (Phenomenological ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
16.2.2 Self-Consistent Spherical Jellium Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
16.2.3 Ellipsoidal Shell Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
16.2.4 Nonalkali Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535
16.2.5 Large Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535

16.3 Geometric Shell Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
16.3.1 Close-Packing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
16.3.2 Wulff Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537
16.3.3 Polyhedra. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
16.3.4 Filling between Complete Shells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540

16.4 Cluster Growth on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
16.4.1 Monte Carlo Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
16.4.2 Mean-Field Rate Equations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 541

16.5 Structure of Isolated Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
16.5.1 Theoretical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542
16.5.2 Structure of Some Isolated Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

16.6 Magnetism in Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
16.6.1 Magnetism in Isolated Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
16.6.2 Experimental Techniques for Studying Cluster Magnetism. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
16.6.3 Magnetism in Embedded Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553
16.6.4 Graphite Surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
16.6.5 Study of Clusters by Scanning Tunneling Microscope. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
16.6.6 Clusters Embedded in a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 557

16.7 Superconducting State of Nanoclusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
16.7.1 Qualitative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558
16.7.2 Thermodynamic Green’s Function Formalism for Nanoclusters . . . . . . . . . . . . . . . . . . . . . . . . . 559

Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 562
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565

Physics of Condensed Matter
© 2012 by Elsevier Inc. All rights reserved.

527



16.1 INTRODUCTION
16.1.1 Nanoscience and Nanoclusters
Nano objects have a size that is intermediate between atoms or molecules and bulk matter. The
recent invention of a variety of tools for studying systems at the atomic level, coupled with the
development of techniques for producing nanoclusters, has led to the use of nanoscience as a new
field of study. The scanning probe microscopes (the first of which was the scanning tunneling
microscope, or STM), make it possible to “see” individual atoms and molecules on surfaces of
materials as well as to move them on the nanoscale.

New sources to produce clusters in the gas phase were developed in the 1960s and 1970s, but it
was in 1980s that Knight et al.16 first produced clusters of alkali metals with approximately 100
atoms and systematically studied their properties. Nanoclusters can now be formed from most ele-
ments of the periodic table. They can be classified as metallic, semiconductor, ionic, rare gas, or
molecular, according to their constituents. Clusters are classified as homogeneous if they contain a
single type of atom or heterogeneous if they comprise more than one constituent. They may be
neutral or charged (anions or cations). There have been two main approaches in creating nanostruc-
tures: top-down and bottom-up. In the top-down method, starting from a large piece of material, a
nanostructure is formed by removing material from it through etching or machining by using an
electron beam or focused ion beam lithography. In the bottom-up approach, nanoparticles or mole-
cules are produced by chemical synthesis followed by ordered structures by physical or chemical
interactions between the units. In this chapter, we will concentrate on the study of metallic
nanoclusters.

16.1.2 Liquid Drop Model
The simplest description of a metallic nanocluster is the liquid drop model (LDM). The cluster is
represented as a sphere of radius R, which is related to the number of atoms N through the
Wigner–Seitz radius rs,

R = N1/3rs: (16.1)

Here, the Wigner–Seitz radius rs, originally defined as the radius of the volume occupied by each
valence electron, is equivalent to the volume occupied by each atom in a monovalent nanometal.
The internal structure of the cluster is ignored in this model. This model is equivalent to the free
electron theory of solids. However, the solid box has macroscopic dimensions with a continuum of
energy levels, whereas the cluster box is a nanoscale entity and the energy levels are discrete. The
first few energy levels for noninteracting electrons in a spherical box and the number of electrons
required for complete filling of the shells are shown in Figure 16.1.

16.1.3 Size and Surface/Volume Ratio
The fraction of atoms that are on the surface of a cluster distinguishes the difference of the proper-
ties of the cluster from the bulk. One simple way to analyze this is to cut a regularly shaped object
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from a fcc lattice and count the surface atoms
for different size clusters. Such clusters have
eight triangular and six square faces, as shown
in Figure 16.2. The fraction of atoms that
are on the surfaces of the clusters is shown in
Figure 16.3.

Clusters represent a state of matter that is inter-
mediate between atoms and the solid or liquid
state, with properties that depend on the size,
shape, and material of the particle. The arbitrary
property per atom, xðNÞ, can be expressed as

xðNÞ = a+ bN−1/3, (16.2)

where the first term is the “bulk” contribution, and
the second term is the “surface” contribution.
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FIGURE 16.1

First few energy levels for noninteracting electrons in
a spherical box.

FIGURE 16.2

A 561-atom cut from a cuboctahedral cluster cut
from a bulk fcc crystal.

Reproduced from Misra 28 with the permission of

Elsevier.
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16.1.4 Geometric and Electronic Shell Structures
Knight et al.16 produced clusters through the supersonic expansion of a metal/carrier gas mixture.
The alkali metal is first vaporized and then seeded in the inert carrier gas (typically argon). The
supersonic expansion of the mixture results in adiabatic cooling. The cluster is then ionized and
passed through a mass spectrometer. Knight et al.16 observed marked peaks in the mass spectrum
of the clusters indicating high stability at particular sizes. Their experiment results are reproduced in
Figure 16.4.
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FIGURE 16.4

(a) The mass spectrum of sodium clusters with N= 4–75 and 75–100 (inset). (b) The calculated change in
the electronic energy difference, ΔðN + 1Þ−ΔðNÞ versus N. The peak labeling corresponds to closed-shell
orbitals.

Reproduced from Knight et al.16 with the permission of the American Physical Society.
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The marked peaks or steps at special numbers in the sodium-cluster mass spectra are called
“magic numbers.” These magic numbers were associated with complete filling of electronic shells,
a concept of the electronic shell model borrowed from nuclear physics. From Figure 16.4, the
magic number peaks are seen at cluster sizes N= 8, 20, 40, 58, and 92.

16.2 ELECTRONIC SHELL STRUCTURE
16.2.1 Spherical Jellium Model (Phenomenological )
In the spherical jellium model, the ionic cores are replaced by a uniform positive charge background
of radius R. The electrons are treated as independent particles moving in a parametrized phenomen-
ological potential. The basic parameter of the model is the Wigner–Seitz radius rs defined in
Eq. (16.1). Further, the wave function for a spherically symmetric potential can be written as

ψnlmðrÞ = RnlðrÞYlmðθ, ϕÞ: (16.3)

There are three empirical potentials used to describe the nanoclusters, all borrowed from basic ideas
of nuclear physics. The simplest model is the harmonic oscillator potential.

Harmonic Oscillator Potential
The harmonic oscillator potential is described by

VðrÞ = 1
2
mω0r

2: (16.4)

The energy of the harmonic oscillator potential is given by

Eν =
3
2
+ ν

� �
ħω0: (16.5)

The quantum numbers ðn, lÞ can be used for any spherically symmetric potential. Thus, all orbitals
with the same value of ð2n+ lÞ are degenerate and the energies are written in terms of the single
quantum number ð2ν+ l− 2Þ. The potential energy due to the background charge is

VðrÞ =

3e2N
8πε0R3

r2

3
−R2

� �
if r<R,

e2Z

e2N
4πε0r

if r>R:

8>>>>><
>>>>>:

(16.6)

So the harmonic oscillator potential mimics the potential felt by the electrons inside the cluster,
provided the electron–electron interaction is ignored.

Spherical Square-Well Potential
The spherical square-well potential is described by

VðrÞ = C for r<R,
= ∞ otherwise:

(16.7)
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Here, C is a constant. The radial wave function RnlðrÞ for the square-well potential is written in
terms of the spherical Bessel function jlðκnlRÞ, where

κnl =
2mjEj
ħ2

� �1/2
: (16.8)

The energy levels are determined by the boundary conditions jlðκnlRÞ = 0 and, for each l, the first
zero of jl is given the quantum number n = 1, the second n = 2, and so on. The order of the energy
levels (which are borrowed from nuclear physics and are different from atomic physics) are 1s, 1p,
1d, 2s, 1f, 2p, 1g, 2d, and so on. If two solutions have the same number of radial nodes, the one
with higher l has higher energy. In this notation, the principal quantum number in atomic physics is
equal to n+ l. The interior of the jellium cluster will be electrically neutral if one includes the
exchange-correlation contribution to the electrostatic potential of the electrons, and the effective
potential will be nearly constant. The square-well potential essentially represents this phenomenon.

Woods–Saxon Potential
The Woods–Saxon potential R yields a better phenomenological representation of a potential that is
flat in the middle of the cluster and rounded at the edges. This potential is described by

UðrÞ = −U0

exp½ðr−RÞ/ε�+ 1
: (16.9)

U0 is the sum of the Fermi energy and the work function of the bulk metal. R is determined by
Eq. (16.4) with rs, the Wigner-Seitz radius of the bulk. The parameter ε is taken to match the variation
in the potential at the surface. This potential is flat in the middle of the cluster but rounded at the edges.
The three potentials are shown in Figure 16.5.

In Figure 16.5, the degeneracy of the states of the Woods–Saxon potential is similar to that of
the square-well potential, but the ordering of the energy levels is different. Knight et al.16 used the
Woods–Saxon potential (Ref. 35) in the analysis of the mass spectra shown in Figure 16.3. The
ordering of the energy levels is shown, and the cumulative totals of electrons are indicated above
the energy levels. At the bottom of the figures are sketches of the potentials as a function of r.

16.2.2 Self-Consistent Spherical Jellium Model
For an interacting electron gas, the density functional theory (DFT) based on the Hohenberg–Kohn
(HK) theorem (discussed in detail in Section 7.8.1) is used. The basic assumption of DFT is that
the total energy of the system is a functional of the electron density nðrÞ. The HK theorem states
that the exact ground-state energy of a correlated electron system is a functional of the density, and
the minimum is the ground-state density. One can apply the HK theorem to clusters. The density
nIðrÞ of the smeared-out positive charge of the ions can be expressed as

nIðrÞ = n0θðr−RÞ, (16.10)

where R is the cluster radius given in Eq. (16.1), θ is a step function, and n0 is the constant bulk
density of the metal

n0 =
4πrs
3

� �−1
: (16.11)
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The total energy can be written as

E½n� = Ees½n�+Eex½n�, (16.12)

where Ek½n� is the kinetic energy of a system of independent particles of density n,

Ek½n� = ∑
i

ħ2

2m
j∇ψ ij2: (16.13)

where Ees½n� is the electrostatic energy,

Ees½n� = e2

2

ZZ
dr′ dr

½nðrÞ− nIðrÞ�½nðr′Þ− nIðr′Þ�
jr− r′j : (16.14)
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Comparison of the (a) harmonic, (b) Woods–Saxon, and (c) square-well potentials.
Reproduced from Misra 28 with the permission of Elsevier.
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Following the procedure outlined in Section 7.8.2 (Ref. 17) (subject to the modification for a metal-
lic cluster), we obtain (Problem 16.1)

− ħ2

2m
∇2ψ iðrÞ+VKSðrÞψ iðrÞ = εiψ iðrÞ, (16.15)

where

VKSðrÞ = VHðrÞ+VxcðrÞ (16.16)

and

VHðrÞ = 2e2
Z

dr′
nðr′Þ− nðr′Þ

jr− r′j : (16.17)

The local density approximation assumes that n(r) is slowly varying. The exchange-correlation part
of the total energy can be written as

Exc½n� =
Z

drnðrÞεxcðnðrÞÞ, (16.18)

and

VxcðrÞ = ∂εxcðnÞ
∂n

+ εxcðnÞ: (16.19)

Here, εxcðnÞ is the exchange and correlation energy of a uniform electron gas of density n.
A number of functional forms are used for εxc: The form used most often is given by Ekardt,7

εxcðnðrÞÞ = − 0:916
rsðrÞ − 0:0666GðxðrÞÞ: (16.20)

The first term is the exchange part, where

rsðrÞ = ½3/4πnðrÞ�1/3, (16.21)

and the second term is the correlation part, where

GðxÞ = ð1+ x3Þ ln 1+ 1
x

h i
− x2 + x

2
− 1

3
(16.22)

and

xðrÞ = rsðrÞ/11:4: (16.23)

The wave functions and hence the energy are obtained self-consistently from the Kohn–Sham equa-
tions (Ref. 17). The Kohn–Sham potentials are fairly flat in the center of the cluster and analogous
to the Woods–Saxon potential discussed earlier.

Due to the absence of the ionic structure, the simple jellium model, which works reasonably
well for alkali metals, does not work out for higher-density materials such as aluminum. Recently,
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in the “stabilized jellium model,” the ionic pseudopotentials have been introduced through a modi-
fied exchange-correlation potential.

16.2.3 Ellipsoidal Shell Model
The use of spheres is a justified approximation only for closed-shell structures. However, for open-
shell structures, the ellipsoidal shell model (borrowed from nuclear physics) is used. The model is
based on the harmonic oscillator Hamiltonian

H =
p2

2m
+ 1

2
mω2

0

h
Ω2

⊥ðx2 + y2Þ+Ω2
z z

2
i
−Uħω0½l2 − < l2>n�: (16.24)

It is essentially a spheroid that has two equal axes (x and y) and one unequal axis (z). Constant volume
is maintained by imposing the condition Ω2

⊥Ωz = 1, and the distortion is expressed by a parameter δ,

δ =
2ðΩ⊥ −ΩzÞ
Ω⊥ +Ωz

: (16.25)

The last term in Eq. (16.24) is an empirical addition that splits the states of different angular momenta
and gives the same ordering as the Woods–Saxon potential. The potential is elongated in the x and y
directions, and the cluster is elongated in the z-axis (prolate distortion), but when δ is negative, there
is oblate distortion as well as expansion in the x-y plane. In Eq. (16.24), < l2>n = ð12Þnðn+ 3Þ
(Problem 16.2).

One can obtain the wave function self-consistently from the Kohn–Sham equation outlined
earlier. The wave functions are characterized by the quantum numbers ðn, n3,ΛÞ, where Λ is the
component of l along z, and n, n1, n2, n3 are defined in Problem 16.3. Shell filling occurs with
a prolate distortion until half-filling and then reverts to oblate. Closed-shell clusters are spherical,
but there are subshell closings that are ellipsoidal.

16.2.4 Nonalkali Clusters
The noble metals (Cu, Ag, and Au) lie at the end of the 3d, 4d, and 5d periods, respectively, with a
filled d-shell of 10 electrons and a single valence electron. In bulk, the d-band falls well below the
Fermi level, and the valence electrons are expected to behave similarly to that observed in alkali
metal clusters. In the experiments of Katakuse et al.,15 the clusters were created as positively
charged ions, so the number of electrons in a cluster was N – 1, and the magic numbers correspond-
ing to electronic shell charges had fair agreement with experimental results. The electronic shell
model also applies to divalent metals where 2N corresponds to the shell-filling numbers shown in
Figure 16.4, leading to magic numbers at N = 4, 9, 10, 17, 20, 29, 34, 35, 46, 53, 56,…. This is
also experimentally confirmed by another experiment by Katakuse et al.15

16.2.5 Large Clusters
The mass spectra of sodium clusters have been recorded up to sizes of about 25,000 atoms, in
which the magic numbers are evident. However, the electronic energy levels of large clusters tend
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to bunch together in groups so that there is a series of approximately degenerate levels (shells).
From experimental results, it is apparent that these shells fill on a scale that is proportional to N1/3.
One can gain useful insight by considering the electronic shells that occur for potentials for which
exact degeneracy occurs and for which there is an analytic solution.

We consider the harmonic oscillator potential and the energy-level scheme shown in Figure 16.5
and define a shell index K ð= ν in Figure 16.5). If the states are labeled as ðn, lÞ, all states with
K = 2n+ l are degenerate. If NðKÞ denotes the number of atoms in a cluster with complete levels
filling up to and including the shell KðK= 0, 1, 2,:::Þ,

NðKÞ = 1
3
ðK + 1ÞðK + 2ÞðK + 3Þ→ K3

3
: (16.26)

The shell index associated with the magic numbers is plotted against N1/3 in Figure 16.6.
If all states are degenerate ð1/r potentialÞ, K = n+ l are degenerate. (The notation nat in atomic

physics is nat= n+ lÞ. The number of states for a complete filling up to shell K is

NðKÞ = 2
3
K K + 1

2

� �
ðK + 1Þ→ 2

3
K3: (16.27)

Thus, the general filling scale is K ∝N1/3: Figure 16.6 shows the shell index K plotted against N1/3.
Figure 16.6 distinctly shows that there is a break in behavior at about N� 1500. For N < 1500,

the electronic shell model yields satisfactory results. However, for N > 1500, one has to use a differ-
ent model. The model used is known as the geometric shell model.
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Shell index K plotted against N1/3 for NaN clusters.
Reproduced from Martin 25 with the permission of Elsevier.
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16.3 GEOMETRIC SHELL STRUCTURE
16.3.1 Close-Packing
We have noted that for sodium clusters, for N > 1500, a new criterion for stability sets is based on
the close-packing of atoms (the fcc or hcp structure in bulk) suitably modified by the presence of a
surface. This is known as the geometric shell model. In fact, for other metallic clusters, the geo-
metric shell model is the starting point for studies of stability and associated magic numbers. The
bonding is dominated by the short-ranged d− d interaction in metals such as nickel, and the config-
uration tends to maximize the number of nearest neighbors. The transition metals with unfilled
d− shells have directional dependence in their bonding. An example is the bcc and hcp structure in
bulk iron and cobalt atoms.

16.3.2 Wulff Construction
Wulff proposed that at equilibrium, the polyhedron is such that the perpendicular distance from the
center of the particle to a face of the polyhedron is proportional to the surface energy of the face.36

When one uses this procedure for a fcc metal, a polyhedron comprising eight (111) and six (100)
faces, shown in Figure 16.7, is obtained. If one defines the perpendicular distance of the two faces as
p111 and p100, it can be shown that (Problem 16.4) the lengths of the sides of the faces are β and
ð1− 2βÞ in units of

ffiffiffi
6

p
p 111, as shown in Figure 16.7. The scale factor β is given by

β = 1− p100=
ffiffiffi
3

p
p111: (16.28)

If γ100 and γ111 are the surface energies of the two faces, we have from Eq. (16.28)

β = 1−
γ100ffiffiffi
3

p
γ111

: (16.29)

Assuming pairwise interaction ðϕÞ between
nearest neighbors, the specific surface energy
γ = ndϕ/A, where nd is the number of neighbors
a surface atom is deficient, and A is the surface
area per atom. An atom on the (100) surface has
a deficiency of four neighbors compared with an
atom in the bulk. Therefore,

γ100 = 4ϕ/d2, (16.30)

where d is the nearest-neighbor distance. An
atom on the (111) surface has nine neighbors
and has a deficiency of three compared with an
atom in the bulk. We thus have

γ111 = 2
ffiffiffi
3

p
ϕ/d2: (16.31)

(111)

(100)

<1−2β>

β

β

FIGURE 16.7

Polyhedral structure based on Wulff construction.
Reproduced from Marks (Ref. 24) with the permission

of Elsevier.
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From Eqs. (16.29) through (16.31), we obtain

β = 1
3
: (16.32)

Thus, β = 1− 2β and, hence, the lengths of the
sides of the hexagonal and square faces are equal.
This is shown in Figure 16.8 for a 586-atom
polyhedron. It may be noted that the Wulff criter-
ion actually applies for large sizes when vertex
and edge effects can be neglected.

16.3.3 Polyhedra
fcc
A basic shape that can be constructed from a sym-
metric cluster is the octahedron (see Figure 16.9)
with eight triangular faces that are close-packed
(111) planes with low surface energy.

In Figure 16.9, we defined a shell number K
as the number of atoms along the edge of a
face. A cluster with an even value of K is built
around an elementary octahedron of six atoms
while a cluster with an odd value of K has a
single atom at its center. The total number of
atoms N in a cluster containing K octahedral
shells is

N = 1
3
ð2K3 +KÞ: (16.33)

A cuboctahedron, which is an octahedron
truncated by a cube, was shown earlier in
Figure 16.2. It has eight (111) and six square
(100) faces. The polyhedron has a central atom
and can be considered as built of successive
shells covering interior shells. The Kth shell
contains ð10K2 + 2Þ atoms. It can be shown
that the total number of atoms in a cluster with
K shells (Problem 16.5) is

N = 1
3
ð10K3 − 15K2 + 11K − 3Þ: (16.34)

From Eq. (16.34), the magic numbers asso-
ciated with geometric shell filling are 1, 13,
55, 147, 309, 561,….

FIGURE 16.8

A 586-atom truncated octahedron with square and
hexagonal faces.

Reproduced from Misra 28 with the permission of Elsevier.

FIGURE 16.9

A 489-atom octahedron.
Reproduced from Misra 28 with the permission

of Elsevier.
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Mackay Icosahedron
It can be shown that the total surface energy can
be minimized if all the faces of the polyhedron
are (111) planes and the surface area can be
kept at a minimum. The icosohedral structure
shown in Figure 16.10a has 20 triangular faces
and has this feature.

The Mackay icosahedron is made up of 20
distorted tetrahedra. The distortion is shown in
Figure 16.10b. The vertex O is at the center. If
the three edges meeting at the center (OA, OB,
OC) are of unit length, the three sides of the equi-
lateral triangle ABC are extended to 1.05146.
The angles subtended at O are 63°26′. The icoso-
hedra can be constructed by arranging 12 neigh-
bors of a central atom at the corners of an
icosohedron. One can build larger clusters by
covering the 13-atom core with a second layer of
42 atoms, a third of 92 atoms, and so on. The
total number of atoms is identical to that of the
cuboctohedron with triangular faces, as in
Eq. (16.34). The reason for assignment of magic
numbers to geometrical shell structures for large
sodium clusters is that experimental results
support the values from Eq. (16.34) with
K = 10–19, thereby confirming an icosohedral or
cuboctahedral configuration. In addition, in the K
against N1/3 plots of Figure 16.6, there is a good
fit to Eq. (16.36) in the large K limit (for
N > 1500Þ, whereas N� 0:21 K3 fits for small
clusters. One can show that the later equation can
be obtained by using the Woods–Saxon potential.

bcc
The 369-atom rhombic dodecahedron shown in
Figure 16.11 is one of the main cluster shapes
based on the bcc lattice.

There are 12 identical faces of which the
diagonals have lengths with the ratio 1:

ffiffiffi
2

p
, and

this shape is similar to the cuboctahedron. The number of atoms, N, for a cluster of K shells is

N = 4K3 − 6K2 + 4K − 1: (16.35)

Thus, the cluster sizes at successive shell fillings are 1, 15, 65, 369,….

(a)

(b)

A

B

O C

FIGURE 16.10

(a) An icosahedron of 561 atoms; (b) the Mackay
icosahedron with vertex O at the center.

Reproduced from Misra 28 with the permission

of Elsevier.
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16.3.4 Filling between Complete Shells
There are two different models for filling of sub-shells in between the completion of the main shells
of the Mackay (Ref. 21) icosohedra. In one model, one starts from a complete icosohedron and adds
atoms that preferentially sit on the three-fold hollow formed by the three atoms on the (111) face,
thereby maximizing their coordinate number. The atoms rearrange themselves to the Mackay pack-
ing arrangement when the shell is half filled. This model has been applied to rare-earth clusters. In
the alternate model, also known as the umbrella model, the atoms are added to icosohedral sites on
the surface of the core icosohedron. The covering of a complete face achieves enhanced stability.

16.4 CLUSTER GROWTH ON SURFACES
16.4.1 Monte Carlo Simulations
The easiest way to understand the key ideas of cluster growth on surfaces is through Monte Carlo
simulation of cluster (or island) nucleation and growth during vapor deposition. Usually, through
the use of a comprehensive set of simulations, an empty lattice is made to represent a substrate.
The monomers are deposited at random into this lattice at a constant deposition rate. They can dif-
fuse by random nearest-neighbor hops, and when they collide, they nucleate new point islands. The
immobile islands “grow” whenever new monomers diffuse onto them. They remain as single points
on the lattice while their recorded size increments by the number of adsorbed monomers. The

FIGURE 16.11

The 360-atom rhombic dodecahedron.
Reproduced from Misra 28 with the permission of Elsevier.
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density of islands nucleated in the simulation depends on the ratio, R, of the monomer deposition
rate to the monolayer deposition rate. R dictates the Monte Carlo simulation procedure, by changing
the probabilities of the next simulation step being a deposition event or a monomer diffusion event.
Typically, R∼ 105 − 1010 in experimental growth conditions.

The Monte Carlo simulations throw up many questions relevant to experiment, such as (1) how
does the island density depend on growth rate and temperature, (2) how does the critical island size
i change with these conditions, (3) how does the island size distribution (ISD) depend on this criti-
cal island size, and (4) why it displays scale invariance?

16.4.2 Mean-Field Rate Equations
The following assumptions are made in deriving the mean-field rate equations:

a. Only monomers are mobile.
b. Islands of size s≥ 2 grow by capturing the diffusing monomers.
c. Monomers are produced on the substrate by random deposition from vapor or by release from

an existing island.
d. The direct impingement from vapor onto existing monomers and islands can be neglected in the

early stages of nucleation and growth.

The time evolution of monomer density N1 and density Ns of islands of size s is

dN1

dt
= F − 2Dσ1N

2
1 −DN1∑

s>2
σsNs + 2

N2

τ2
+∑

s≥3

Ns

τs
(16.36)

and

dNs

dt
= DN1ðσs−1Ns−1 − σsNsÞ+ Ns+1

τs+1
−Ns

τs
: (16.37)

Here, F is the monomer deposition rate (monolayer per second), D is the monomer diffusion rate,
σs is the so-called “capture number” of monomers by an island of size s, and 1/τs is the dissociation
rate (rate of monomer release) of an island of size s.

The preceding equations can be numerically integrated up to some finite time and some maxi-
mum possible island size at that time, provided one knows σs, the capture numbers, and 1/τs, the
dissociation rate of an island of size s. σs can be obtained by considering the monomer density
n1ðr, tÞ in the vicinity of a circular island of radius rs =

ffiffiffiffiffiffi
s/π

p
at the origin and by using cylindrical

symmetry. The monomer density is zero at the adsorbing island edge and rises to the global average
N1 a long way from the island. The diffusive flux into the island is given by

DN1σs = D2πrs
∂n1
∂r

jrs , (16.38)

from which the capture number σs can be calculated. The monomer density field can be obtained
from the diffusion equation by first assuming that the monomers can evaporate from the substrate at
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the rate 1/τa and that N1 →Fτa, a long way from the island. The later assumption implies that the
density of islands is sufficiently low. The diffusion equation can be written as

∂n1ðr, tÞ
∂t

= D∇2n1ðr, tÞ− n1ðr, tÞ
τa

+F: (16.39)

In the steady state t> τa, it can be shown from Eqs. (16.38) and (16.39) that the capture number σs
can be written as (Problem 16.6)

σs = 2πXs
K1ðXsÞ
K0ðXsÞ , (16.40)

where K0 and K1 are the Bessel functions and

Xs =
rsffiffiffiffiffiffiffiffi
Dτa

p : (16.41)

If we assume that the islands around the central one (being considered) are randomly distributed
and each one has the same size <s> and the same capture number σx, τs in Eq. (16.40) can be
replaced by τ such that

1
τ
= 1

τa
+DσxN, (16.42)

where N = ∑
s>i

Ns is the density of stable islands. The evaporation of monomers can be switched off

ð1/τa = 0Þ in Eq. (16.42) to model the “complete condensation” regime of the film growth.
In an improved method using the results from kinetic Monte Carlo simulations, it has been

shown (Bales and Chrazan1) that a self-consistent solution for all σs can be used to reproduce the
evolution of the monomer and total island density. In their work, Eq. (16.42) for the average cap-
ture number is replaced by

1
τ
= 2Dσ1N1 +∑

s≥2
DσsNs +Fκ1, (16.43)

which allows for monomer trappings by other monomers and direct hits from vapor deposition on
existing monomers as well as capture by islands.

16.5 STRUCTURE OF ISOLATED CLUSTERS
16.5.1 Theoretical Models
Hartree–Fock Methods
The earliest method employed was the Hartree–Fock method (discussed in Chapter 4), but
because it uses a single-determinant wave function, it does not describe electrons with different
spins. The neglect of correlations produces energy values that are larger than the actual ones.
There have been various methods used to include the effect of correlations in post-Hartree–Fock
theories.
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In the configuration interaction (CI) methods, one or more occupied orbitals in the Hartree–Fock
determinant are replaced by virtual orbitals where each replacement is equivalent to an electron
excitation. In the full CI method, the wave function is formed as a linear combination of the
Hartree–Fock determinant and all possible substitute determinants. However, it is necessary to trun-
cate the expansion at a fairly low level of substitution (single and double excitations) except for the
smallest systems. There are refinements that use Rayleigh–Schrodinger perturbation theory and add
the higher excitations as noniterative corrections. Usually, these methods are limited to small clus-
ters of about 20 atoms.

Density Functional Theory
The local density approximation (LDA) in density functional theory (DFT) can be used by first
writing the exchange-correlation energy as a sum of exchange and correlation part

Exc = Ex +Ec: (16.44)

If ραðrÞ and ρβðrÞ are the electron densities of the two spin components, ðα = ↑Þ and ðβ = ↓Þ, the
local exchange functional is given by the standard Dirac–Slater form

ELDA
x = − 3

2
3
4π

� �1/3Z
dr½ ρ4/3α + ρ4/3β �, (16.45)

and the Kohn–Sham (Ref. 17) wave functions are atom-centered. The local spin-density correlation
energy functional (Vosko et al.34) can be written as

ELDA
c ½ρα, ρβ� =

Z
drρεcðρα, ρβÞ, (16.46)

where εc is a complicated function of ρ and several constants. However, the correlation energy is
overestimated by 100% in this approximation.

A more widely used exchange-energy functional based on the generalized-gradient approxima-
tion (GGA) of Becke (Ref. 2) is given by

EGGA
x = ELDA

x −β ∑
σ=α,β

Z
dr ρ4/3σ

x2σ
1+ 6βxσsinh−1ðxσÞ, (16.47)

where xσ is the dimensionless ratio

xσ = ρ−4/3σ j∇ρσj: (16.48)

In general, the GGA exchange-correlation energy functionals can be expressed as

EGGA
xc ½ρ↑, ρ↓� =

Z
dr f ðρ↑, ρ↓,∇ρ↑,∇ρ↓Þ: (16.49)

An interesting technique to go beyond GGA is to use hybrid functionals that are formulated as a
mixture of Hartree–Fock and DFT exchange coupled with DFT correlation. However, a number of
authors have suggested that hybrid methods should be avoided for metal clusters because these
techniques do not yield reliable results.
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Tight-Binding Methods
The tight-binding model is used mainly in the study of transition metal clusters. The Hamiltonian
is expressed in terms of matrix elements in an orthogonal basis set composed from the
s, pðx, y, zÞ, dðxy, yz, zx, x2 − y2, 3z2 − r2Þ valence atomic orbitals. The intersite matrix elements are
determined by the Slater–Koster hopping integrals (Slater and Koster,31) ssσ, spσ, sdσ, ppσ, pdπ, ddδ,
which decay exponentially with distance, but the three-center integrals are ignored. In the model
proposed by Mehl and Papaconstantopoulos,27 the total energy is obtained by summing up the
occupied energy levels,

εi = ai + bλρ
2/3
i + cλρ

4/3
i + dλρ

2
i , (16.50)

where

ρi = ∑
j≠i

exp −γ
rij

r0−1

� �� �
: (16.51)

The three on-site terms depend on the orbital angular momentum λ = s, p, d. In Eq. (16.51), r0 is the
interaction term in the bulk, and a cutoff is included in the distance in the sum. The repulsive energy
is incorporated by varying it as a function of the total density of each function.

The Hamiltonian for the model is written as

H = ∑
iλσ

εiλc
†
iλσciλσ + ∑

i≠j
λμσ

βλμij c
†
iλσcjμσ: (16.52)

In Eq. (16.52), λ and μ are orbital labels, σ is the spin label, βλμij are the hopping integrals between
sites i and j, and the other symbols have their usual meanings. The different parameters are obtained
by fitting to bulk properties. There are a large number of variations of the tight-binding model.
Specifically, spin-polarized systems, a Hubbard-like term,

Hint = −Jλ∑
iλσ

σc†iλσciλσ , (16.53)

is added to Eq. (16.52). In Eq. (16.53),

Jλ =
1
2
∑
μ
Jλμðniμ ↑−niμ↓Þ, (16.54)

where Jλμ is an exchange integral, and niμσ is the component of electron density at site i associated
with orbitals μ and spin σ. A variety of additional terms are added to this basic model to obtain the
computational results that can relate better to the cluster properties.

Semi-Empirical Potentials
To study large clusters, several semi-empirical potentials have been developed that contain many-
body contributions and can be used with Monte Carlo or molecular dynamics simulations. The var-
ious models are known as embedded atom model (EAM), effective medium theory (EMT), glue
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model, and second-moment methods. All these methods start with a common functional form for
the total energy,

E = ∑
i

1
2
∑
j≠i

VðrijÞ+FðρiÞ
" #

, (16.55)

where 1
2∑
j≠i

VðrijÞ is a repulsive pair potential between atoms separated by a distance rij. In the EAM

(Daw and Baskes5; Foiles et al.10), each term of a metal is considered as an impurity embedded in

a host provided by the rest of the electrons. FðρiÞ is the energy required to embed atom i in an elec-
tron gas of density ρi, where

ρi = ∑
j≠i

ρðrijÞ: (16.56)

One has to use empirical fits to bulk properties to be able to generate the embedding functions and
pair interactions.

In the second-moment approximations (Finnis and Sinclair,9; Sutton,33) the total energy is

E = ε∑
i
½∑
j≠i

VðrijÞ− c
ffiffiffiffi
ρi

p �: (16.57)

One can see the similarity as well as the contrast between Eqs. (16.55) and (16.57). In Eq. (16.57),
ε is a parameter that has dimensions of energy, and c is a dimensionless parameter. ρi is expressed
as a sum of pair potentials

ρi = ∑
j≠i

ϕðrijÞ: (16.58)

ρi can be described as the bond energy. We consider just one orbital site and local density of states
diðEÞ at site i with a center of gravity εi. The bond energy is given by

Ebond = 2∑
i

ZEF

−∞

ðE− εiÞdiðEÞdE: (16.59)

The second moment of the local density of states can be written as

μð2Þi =
Z∞
−∞

ðE− εiÞ2diðEÞdE: (16.60)

From Eqs. (16.59) and (16.60), we obtain an approximation in which moments no higher than the
second are used (Problem 16.7),

EðiÞ
bond = A

ffiffiffiffiffiffiffi
μð2Þi

q
, (16.61)
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where A is a constant. It can be shown that the local density of states can be written as

diðEÞ = < ijδðE−Hji>, (16.62)

where H is the Hamiltonian for the system, and ji> is the orbital on-site i. From Eqs. (16.60) and
(16.62), we obtain an expression for the second moment,

μð2Þi =
Z∞
−∞

ðE− εiÞ2 < ijδðE−HÞji> dE

= < ijðεi −HÞ2ji> :

(16.63)

We can write the Hamiltonian H as

H = ∑
i
εiji>< ij +∑

i≠j
βijji>< jj, (16.64)

where εi is the energy at site i, and βij is the hopping integral from site i to j. From Eqs. (16.63)
and (16.64), we obtain

μð2Þi = ∑
j≠i

β2ij: (16.65)

The second-moment approximation is very effective for metals that tend to form close-packed struc-
tures. However, one needs the fourth moment, which controls the stability of the bcc structure, and
the fifth and sixth moments if hcp and fcc packing are to be differentiated. There are several other
semi-empirical potentials that we will not discuss in this chapter.

There are several alternate models to choose the potential in Eqs. (16.57) and (16.58). Once a
potential is chosen, there are many global optimization techniques that can be used to find the low-
est energy of a cluster. The standard Monte Carlo or molecular dynamics procedure is used after
incorporating some algorithms. The computation involved is very massive, but fairly good global
minima have been obtained for clusters of more than 100 atoms.

16.5.2 Structure of Some Isolated Clusters
A schematic configuration of a number of commonly occurring small clusters is shown in Figure
16.12. There is usually some departure from the symmetric configurations shown in the figure. The
linear and planar clusters usually show some departure from one or two dimensionality, and triangular
configuration in 3b is isosceles instead of equilateral. The three-dimensional clusters occur at various
sizes. One extreme is nickel, which has a tetrahedral structure at N = 4, whereas the other extreme is
gold clusters, which are planar until N > 10: The alkali metals are between these two extremes. An
interesting aspect is that anions and cations have different structures than neutral clusters.

A large number of experimental research is focused on probing clusters of special sizes to verify
whether magic number clusters, such as icosahedral or cuboctahedral (13, 55, 147), truncated octa-
hedral (38), or Marks decahedral (75, 146, 192), are more stable than clusters of other sizes as sug-
gested by the geometrical shell model.
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16.6 MAGNETISM IN CLUSTERS
16.6.1 Magnetism in Isolated Clusters
Superparamagnetism and Blocking Temperature
There has been a rapidly growing interest in the nanostructures formed from magnetic clusters because
of their enormous potential in the development of high-performance magnetic materials and devices.
There has been considerable development of technologies in the manufacture of quantum dots, mono-
layers, self-organized islands, quantum wires, and deposited nanoclusters. However, magnetism in
small clusters, which is in the mesoscopic regime, is not well understood in either the atomic or bulk
states.

It has been shown (Skomski,30) that nanoclusters are single-domain particles of which the size is
well below the critical radius RSD, above which it is favorable to form domain walls. For a sphere,

RSD = 36
ffiffiffiffiffiffiffi
AK

p
μ0M2

s

, (16.66)

where Ms is the spontaneous magnetization, K is an anisotropy constant, and A is related to the
exchange stiffness.

At low temperatures (well below the equivalent of the Curie temperature), the nanoparticles can
be considered as giant magnetic moments of ferromagnetically coupled spins. This phenomenon is

3a 3b 4a 4b 4c 4d

5a

7

19 20

8a 8b 12 13

5b 5c 6a 6b 6c

FIGURE 16.12

Schematic representation of some small clusters. The 3D figures are (4d) tetrahedron, (5b) trigonal
bipyramid, (5c) square pyramid, (6b) pentagonal pyramid, (6c) octahedron, (7) pentagonal bipyramid,
(8a) bicapped octahedron, (8b) bisphenoid, (12) incomplete icosahedron, (13) icosahedron, (19) double
icosahedron, and (20) large tetrahedron.

Reproduced from Misra 28 with the permission of Elsevier.
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known as superparamagnetism. In an external field, the reorientation of this giant moment takes
place coherently and the individual moments remain aligned with each other. The different magnetic
alignments are separated by an anisotropy boundary KV , where V is the volume of the nanoparticle
and K is the anisotropic constant. At high temperatures, because kBT ≫KV , the anisotropic bound-
ary becomes unimportant, but there is a competition between the external field, which tends to ori-
ent the particles, and the thermal fluctuations of the magnetic moments, which tend to magnetically
disorder the array.

The volume V of the transition metal clusters is V ≤ 10−25m3, and at room temperature,
kBT ≫KV . Because all magnetization directions have equal probability, the magnetization M of
a cluster along the direction of an applied field H can be obtained from the classical Langevin
function L,

M = μc ℒ
μcH
kBT

� �
, (16.67)

where μc is the giant magnetic moment of each cluster and ℒðxÞ = cothðxÞ− 1/x.
An assembly of nanoclusters, each of which has several hundred atomic spins, can be easily

saturated, unlike an assembly of atoms. At temperatures less than 50° K, kBT ∼KV , and the magne-
tization in a given field deviates from superparamagnetism. At very low temperatures, the moment
in each particle becomes static. The blocking TB is the temperature at which half the cluster
moments have relaxed during the time of a measurement. Because a narrow temperature region
around TB separates the frozen moments from superparamagnetic behavior, these can be used in
magnetic recording technology provided one can obtain deposited small clusters with TB greater
than the room temperature. In fact, the deposition of clusters or their embedding in a matrix is
essential for practical applications.

Cluster Magnetism
The magnetism in small clusters is usually significantly different from bulk magnetism of the same
atoms because a much larger percentage of atoms in a cluster lies at the surface. For example, 162
of the atoms in a 309-atom cuboctahedral cluster lie at the surface, and these atoms have a reduced
coordination and are in a lower symmetry environment. In the second-moment approximation
discussed earlier, the bandwidth W is proportional to z1/2, where z is the coordination number. For
simplicity, if we consider a rectangular band for the d electrons, the density of states scales as 1/W
(Problem 16.8).

The reduced coordination of the surface atoms results in an enhanced density of states DðεFÞ.
We have derived in Eq. (13.111),

M � 2μ2BBDðεFÞ
1−UDðεFÞ : (16.68)

Thus, due to the Stoner criterion for ferromagnetic instability, UDðεFÞ> 1, there is possibility of
ferromagnetic instability in clusters that was absent in the bulk material.

The reduced zi, the coordination number of the surface atoms, will result in an increase of the
local moments μi on the atom i on the surface compared with the bulk value μbulk .
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A crude approximation is

μi =
zbulk
zi

� �1/2
μbulk: (16.69)

However, a reduced coordination in the second-moment approximation causes a contraction in the
interatomic distances, which reduces the magnetic moment. A simple expression proposed for the
average moment μN of a cluster of N atoms (Jensen and Bennemann,14) is given by

μN = μbulk + ðμsurf − μbulkÞN−1/3: (16.70)

The experiments indicate a more complex size dependence but confirm the trend of the decrease in
moment toward the bulk value with increasing size.

16.6.2 Experimental Techniques for Studying Cluster Magnetism
Chemical Probe Methods
The chemical probe method is usually used to investigate the geometric structure of clusters of
Fe, Co, and Ni (and other transition metals) up to the sizes of 200 atoms. Atoms and small mole-
cules react with transition metal clusters in ways that are analogous to the physisorption and chemi-
sorption processes that occur on metal surfaces. The geometric structure of the cluster can be
inferred from the fact that the reactivity of the cluster is dependent on the environment of the
atoms. The main probe molecules that have been used are NH3, N2, H2O, and H2 or D2. The deter-
mination of the number of binding sites of a cluster for a particular molecule yields important clues
as to possible structures. Because the d-orbitals have significant spatial extent and are involved in
the transition metal bonding, the chemical properties are sensitive to both the number and the con-
figuration of the d electrons.

The experimental arrangement is as follows. The clusters are produced by a pulsed laser vapori-
zation of a metal target in a flow tube upstream of a flow-tube reactor (FTR) using helium gas. To
ensure that the cluster growth is finished and clusters have cooled to ambient temperature before
they enter the FTR, one uses a narrow flow tube and low helium pressure to ensure a rapid decrease
in metal atom density. The reagent gas is introduced when the clusters enter the FTR. The reaction
between the cluster, MN , and the reagent molecule, A, produces an internally excited complex,

MN +A⇄MNA
�: (16.71)

The excited complex requires a collision with a third body (a carrier gas atom, C) to stabilize it,

MNA
� +C→MNA+C: (16.72)

The clusters and reaction products expand out of the nozzle and form into a molecular beam. The
clusters are then pulsed laser ionized and mass analyzed in a time-of-flight mass spectrometer.
There are different binding rules for the various reagent molecules. Surface studies indicate that the
NH3 molecule binds to the surface through the donation of the N-localized lone pair to a metal
atom. However, in the case of clusters, the binding preferentially occurs on the low-coordination
metal atoms, which means that saturation with ammonia counts the number of vertex atoms on a
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cluster. Clusters of cobalt and nickel yield more straightforward clues than iron about their structure.
The reason is iron and other elements in the middle of the transition metal series have fewer filled
d-orbitals, and the binding of the atoms in the cluster is much more directional. It is interesting to
note that, although cobalt and nickel are structurally similar, there are significant differences for
small clusters. This is shown in Figure 16.13.

Same structures: Different structures:

4  Tetrahedron, square 12  Icosahedron
 minus one atom

13  Icosahedron

fcc/hcp minus
one atom

fcc/hcp

14  Bicapped hexagonal
 antiprism

Twinned
tetrahedron

15  Bicapped
 icosahedron

16  Tricapped
 icosahedron

19  Double icosahedron

C2v

hcp

Centered hexagonal
antiprism

5  Trigonal bipyramid

6  Octahedron

7  Capped octahedron

8  Bisdisphenoid Bicapped
octahedron

9  Tricapped
 trigonal prism

Tricapped trigonal
prism or tricapped
octahedron

10  Tricapped pentagonal
 bipyramid

Transition region:

n

3 Triangle

Nin.Con

n Nin Con

n Nin Con

FIGURE 16.13

Comparison of structures of 3–19 atom nickel and cobalt structures.
Reproduced from Riley 29 with the permission of Elsevier.

550 CHAPTER 16 Metallic Nanoclusters



Gradient-Field Deflection (Stern–Gerlach)
The gradient-field deflection method is based on the classic Stern-Gerlach experiment that first
detected the electron spin. A schematic diagram of the experiment for measuring the magnetic
moment of free clusters is shown in Figure 16.14.

A collimated cluster beam that is generated by a pulsed laser evaporation source with a variable
temperature nozzle is guided into a magnetic field gradient dB/dz, which deflects a particle of mag-
netic moment M vertically by

d = M dB
dz

L2 ð2D/L+ 1Þ
2mv2x

: (16.73)

Here, m is the mass of the cluster, and vx is its velocity when it enters the magnet. D is the distance
from the end of the magnet of length L to the detector. vx is measured by a controlled delay
between the evaporation laser and the ionizing laser. A mechanical chopper is used in front of the
source to define the pulse start time. Figure 16.15 shows the low-temperature total moments of
FeN , CoN , and NiN (in μB/atom) as a function of cluster size. The right scale in Figure 16.15 indi-
cates the spin imbalance obtained from the equation

Mspin

Mtot
= 2

g
, (16.74)

where g is the gyromagnetic ratio.
One can see in Figure 16.15 that clusters with different sizes show locked-moment behavior.

The moment of the Ni cluster drops rapidly to the bulk value at N = 160 and then increases slowly
until it reaches the bulk value again at N � 350. The moments of Fe and Co clusters fall less
rapidly. They reach the bulk value between N � 400−500.

Ion detector Extractor grids

Ionising
laser

Evaporation
laser

Chopper

Gas pulse
Sample

rod

FIGURE 16.14

Schematic of the experiment for measuring the magnetic moment of free clusters.
Reproduced from Misra 28 with the permission of Elsevier.
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Low-temperature total moments (in μB /atomÞ of (a) NiN, (b) CoN, and (c) FeN. The right scale indicates the
spin imbalance defined in Eq. (16.74).
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The magnetic behavior of clusters primarily depends on their structure. Most of the theoretical
work has been done using density functional theory and geometry optimization; however, the details
of the theoretical calculations are beyond the scope of this book.

16.6.3 Magnetism in Embedded Clusters
Switching and Blocking Temperature
The interest in magnetic nanoparticles has recently increased considerably because of the device
applications such as in ultra-high-density recording as well as in spintronics. For device applica-
tions, the nanoclusters are either deposited on a surface or embedded in another material. The
embedding material can modify the properties of the magnetic clusters to a great extent.

Switching (from magnetism to superparamagnetism) is a major factor in miniaturization of
devices. When the energy barrier due to anisotropy, KV , becomes very small, the probability of
switching due to the thermal energy becomes significant, which creates problems in such devices.
The probability, P, of not switching in time t is given by the Boltzmann statistics

P = e
−
t
τ, (16.75)

and the Arrhenius relation

1
τ
= f0 e

−
KV
kBT

� �
, (16.76)

where f0 is the attempt frequency. The blocking temperature, which marks the onset of instability
during an observation time τ, is obtained from Eq. (16.76) as

TB = KV
kB lnð f0τÞ : (16.77)

For a spherical particle of diameter D, V = 1/6 πD3, and from Eq. (16.77), we obtain

TB = πKD3

6kB lnð f0τÞ : (16.78)

For data storage, the time constant τ� 10 years, which yields ln ðf0τÞ� 40. For a typical uniaxial
anisotropy K � 0:2 MJ/m3, and Eq. (16.77) yields for a nanocluster with D = 14 nm, T � 520°K
for a 10-year blocking temperature, which is well above the operating temperature of a memory
device. However, for a nanocluster for which D = 7 nm, T � 65°K, which is far lower than the
room temperature.

One option to increase the blocking temperature is to increase the anisotropy K by depositing
ferromagnetic particles on a platinum surface (which has large spin-orbit interaction) or the forma-
tion of alloys such as CoPt or FePt. An alternate approach to increase the effective anisotropy is
through relying on the exchange bias phenomenon. This is based on the enhanced stability of the
ferromagnetic component due to the exchange coupling at the interface of a ferromagnetic and anti-
ferromagnetic material as well as the high anisotropy in the antiferromagnet.
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Small Clusters and 2D Nanostructures
In this section, we first study the introduction of small 3d metal clusters on surfaces of a noble
metal (Cu(001)). The results of the calculations are based on density functional theory and the KKR
method in which a Green’s function technique is used to treat the perturbation of a surface into the
ideal crystal and then placing an adatom or cluster on the surface. Figure 16.16 shows the spin
magnetic moment of 3d metal clusters and monolayer on Cu(001).

One can note that the moments on the Co and Fe atoms plotted in Figure 16.16 are relatively
insensitive to the island size.

The deposition of atoms of the 3d elements onto a ferromagnetic surface shows that the mag-
netic moments of the adatoms may align parallel or antiparallel to the direction of magnetization of
the substrate. There is further complexity with 2d clusters or nanolayers if there is a tendency for
antiferromagnetic ordering within the nanostructure itself. The spin magnetic moments obtained
from using KKR Green’s function method with exchange and correlation effects on monolayers on
bcc Fe(001) are shown in Figure 16.17.

Similar results have been obtained for fcc Ni(001) substrate except for Mn. The total energy
calculations for fcc Ni(001) substrate on Mn indicate ferromagnetic coupling for all positions. Further,
the enhancement of the impurity moments is larger with Ni(001) than with Fe(001) because the hybri-
dization is weaker due to the fact that the Ni wave function is less extended. The dimers on next-
nearest-neighbor sites on top of Fe(001) couple to the surface with the same configuration as the
adatoms except for Mn. The moments of the dimer atoms are parallel to each other. However, for the
Mn dimer, the two states are energetically degenerate, one with the moments on both atoms ferromag-
netically coupled to the substrate, whereas the other has the moments of the dimer atoms antiparallel.
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Spin magnetic moment of 3d metal clusters and monolayer on Cu(001).
Reproduced from Stepanyuk et al.32 with the permission of Elsevier.
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It is interesting to note that the spin moments
of Fe clusters deposited on the Ni(001) surface
are enhanced compared with bulk bcc Fe. The
results of theoretical calculation, using a modi-
fied embedded atom model, show that the spin

moments of N = 2–9 Fe clusters on Ni(001), which adopt a planar geometry on top of the Ni(001)
surface, have spin moments that vary smoothly from 3.15 μB to 2.85 μB for N = 2 to N = 9 (Martinez
et al.26). In contrast, the experimental results (Lau et al.20) indicate oscillations. These contradictory
results are shown in Figure 16.18.

16.6.4 Graphite Surfaces
The spin magnetic moments of the 3d transition metal adatoms and dimers on a graphite surface
from the calculations of Duffy and Blackman6 and of 3d monolayers by Kruger et al. (Ref. 19) are
shown in Figure 16.19.

16.6.5 Study of Clusters by Scanning Tunneling Microscope
The ability to image single impurity atoms on a surface by scanning tunneling microscope (STM)
has become very convenient to study the properties of clusters on the surface of a metal. The
images of magnetic atoms on the surface of a metal and the Kondo resonance can be obtained from
the current versus voltage characteristics. STM experiments measure the bias voltage dependence of
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the differential conductance dI/dV . The electrons
tunnel between states at εF on the tip and states
at εF + eV on the surface, so the structure in the
measured differential conductance reflects the
surface density of states at that energy. Because
the STM probes a localize state immersed in a
Fermi sea, the spectroscopy is that of a discrete
auto-ionized state. We discuss the case of nonin-
teracting impurity resonances that have no Cou-
lomb interactions. This is the situation when the
s-orbital of an adatom hybridizes with a metal
surface. Such a system can be described by a
resonant-level model, where the electron is
allowed to hop between the discrete atomic orbi-
tal and the continuum of the electronic band
states. Thus, the Kondo resonance can be ana-
lyzed as a type of Fano resonance (Fano,8).
Fano showed that the Hamiltonian for a discrete
state and a continuum, ignoring the spin, can be
written as

Ĥ0 = ∑εkĉ
†

kĉk + εaâ
†â+∑

k
ðVakâ

†ĉk +V�
akĉ

†

kâÞ,
(16.79)

where εa, â
†, and â are, respectively, the energy, creation, and annihilation operators of an electron resid-

ing in the discrete atomic state; and Vak is the hybridization matrix element connecting the atomic state
to the kth band state. The advanced atomic-state Green’s function can be written as (Madhavan et al.23)

G0
aaðεÞ = 1

ε− ½εa + ½ReΣ0ðεÞ+ i Im Σ0ðεÞ�� , (16.80)

where the real and imaginary parts of the self-energy are

ReΣ0ðεÞ = ∑
k
jVakj2P 1

ε− εk

� �
(16.81)

and

ImΣ0ðεÞ = π∑
k
jVakj2δðε− εkÞ: (16.82)

Here, P denotes the Cauchy principal value. In the context of STM, the energy ε = eV.
In a tunneling experiment, a second electrode (the tip) is added to the system, and electrons tun-

nel between the electrodes. The tip is modeled by a single state with energy εt, and t̂ removes an
electron from that state. M̂ is a transfer Hamiltonian term (treated as a perturbation) that induces
electrons to tunnel from one electrode to the other and can be expressed as

M̂ = ðMatâ
† t̂+H:c:Þ+∑

k
ðMkt ĉ

†

k t̂+H:c:Þ: (16.83)
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Mat and Mkt are the tunnel matrix elements that connect the STM tip to the discrete atomic state
and continuum states, respectively. From Eqs. (16.79) and (16.83), we obtain

Ĥ = Ĥo + ε̂t̂ t
† t̂+ M̂: (16.84)

It can be shown that the differential conductance can be written as (Problem 16.9)

dI
dV

= 2πe2

ħ
ðε′+ qÞ2
1+ ε′2

ρtip∑
k
jMktj2δðeV − εkÞ+ constant, (16.85)

where

q = A/B, (16.86)

A = Mat +∑
k
MktVakP

1
eV − εk

� �
, (16.87)

B = π∑
k
MktVakδðeV − εkÞ, (16.88)

ε′ =
eV − εa −ReΣðeVÞ

ImΣðeVÞ , (16.89)

and ρtip is the tip density of states. ρtip is usually
treated as a constant to reflect the broadening of
the tip state by contact with the remainder of the
tip electrode. Here, the quantity A in Eq. (16.87)
is an amplitude for tunneling to the discrete state
modified by hybridization with the continuum
(the second term in Eq. 16.87). The quantity B in
Eq. (16.88) is an amplitude for tunneling into a
set of continuum states contained in the range of
energies on the order of the width of the reso-
nance. If q≫ 1, tunneling via the resonance dom-
inates, but if q≪ 1, the continuum states
dominate the tunneling.

The experimental results for Co atoms on the
Au(111) substrate are reproduced in Figure 16.20.
This figure shows how the dI/dV spectra vary as
the STM tip is moved with a clear feature of the
intermediate q type appearing when the tip is in
the vicinity of the Co atom, indicating Kondo
resonance.

16.6.6 Clusters Embedded in a Matrix
The magnetic properties of particles are modi-
fied when they are embedded in a matrix of
another material. The magnetic moment of a
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dI/dV spectra at various lateral distances away from
the center of a single Co atom on Au(111) taken
with the STM tip.
Reproduced from Madhavan et al.22 with the permission of AAAS.
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free particle is enhanced over the bulk value
because the coordination of the atoms at the sur-
face of the particle is reduced. In contrast, the
embedded particle has the coordination of its
surface atoms restored. The probability of the
magnetic moment reverting to its bulk value
depends on the electronic band structures of the
particle and the host matrix. Further, if the parti-
cle and the matrix have the same bulk crystal
structure with similar lattice spacings, there is
the possibility of embedding with fairly good
epitaxy. In contrast, if the two materials have
different structures, the particle structure could
either remain robust or adapt to that of the host
matrix.

The overall picture for the full concentration
range can be visualized by considering the mag-
netic phase diagram for films of deposited 3 nm
diameter Fe nanoparticles embedded in Ag
matrices, as shown in Figure 16.21.

Ideal superparamagnetism occurs at the lowest
concentrations above a blocking temperature.
When the volume filling fraction (VFF) increases,
the magnetic behavior is determined by the dipolar
interactions and the aggregation. A correlated
superspin glass (CSSG) state occurs at higher concentrations. Blocking occurs at low temperatures,
and the particles are aligned to their anisotropy axes. There is a significant difference between single-
particle blocking and collective blocking. The single-particle blocking occurs in isolated clusters
because the intraparticle anisotropy is the only characteristic to stabilize the magnetic moment.
Strong interparticle interactions lead to collective blocking, which occurs at higher temperatures.
Collective blocking occurs due to the fact that a particle, which would be thermally activated if it
was isolated, would have its magnetization stabilized by a neighbor that is slightly larger or more
anisotropic.

16.7 SUPERCONDUCTING STATE OF NANOCLUSTERS
16.7.1 Qualitative Analysis
In Chapter 14, expressions for the critical temperature Tc in both the weak coupling (BCS) and the
strong coupling (McMillan) theories were derived. The expression for the critical temperature Tc in
the weak-coupling limit (Eq. 14.116) is

Tc � 1:13 θD exp − 2
DðεFÞU

� �
, (16.90)
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Magnetic phase diagram for films of deposited
3 nm diameter Fe nanoparticles embedded in
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and in the strong coupling limit (Eq. 14.127), it is

Tc � θD
1:2

exp −
1:04ð1+ λÞ

λ− μ�ð1+ 0:62λÞ
� �

: (16.91)

In Eq. (16.91), λ is the coupling constant (Eq. 14.124),

λ = ν< I2> /MΩ2
, (16.92)

and ν is the bulk density of states (Eq. 14.125),

ν = m�pF/2π
2: (16.93)

It is obvious from Eqs. (16.90) and (16.91) that Tc, the critical temperature of a superconductor,
increases if the density of states increases at the Fermi level. In fact, it has been observed that the Tc

of Al films ð∼2:1°KÞ is nearly double the value for bulk samples. Granular Al has Tc ∼ 3°K, which
is almost three times the critical temperature of Al. These increases were explained by size quantiza-
tion and corresponding increase in the effective density of states in films and isolated granules.

The metallic nanoclusters contain delocalized electrons of which the states organize into shells, similar
to those in atoms or nuclei. In some clusters, the shells are completely filled all the way up to the highest
occupied shell. These are known as the “magic numbers,” N = Nm = 20, 40, 58, 92, 138, 168, :::, and
the clusters are spherical. These magic clusters have similarity with atoms in the sense that their electronic
states are labeled by radial quantum number n and orbital momentum l. The Cooper pairs are formed by
electrons with opposite projections of orbital momentum, similar to the pairing in atomic nuclei. The
degeneracy of the shell, which is 2ð2l+ 1Þ, is large if l is large, and the effective density of states corre-
spondingly increases. Further, the energy spacing ΔE between neighboring shells varies. Some of them
are separated by only a small ΔE.

The combination of high degeneracy and a small energy spacing ΔE between the highest occu-
pied shell (HOS) and the lowest unoccupied shell (LUS) results in a large increase in the strength
of the superconducting pairing interaction in the clusters. One can understand this result qualita-
tively from the fact that if the HOS is highly degenerate, the shell has a large number of electrons,
which is equivalent to having a sharp peak in the density of states at the Fermi level. It is obvious
from Eqs. (16.90) and (16.91) that the critical temperature of a superconductor increases if the den-
sity of states increases at the Fermi level.

16.7.2 Thermodynamic Green’s Function Formalism for Nanoclusters
In this section, we will derive an expression for the critical temperature for the nanoclusters. We
will show how it is possible that the critical temperature for some of these nanoclusters can be of
the order of room temperature. We follow a method outlined by Kresin and Wolf.18 However, we
will not discuss in detail the strong coupling theory based on Green’s function method of the
many-body theory.

In the standard thermodynamic Green’s function formalism of Abrikosov et al. (1963), the equa-
tion for the pairing order parameter, ΔðωÞ, can be written as

ΔðωnÞZ � λT∑
ωn′

Dðωn −ωn′; eΩÞF + ðωn′Þ, (16.94)
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where Z is the renormalization function that describes the “dressing” of electrons moving through
the lattice, λ is the electron–phonon coupling constant,

λ = 2
Z

α2ðΩÞFðΩÞΩ−1dΩ, (16.95)

FðΩÞ is the phonon density of states, Ω is the phonon frequency, and α2ðΩÞ is a measure of the
phonon-frequency-dependent electron–phonon interaction. Here, D is the phonon Green’s function,

D = Ω2½ðωn −ωn′Þ2 +Ω2�−1, (16.96)

where

ωn = ð2n+ 1ÞπT (16.97)

and

eΩ = <Ω2>1=2: (16.98)

The average < f ðΩÞ> is determined by

< f ðΩÞ> = 2
λ

Z
dΩ f ðΩÞα2ðΩÞFðΩÞΩ−1, (16.99)

and the pairing Green’s function, introduced by Gorkov, is given by

F + = ΔðωnÞ=½ω2
n + ξ2 +Δ2ðωnÞ�: (16.100)

In Eq. (16.100), ξ is the electron energy relative to the chemical potential. The metallic clusters con-
tain delocalized electrons of which the states organize into shells. For some clusters that are spherical,
the shells are filled up to the highest occupied shell, i.e., those with the magic numbers
N = Nm = 20, 40, 58, 92, 138, 168, :::: The electronic states in the magic clusters are labeled by radial
quantum number n and orbital momentum l. The Cooper pairs are formed by electrons with opposite
projections of orbital momentum, and if the orbital momentum is large, the shell has a degeneracy of
2ð2l+ 1Þ:

For nanoclusters, of volume V , Eqs. (16.92), (16.93), (16.94), (16.96), and (16.100) are modified as

ΔðωnÞZ = η T
2V

∑
ωn′

∑
s
Dðωn−ωn′, eΩÞ F +

s ðωn′Þ, (16.101)

where

η = < I2> /MeΩ2
, (16.102)

Dðωn−ωn′,eΩÞ = eΩ2½ðωn−ωn′Þ2 + eΩ2�−1, (16.103)

F +
s ðωn′Þ = Δðωn′Þ½ω2

n′ + ξ2s +Δ2ðωn′Þ�−1, (16.104)

and

ξs = Es − μ: (16.105)
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Here D and Fþ
s ðωnÞ are the vibrational propagator and the pairing function, ΔðωnÞ is the order

parameter, Z is the renormalization function, Es is the energy of the sth electronic state, and μ is
the chemical potential. The summation is over all the discrete electronic states. There are two
aspects in which these equations differ from the corresponding equations for the bulk. First, they
contain a summation over discrete energy levels ES instead of integration over a continuous energy
spectrum, as in a bulk superconductor. Second, because the number of electrons is fixed, the posi-
tion of the chemical potential μ is determined by N and T and hence different from the value of
Fermi level EF:

Kresin and Wolf (Ref. 18) also showed that because “magic clusters” have a spherical shape,
one can replace the summation over states by summation over shells Σs→∑

j
Gj, where Gj is the

shell degeneracy

Gj = 2ð2lj + 1Þ, (16.106)

and lj is the orbital momentum. They showed that for such clusters, Eqs. (16.101) through (16.104)
can be written in the form

ΔðωnÞZ = λ
2EF

3N
∑
ωn′

∑
j
Gj

eΩ2

eΩ2
+ ðωn −ωn′Þ2

Δ2ðωn′Þ
ω2

n′ + ξ2l
jTc: (16.107)

In Eq. (16.107), the bulk coupling constant λ (Eq. 16.92) and the Fermi energy EF are used because
the characteristic vibrational frequency is close to the bulk value due to the fact that the pairing is
mediated mostly by the short-wave part of the vibrational spectrum.

However, if the shell is incomplete, there is a Jahn–Teller deformation in the cluster. Because
the shape becomes ellipsoidal, the s states are classified by their projection of the orbital momentum
jmj≤ l, and each level contains up to four electrons for jmj≥ 1. In the weak coupling case, η/V ≪ 1,
which leads to πTc ≪ eΩ. In Eqs. (16.101), (16.103), and (16.104), one should substitute Z = 1 and
D = 1. This leads to the BCS (weak coupling) theory.

It may be noted that Eqs. (16.101), (16.103), and (16.104) are different from the strong-coupling
theory of bulk superconductors in two aspects. First, they contain a summation over discrete energy
levels ES, whereas one integrates over a continuous energy spectrum (over ξ) in bulk superconduc-
tors. Second, because the clusters have a finite Fermi system, the number of electrons N is fixed.
Hence, the position of the chemical potential μ is different from the Fermi level EF and is deter-
mined by the value of N and T :

The value of the critical temperature Tc in a nanocluster depends on the number of valence elec-
trons N; the energy spacing ΔE = EL −EH ; and on the values of λb,EF , and eΩ: One can obtain a
high value of Tc (as high as 100° K) by using realistic values of these parameters.

The pairing in an isolated cluster can be observed from the strong temperature dependence of
the excitation spectrum. When T ∼ 0° K, the excitation energy is strongly modified by the gap para-
meter and significantly exceeds the gap parameter when T >Tc: For example, the minimum absorp-
tion energy for Gd83 clusters at T >Tc corresponds to ħω � 6 meV, whereas for T≪ Tc, its value is
much larger: ħω � 34 meV:

Recently, Cao et al.4 measured the heat capacity of an isolated cluster. They observed a jump in
heat capacity for selected Al clusters (i.e., for Al−35 ions) at T � 200°K: The value of Tc as well as
the amplitude of the jump and its width are in agreement with this theory.
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PROBLEMS
16.1. We have shown that for a metallic cluster, the total energy can be written as

E½n� = Ek½n�+Ees½n�+Exc½n�, (1)

where Ek½n� is the kinetic energy of a system of independent particles of density n,

Ek½n� = ∑
i

ħ2

2m
j∇ψ ij2: (2)

Ees½n� is the electrostatic energy,

Ees½n� = e2

2

ZZ
dr′ dr

½nðrÞ− nIðrÞ�½nðr′Þ− nIðr′Þ�
jr− r′j , (3)

and Exc½n� is the exchange-correlation term of the energy. Following the procedure outlined in
Section 7.8.2 (subject to the modification for a metallic cluster), show that

− ħ2

2m
∇2ψ iðrÞ+VKSðrÞψ iðrÞ = εiψ iðrÞ, (4)

where

VKSðrÞ = VHðrÞ+VxcðrÞ, (5)

VHðrÞ = 2e2
Z

dr′ nðr′Þ− nIðr′Þ
jr− r′j , (6)

and

VxcðrÞ = ∂εxcðnÞ
∂n

εxcðnÞ (7)

Here, εxcðnÞ is the exchange-correlation energy of the electron gas.

16.2. Show that in Eq. (16.24),

< l2>n = 1
2

� �
nðn+ 3Þ: (1)

16.3. The ellipsoidal model is based on the harmonic oscillator Hamiltonian

H =
p2

2m
+ 1

2
mω2

0½Ω2
⊥ðx2 + y2Þ+Ω2

z z
2�−Uħω0½l2 − < l2>n�: (1)

Ignoring the anharmonic terms in Eq. (1), show that

Eðn1, n2, n3Þ = ħω0 Ω⊥ðn1 + n2 + 1Þ+Ωz n3 +
1
2

� �h i
: (2)
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By using the definition of the distortion parameter defined in the text,

δ =
2ðΩ⊥ −ΩzÞ
Ω⊥ +Ωz

, (3)

show that Eq. (2) can be written as

Eðn1, n2, n3Þ = ħω0 n+ 3
2
+ δ

3
ðn− 3n3Þ+ δ2

18
ðn+ 3n3 + 3Þ

� �
, (4)

where

n = n1 + n2 + n3: (5)

16.4. If one defines the perpendicular distance of the two faces as p111 and p100, show that the
lengths of the sides of the faces of the Wulff polyhedron (Figure 16.7) are β and ð1− 2βÞ in
units of

ffiffiffi
6

p
p111. The scale factor β is given by β = 1− p100=

ffiffiffi
3

p
p111.

16.5. The polyhedron has a central atom and can be considered as built of successive shells
covering interior shells. The Kth shell contains ð10K2 + 2Þ atoms. Show that the total number
of atoms in a cluster with K shells is

N = 1
3
ð10K3 − 15K2 + 11K − 3Þ: (1)

16.6. The diffusive flux into the island is given by

DN1σs = D2πrs
∂n1
∂r

jrs , (1)

from which the capture number σs can be calculated. The monomer density field can be
obtained from the diffusion equation by first assuming that the monomers can evaporate from
the substrate at the rate 1/τa and that N1 →Fτa, a long way from the island. The latter
assumption implies that the density of islands is sufficiently low. The diffusion equation can
be written as

∂n1ðr, tÞ
∂t

= D∇2n1ðr, tÞ− n1ðr, tÞ
τa

+F: (2)

In the steady state t> τa, which can be shown from Eqs. (1) and (2), show that the capture
number σs can be written as

σs = 2πXs
K1ðXsÞ
K0ðXsÞ , (3)

where K0 and K1 are the Bessel functions and

Xs =
rsffiffiffiffiffiffiffiffi
Dτa

p : (4)
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16.7. We considered the simple case of one orbital site and local density of states diðEÞ at site i
with center of gravity diðEÞ,

Ebond = 2∑
i

ZEF

−∞

ðE− εiÞdiðEÞdE: (1)

The second moment of the local density of states can be written as

μð2Þi =
Z∞
−∞

ðE− εiÞ2diðEÞdE: (2)

We represent diðEÞ by a Gaussian centered at εi and at width
ffiffiffiffiffiffiffi
μð2Þi

q
. By invoking the

condition of charge neutrality to confirm that other factors arising out of Gaussian integration
of Eq. (1) are site-independent, show that, in an approximation in which moments no higher
than the second are used, the bond energy EðiÞ

bond is given by

EðiÞ
bond = A

ffiffiffiffiffiffiffi
μð2Þi

q
, (3)

where A is a constant.

16.8. In the second-moment approximation discussed earlier, show that the bandwidth W is
proportional to z1/2, where z is the coordination number. For simplicity, if we consider a
rectangular band for the d electrons, show that the density of states scales is 1/W .

16.9. Show that the low-temperature STM differential conductivity can be written as

dI
dV

= 2πe2

ħ
ðε′+ qÞ2
1+ ε′2

ρtip∑
k
jMktj2δðeV − εkÞ+ constant, (1)

where

q = A/B, (2)

A = Mat +∑
k
MktVakP

1
eV − εk

� �
, (3)

B = π∑
k
MktVakδðeV − εkÞ, (4)

ε′ = eV − εa −ReΣðeVÞ
ImΣðeVÞ , (5)

and ρtip is the tip density of states. ρtip is usually treated as a constant to reflect the broadening
of the tip state by contact with the remainder of the tip electrode. (Hint: Most of the
derivation is outlined in the appendix of the research paper by Madhavan et al.23).
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17.1 LIQUIDS
17.1.1 Introduction
It is well known that matter exists in three different (solid, liquid, and gaseous) phases. Solids have
an ordered arrangement of atoms or molecules as evidenced by rigid and sharp Bragg reflections in
a diffraction experiment. Liquids and gases are fluids and will flow even under a small shear stress.
In diffraction experiments, they yield only diffuse rings, showing that there is no long arrangement
of molecules. In addition, there are glasses and amorphous solids that blur the distinction between
solids and fluids. The atoms or molecules in glasses are arranged at random, whereas those in amor-
phous solids have short-range order.

Van der Waals first pointed out the continuity
of liquid and gaseous states. At low temperatures
below a critical temperature, two fluid phases can
coexist in equilibrium: the dense phase is called
liquid, and the less-dense phase is called gas. By
heating above the critical temperature, compres-
sing, and cooling, one can pass continuously
from low-temperature gas to low-temperature
liquid. The difference between liquid and gas is
essentially a difference in density.

For roughly spherical molecules (rare gases),
there is disorder in only translational motion. There
is the possibility of rotational disorder in molecules
that are far from spherical. In plastic crystals, both
kinds of disorder occur, whereas in “liquid crys-
tals,” there can be translational order but rotational
disorder.

17.1.2 Phase Diagram
The study of the physics of liquids is mainly to
understand why particular phases are stable
in particular ranges of density, as shown in
Figure 17.1. One has to relate the stability, struc-
ture, and dynamical properties of fluid phases to
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the size and shape of the molecules, atoms, or ions, and the nature of forces between them. Because the
interactions that determine the bulk properties of matter are basically electrostatic in character (apart
from small relativistic and retardation effects), and arise from the Coulomb interactions between nuclei
and electrons, one way to predict the properties would be to solve the many-body Schrodinger equation
describing the motion of nuclei and electrons. However, we will restrict the discussion to the concept of
order parameters, a function that is present when order is present (solids) and vanishes when the desired
order is absent (liquids).

17.1.3 Van Hove Pair Correlation Function
The best way to distinguish between liquids and solids is to first introduce the van Hove pair cor-
relation function pðr1, r2, tÞ defined as

pðr1, r2, tÞ =
�
∑
i≠j
δðr1 −Xið0ÞÞδðr2 −XjðtÞÞ

�
: (17.1)

Here, pðr1, r2, tÞ is the probability that if a particle is found at position r1 at time t1, some other particle
is to be found at position r2 at time t1 + t. The brackets mean a thermal average, and XiðtÞ tracks the
location of the particles. Here, XiðtÞ is the Heisenberg operator defined for all i and all t by the equation

XiðtÞ = eiHt/ħ Xie
−iHt/ħ, (17.2)

where H is the Hamiltonian of the system.
The static structure factor, the dimensionless measure of scattering in a scattering experiment

that measures the thermal average (because such experiments last much longer than the time scale
of atomic motions), is defined as

SðqÞ = 1
N
∑
i, j
heiq.ðXi−XjÞi: (17.3)

Eq. (17.3) can be rewritten in the alternate form

SðqÞ = 1
N
∑
i,j

Z
dr1dr2 e

iq.ðr1−r2Þhδðr1 −XiÞδðr2 −XjÞi: (17.4)

From Eqs. (17.1) and (17.4), we obtain

SðqÞ = 1+ 1
N

Z
dr1 dr2 pðr1, r2, 0Þeiq.ðr1−r2Þ: (17.5)

We define

pðqÞ = 1
V

ZZ
dr dr′ pðr+ r′, r, 0Þeiq.r′, (17.6)

where V is the volume of the system. From Eqs. (17.5) and (17.6), we obtain

SðqÞ = 1+ V
N
pðqÞ: (17.7)
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17.1.4 Correlation Function for Liquids
In general, liquids are homogeneous and isotropic. Therefore, one can assume that the pair correla-
tion function pðr1, r2Þ will depend on the distance r = jr1 − r2j. If the density of the liquid is
ρ = N/V , a dimensionless correlation function gðrÞ can be defined as

gðrÞ = pðrÞ
ρ2

: (17.8)

One obtains from Eqs. (17.5) and (17.8)

SðqÞ = 1+ ρ

Z
dr gðrÞeiq.r: (17.9)

Eq. (17.9) can be rewritten in the alternate form

SðqÞ = 1+ ρ

Z
dr eiq.r + ρ

Z
dr ½gðrÞ− 1�eiq.r: (17.10)

The second term in Eq. (17.10) is a delta function, which is zero except when directly along the
scattering beam. Thus, it can be dropped while analyzing the experimental results of scattering, and
one obtains from Eq. (17.10)

SðqÞ� 1+ ρ

Z
dr ½gðrÞ− 1�eiq.r: (17.11)

17.2 SUPERFLUID 4He
17.2.1 Introduction
Kammerlingh Onnes discovered in 1908 that liquid helium never solidified under its own vapor
pressure. The interaction between the helium atoms is very weak because helium is an inert gas.
The liquid phase is very weakly bound, and the normal boiling point is very low (4.2° K). The
large-amplitude quantum mechanical zero-point vibrations due to the small atomic masses and the
weak interactions do not permit the liquid to freeze into the crystalline state. Liquid 4He solidifies
only when a pressure of at least 25 atmospheres is applied. Therefore, it is possible to study liquid
4He all the way down to the neighborhood of absolute zero.

17.2.2 Phase Transition in 4He
At 2.17° K, a remarkable phase transition was discovered in liquid 4He under saturated vapor
pressure. When the liquid was cooled through this temperature, all boiling ceased, and the liquid
became perfectly quiescent. This effect occurs because liquid helium becomes an enormously good
heat conductor. The thermal inhomogeneities that give rise to bubble nucleation are absent. The spe-
cific heat versus temperature curve of liquid 4He was shaped like a Greek letter λ, characteristic of a

570 CHAPTER 17 Complex Structures



second-order phase transition. This temperature
is called the lambda point, and the experimental
results are shown in Figure 17.2.

The temperature at the lambda point is usually
denoted by Tλ: Below this temperature, liquid 4He
has remarkable flow as well as the “superheat”
transport properties. If a small test tube containing
the liquid were raised above the surrounding
helium bath, a mobile film of the liquid would be
transported up the inner walls. Eventually, it
would drip back into the bath, and the test tube
would be emptied. Kapitza (Ref. 10) showed that
liquid 4He could flow through the tiniest pores
and cracks. Allen and Jones (Ref. 10) found that if
a glass tube packed tightly with a powder was par-
tially immersed in a 4He bath and then heated, a
fountain of helium rising high above the level of
the surrounding helium bath was produced.

17.2.3 Two-Fluid Model for Liquid 4He
Landau (Ref. 10) and Tisza independently developed a two-fluid model to describe these phenomena.
According to the two-fluid model, below Tλ, liquid

4He can be thought of as two interpenetrating
fluids known as the normal and superfluid components. The superfluid component does not carry
entropy and is involved in superflow through pores and cracks. In addition, it does not interact with
the walls of a vessel containing the fluid in a dissipative fashion. In contrast, the normal component
transports heat and exhibits viscosity, which allows transfer of energy between the liquid and the
walls. The normal fluid density decreased with decreasing temperature, whereas the superfluid density
increased, becoming dominant at the lowest temperature. The superfluid component replaces the
normal fluid, which carries heat away from the heat source. The flow of the superfluid component
toward a source of heat manifests in the fountain effect mentioned previously. The normal fluid con-
sists of a gas of quantized thermal excitations that include the phonons (longitudinal sound waves)
and rotons (short-wavelength compact excitations). It was predicted that heat transport would obey a
wave equation that describes the compression and rarefactions in the proton/roton “gas,” which is
known as second sound.

17.2.4 Theory of Superfluidity in Liquid 4He
London (Ref. 15) noted that as the temperature of liquid 4He is reduced through the transition tem-
perature, the occupancy of the one-particle ground state becomes macroscopic and can be thought
of as a Bose–Einstein (BE) condensate, which is the superfluid component of the two-fluid picture,
although strong interactions between the atoms in the liquid modify this picture. According to
London, the superfluid atoms are governed by a wave-function-like entity called the order parameter
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Schematic diagram of the specific heat of liquid
helium versus temperature.
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that was originally introduced by Ginzburg and Landau to explain the phenomenon of superconduc-
tivity (described in detail in Section 14.4.1). The order parameter Ψ for a superfluid 4He is given by

Ψ = Ψ0e
iϕ, (17.12)

where Ψ0 is roughly thought of as the square root of the density of the superfluid component, and ϕ
is a phase factor. The fact that the macroscopic order parameter is also described by a definite phase
is known as broken gauge symmetry. It has been shown that the superfluid velocity is proportional
to the gradient of the phase. The macroscopic order parameter picture describes how the helium
atoms march in “lock step” during superfluid flow. The existence of quantized vortices in superfluid
4He is also a consequence of this model. In fact, this phenomena is also seen in superfluid liquid
3He (to be discussed in the next section) and in superconductivity in solids, where a quantized
current vortex must enclose a quantum of flux (discussed in Chapter 14).

The fundamental assumption that underlies the modern theory of superfluidity in a Bose system
such as liquid 4He is that the superfluid phase is characterized by a generalized Bose–Einstein Con-
densation (BEC). We assume that at any given time t, it is possible to find a complete orthonormal
basis (which may itself depend on time) of single-particle states such that one and only one of
these states is occupied by a finite fraction of all the particles, while the number of particles in any
other single-particle state is of order 1 or less. The corresponding single-particle wave function
χ0ðr, tÞ is called a condensate wave function, and the N0 particles occupying it, the condensate. The
T = 0 condensate fraction N0/N ∼ 0:1, where N is the total number of particles in the system. The
macroscopic occupation occurs only in a single-particle state because according to the Hartree–Fock
approximation, the macroscopic occupation of more than one state is always energetically unfavor-
able provided the effective low-energy interaction is repulsive, as is the case for 4He.

Because the BEC occurs in the sense defined earlier, at any given time there exists one and only
one single-particle state χ0ðr, tÞ that is macroscopically occupied, and the conceptual basis for super-
fluidity is quite simple. We can write

χ0ðr, tÞ = jχ0ðr, tÞjeiϕðr,tÞ (17.13)

and define the superfluid velocity vsðr, tÞ by

vsðr, tÞ� ħ
m
∇ϕðr, tÞ, (17.14)

from which we obtain

∇× vs = 0: (17.15)

Thus, the superfluid flow is irrotational. In addition, because no “ignorance” is associated with the
single state χ0, the entropy must be carried entirely by the “normal” component, i.e., the particles
occupying single-particle states other than χ0: These two observations provide the basis for Landau’s
phenomenological two-fluid hydrodynamics. However, the superfluid density ρs, which occurs in the
latter, is given by ðT ! 0Þ ρs ! N/V while N0 ! 0:1 N.

In a region where jχ0j is everywhere nonzero, the application of the Stokes theorem to the curl
of Eq. (17.14) leads to the conclusion that the integral of vs around any closed curve is zero (Pro-
blem 17.1). However, we consider a line or a region infinite in one dimension on which jχ0ðr, tÞj
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vanishes. This would happen if the liquid is physically excluded from this region, or while atoms
are present in this region, the single-particle state into which BEC has taken place happens to have
a nodal line there. When we integrate Eq. (17.14) around a circuit that encloses the one-dimensional
region, the fact that the phase of the wave function χ0 must be single-valued modulo 2π leads to the
Onsager–Feynman quantization condition (Problem 17.2)I

vs . dl = nh/m: (17.16)

In a simply connected region of space, Eq. (17.16) can be satisfied by a “vortex,” which is a pattern
of flow in which vs ∼ 1/r, where r is the perpendicular distance from the “core.” Because jχ0j vanishes
at r = 0, vs is not defined, and hence, the singularity that appears at the core is physically irrelevant.

Thus, in a superfluid system, the circulation is quantized according to Eq. (17.16). In practice, the
values n = ±1 are of interest because vortices with higher values of n are unstable against decay into
these. However, vortices can be metastable for astronomical times even under equilibrium conditions.

We note that the superfluid velocity vsðr, tÞ is not a directly observable quantity, whereas the
mass current Jðr, tÞ is observable. Landau (Refs. 10-13) showed in his phenomenological theory
that in stable or metastable equilibrium, this quantity is given by

Jðr, tÞ = ρsvsðr, tÞ+ ρnvnðr, tÞ, (17.17)

where the “superfluid” and “normal” densities ρs and ρn � ρ− ρs are functions of only the temperature.
The normal velocity vnðr, tÞ is assumed to behave like the velocity of a normal (nonsuperfluid) liquid. In
equilibrium, vnðr, tÞ should be zero in the frame of reference in which the walls of the vessel are at rest.

In the 70 years since Landau’s original proposal, although there has been almost universal belief
that the key to superfluidity in liquid 4He is the onset of BEC at the lambda temperature, it has
proved very difficult to verify the latter phenomenon directly. The main evidence comes from the
high-energy neutron scattering and from the spectrum of atoms evaporated from the surface of the
liquid. Although both are consistent with the existence of a condensate fraction of approximately
10%, neither can be said to establish it beyond all possible doubt.

17.3 LIQUID 3He
17.3.1 Introduction
3He is a rare isotope of helium that occurs in both solid and liquid states. Because the nuclear
moments are very small, solid 3He undergoes nuclear magnetic ordering at a temperature of about
1 mK. Therefore, in the range of temperatures above 0.01° K, the nuclear spins of the 3He atoms com-
prised of the solid are almost fully disordered. Hence, for spin 1/2 nuclei, the entropy Ssolid = R ln 2
per mole (Problem 17.3). In contrast, liquid 3He obeys Fermi–Dirac statistics. Well below the Fermi
degeneracy temperature ðTFÞ, which is less than 1° K, both the specific heat and the entropy will be
linear functions of the temperature, Sliquid = γT : The liquid–solid phase equilibrium is determined by
the Clausius–Clapeyron equation, according to which the melting curve is given by

dP
dT

=
Sliquid − Ssolid
Vliquid −Vsolid

= Latent Heat
TðVliquid −VsolidÞ : (17.18)
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For 3He because Vliquid >Vsolid, the denominator is always positive. In the Fermi degenerate region (at
the lowest temperatures), Sliquid < Ssolid and hence the slope of the melting curve becomes negative;
i.e., it takes heat to freeze liquid 3He.

17.3.2 Possibility of Superfluidity in Liquid 3He
In 1972, Osheroff, Richardson, and Lee (Ref. 20) and Osheroff, Gully, Richardson, and Lee21

discovered that liquid 3He possesses three anomalous phases below 5 mK, each of which appears to
display most of the properties expected of a superfluid. Because liquid 3He obeys Fermi rather than
Bose statistics, the mechanism of superfluidity cannot be simple BEC as in liquid 4He. It is believed
that just as in metallic superconductors, the fermions pair up to form “Cooper pairs,” which are sort
of giant diatomic quasimolecules of which the characteristic “radius” is much larger than the typical
interatomic distance. These molecules, which are composed of two fermions, effectively obey Bose
statistics and hence can undergo BEC. We will discuss superfluidity in liquid 3He in the next section.

The strong short-range repulsion of the quasiparticles in liquid 3He prevents pairing through
Cooper pairs that have zero angular momentum ðl = 0Þ so that the members of a pair do not rotate
around one another. However, over the years, a number of higher orbital angular momentum pairing
states for a hypothetical superfluid state of liquid 3He were proposed. It is interesting to note that
both p-wave (l = 1) and d-wave (l = 2) states of relative orbital angular momentum were proposed.
However, the proposals for p-wave pairing by Anderson and Morel (Ref. 1) and Bailan and Wertha-
mer (Ref. 4) were later identified as the actual superfluid phases of liquid 3He. The basic character-
istics of the hypothetical superfluid 3He were that (1) there would be an intrinsic pairing
mechanism not mediated by an ionic lattice (phonons), and (2) the resulting Cooper pairs would
have internal degrees of freedom. These properties would distinguish superfluid 3He from superfluid
4He and superconducting electrons.

17.3.3 Fermi Liquid Theory
Liquid 3He is composed of neutral atoms with nuclear spin angular momentum of ħ/2 and a
nuclear magnetic moment. The 3He atom has an odd number of elementary particles, so it obeys
Fermi–Dirac statistics and the Pauli exclusion principle. Because the atoms in the liquid interact
strongly, Landau developed the Fermi liquid theory (Section 7.9) to explain the properties of liquid
3He. The basic idea of the Fermi liquid theory is to consider the excitations of the strongly inter-
acting system instead of concentrating on the nature of the ground state. The scattering rate of the
fermions is considerably reduced due to the Pauli exclusion principle. Landau termed the excita-
tions, which act like particles, as quasiparticles. The various properties of normal liquid 3He quali-
tatively resembled the properties of ideal Fermi gas, but the numerical factors were obtained from
the Fermi-liquid parameters (Section 7.9.3). In a Fermi liquid at low temperatures, the thermally
excited quasiparticles occur in a narrow band near the Fermi surface with energy width on the
order of kBT: Only the quasiparticles in this narrow band participate in scattering or in thermal
excitations. The width of the band shrinks as T is lowered, and fewer quasiparticles can participate
in such events. Consequently, the specific heat C and the entropy S depend linearly on the tem-
perature (C = αT), and the mean free path is proportional to T−2: The thermal conductivity has a
1/T dependence, and the viscosity has a 1/T2 dependence. At the lowest temperatures in a Fermi
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liquid, the collisions are absent, and ordinary sound, which is produced as a result of propagation
of waves of compression and rarefaction brought about by collisions of the molecules, dies away.
This new mode of sound propagation is known as the zero sound and arises at the lowest tempera-
tures due to self-consistent rearrangements of quasiparticles under the influence of Fermi-liquid
interactions.

17.3.4 Experimental Results of Superfluidity in Liquid 3He
The classical experiment to find superfluidity in 3He was performed by Osheroff, Richardson, and Lee
(Ref. 20) who used a Pomerchunk cell to observe two phase transitions (denoted as A and B) at
temperatures TA � 2:7 mK and TB � 2:1 mK, respectively. They originally misinterpreted the results
as a second-order magnetic phase transition in solid 3He. However, subsequent nuclear magnetic
resonance experiments made at the suggestion of Gully (Osheroff, Gully, Richardson, and Lee21)
showed that the A and B phases were both superfluid phases of liquid 3He. In addition, it was
observed that the A phase split into two phases (A and A1) in a magnetic field, whereas at about
0.6 Tesla, the B phase no longer existed. The early specific-heat measurements of liquid 3He near
the superfluid transition were done by Webb et al.26 and are shown in Figure 17.3. The shape is
characteristic of a BCS pairing transition.

The phase diagram of liquid 3He in a magnetic field was investigated by Paulson et al.22

at pressures below melting pressures; they studied the static magnetization of the liquid via
SQUID interferometry. The A phase narrowed
and finally vanished at a point called the poly-
critical point (PCP) at about 22 bar. In a larger
magnetic field, the B phase is suppressed
in favor of the A phase even at the lowest
pressure, and the PCP disappears, as shown in
Figure 17.4.

A schematic P-T-H diagram showing the
general topology of the superfluid phases, A, A1,
and B of liquid 3He, is shown in Figure 17.5.
The A1 phase occurs between the surfaces
labeled A1 and A2: The A phase occurs at tem-
peratures below the boundary labeled A2: The
boundary between phases A and B is labeled B:
The surface labeled S corresponds to the melting
curve.

17.3.5 Theoretical Model for the A
and A1 Phases

The 3He A phase corresponds to the p-wave
equal spin pairing state first considered by
Anderson and Morel.1 It is a p-wave pairing
state with total L = 1 and S = 1. It is an orbital
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FIGURE 17.3

Specific-heat measurements of liquid 3He near the
superfluid transition.

Reproduced from Webb et al.26 with the permission of the

American Physical Society.
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m state along some direction l̂ and spin m = 0
state along direction d̂, where d̂ is the direction
of zero spin projection. The Anderson–Morel
order parameter (Ref. 1) can be expressed as

ψAM = ðorbital partÞ× ðspin partÞ: (17.19)

Here, the orbital part is in momentum space, and
the spherical harmonic Y11 ∼ eiφ sin θ defines a
polar axis corresponding to the direction of the pair
orbital angular momentum. Thus, the Anderson–
Morel order parameter (Ref. 1) can be defined as

ψAM ∼ eiφ sin θ 1ffiffiffi
2

p ð↓↑+ ↑↓Þ
� �

, (17.20)

where the spherical harmonic Y11 ∼ eiφ sin θ defines a polar axis l̂ corresponding to the direction
of the pair orbital angular momentum. Because in the spin-triplet pair-wave function, the spin
part appears along the d̂-axis, only the ð↓↑+ ↑↓Þ component occurs. The three-dimensional repre-
sentation of the Anderson–Morel order parameter is shown in Figure 17.6a. The vector l̂ defines
the axes of the order parameter. The amplitude is zero along this axis, which corresponds to
sin θ dependence where θ is the polar angle with respect to l̂: The vector d

!
has the same direc-

tion for all points on the Fermi surface. The shaded region in Figure 17.17b shows the anisotro-
pic energy gap and the two nodes along l̂.
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It can be shown by using a classical argu-
ment that the dipolar interaction combined with
spontaneously broken symmetry would favor the
state for which l̂∥d̂ (Problem 17.4). The order
parameter has nodes at θ = 0 and θ = π.
Because the behavior of the BCS energy gap
follows the order parameter, the gap nodes also
appear at θ = 0 and θ = π, which is shown in
Figure 17.6b. The three-dimensional picture is
obtained by a revolution about the l̂-axis. The
direction of l̂, which is perpendicular to the
walls of the container, is also sensitive to flow
and to the magnetic field.

The spin state in Eq. (17.20) can be rotated
in spin space, which results in the equal spin
pairing version of the Anderson–Morel order
parameter,

ψAM ∼ eiφ sin θ½ðj↑↑〉+ eiΦj↓↓〉Þ�, (17.21)

where Φ is a phase factor. The A1 phase has the orbital properties described by the Anderson–Morel
state but has only j↑↑〉 spin pairs.

The concept of spin fluctuation effect was introduced earlier by Layzer and Fay, who noted that
because the nuclear magnetic susceptibility of liquid 3He was much higher than that of an ideal
Fermi gas of comparable density, there was some tendency for the liquid to be ferromagnetic.
When a 3He quasiparticle passed through the
liquid, it would polarize spins of neighboring
quasiparticles parallel to its own spin because of
this ferromagnetic tendency. Anderson and
Brinkman2 showed that the spin fluctuation
feedback effect could indeed lead to a stable
Anderson–Morel phase in a zero magnetic field.
After this paper, the Anderson-Morel phase was
known as the Anderson–Brinkman–Morel
(ABM) phase.

17.3.6 Theoretical Model for the B
Phase

The simplest Balian–Werthamer (BW) state
(Ref. 4) is the 3P0 state, represented by

ψBW ∼Y1,−1j↑↑〉+Y10j↑↓+↓↑〉+Y11j↓↓〉: (17.22)

Δ(T )

(a) (b)

d̂

l̂ l̂

FIGURE 17.6

(a) A three-dimensional representation of the
Anderson–Morel order parameter; (b) the
anisotropic energy gap is indicated by the shaded
region.

Reproduced from Lee14 with the permission of the American

Physical Society.

∧
n axis

Δ(T )

(a) (b)

d̂

FIGURE 17.7

(a) The order parameter for superfluid 3He B; (b)
the isotropic energy gap of the BW order parameter.

Reproduced from Lee14 with the permission of the American

Physical Society.
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Because J = 0 for the 3P0 state, the BW state is specified in terms of the vector d̂ðkÞ= ak̂, where a
is a constant. The order parameter for superfluid 3He B showing d̂ vectors (thick lines) rotated by
104° (Problem 17.4) about a vector along the radial directions (thin lines) for all points on the
Fermi sphere is shown in Figure 17.7a. Figure 17.7b shows the isotropic energy gap of the BW
order parameter.

17.4 LIQUID CRYSTALS
17.4.1 Introduction
Liquid crystal is a state of matter intermediate between that of an isotropic liquid and a crystalline
solid. Liquid crystals have many of the properties of a liquid, such as high fluidity, formation and
coalescence of droplets, and inability to support shear. They are also similar to crystals in the sense
that they exhibit anisotropy in electric, magnetic, and optical properties. There are two broad types
of liquid crystals. Liquid crystals that are obtained by melting a crystalline solid are called thermo-
tropic where temperature and (secondarily) the pressure are the controllable parameters. Liquid crys-
talline behavior is also found in certain colloidal solutions and certain polymers. This type of liquid
crystal is called lyotropic, for which concentration and (secondarily) the temperature are the control-
lable parameters.

Liquid crystals are found among certain organic compounds that may be of a variety of chemical
types. However, the molecules forming liquid crystal phases have certain structural features that can
be summarized as follows:

a. The molecules are elongated and have flat segments, as in benzene rings.
b. The long axis of the molecule is defined by a fairly rigid backbone containing double bonds.
c. The molecule should have strong dipoles and easily polarizable groups.
d. The extremities of the molecules are not very important.

17.4.2 Three Classes of Liquid Crystals
Para-azoxyanisole (PAA) and 2-p-methoxybenzylidene n-butylaniline (MBBA), the two liquid crys-
tals that have been extensively studied, are shown in Figure 17.8.

Liquid crystals are divided into three main
classes: (a) nematic, (b) cholesteric, and (c) smectic
phases. They are shown in Figure 17.9.

(a) Nematics: In the nematic phase, the long
planar molecules are symbolized by ellipses.
The long axes of the molecules align along a
preferred direction, which indicates that there is
a long-range orientational order. The locally pre-
ferred direction usually varies throughout the
medium in the strained nematic. One defines a
vector field n(r), known as the director, which
gives its local orientation. Its magnitude is taken
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FIGURE 17.8

Molecular structure of para-azoxyanisole (PAA) and
2-p-methoxybenzylidene n-butylaniline (MBBA).
Reproduced from Stephen and Straley 25 with the permission of

American Physical Society.
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as unity. The director field can be aligned by
electric and magnetic fields and by surfaces that
have been properly prepared. Some structural
perturbations appear as threads on optical exami-
nations, which indicate that there is no idealized
equilibrium configuration.

There is short-range order in nematics as in
ordinary liquids, but no long-range order in the
centers of mass of the molecules. There is no pre-
ferential arrangement of the two ends of the
molecules if they differ, but they can rotate about
their long axes. Thus, the sign of the director has
no physical significance, and optically, a nematic
behaves as a uniaxial material with a center of
symmetry, which is confirmed by the absence of
ferroelectric phenomena. It has been suggested
on the basis of X-ray and optical data that there
exists another type of nematic phase, known as
the cybotactic phase. In this phase, the molecules
are arranged in groups such that the centers of
mass of the molecules in each group lie in a
plane.

(b) Cholesterics: The cholesteric phase dif-
fers from the nematic phase in the sense that the
director n varies in direction in the medium in a
regular way. If a nematic initially aligned along
the y-axis is twisted about the x-axis, a choles-
teric configuration would be obtained. The
director and the Fresnel ellipsoid rotate as one
proceeds along the twist axis. The long axes of
the molecules tend to align along a single pre-
ferred direction in any plane perpendicular to
the twist axis. However, in a series of equi-
distant parallel planes, the preferred direction
rotates as shown in Figure 17.9b. The distance
measured along the twist axis over which the
director rotates through a full circle is known as
the pitch (P) of the cholesteric. Because n and –n
are indistinguishable, the periodicity length of
the cholesteric is P/2. The pitch of cholesterics,
which is sensitive to temperature flow, chemical
composition, and applied magnetic or electric
fields, is comparable with visible light because
it is of the order of several thousand angstroms.

(a)

(b)

(c)

1

2
P

FIGURE 17.9

The arrangement of molecules in the (a) nematic,
(b) cholersteric, and (c) smectic A phase.
Reproduced from Stephen and Straley 25 with the permission of

the American Physical Society.
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The characteristic colors of the cholesterics in reflection (through Bragg reflection by the periodic
structure) and their very large optical rotatory power are due to the spiral arrangement.

(c) Smectics: The molecules in the smectics are arranged in layers, and in addition to orienta-
tional layering, they exhibit orientational ordering. There are a number of different classes of
smectics, which are briefly listed here:

Smectic A: In this phase, the molecules are aligned perpendicular to the layers, but there is no
long-range crystalline order within a layer (see Figure 17.9c). The layers can slide freely over
one another.
Smectic B: In this phase, there is a hexagonal crystalline order within the layers. The layers can
slip on each other but cannot rotate on each other.
Smectic C: In this phase, the preferred axis is not perpendicular to the layers so that the phase
has biaxial symmetry.
Smectic D: Optically, the D phase appears to have a cubic structure, and the X-ray patterns are
consistent with a cubic packing.
Smectic E: The X-ray patterns obtained from the smectic E phase show the presence of a
layered structure and a high degree of order arrangement within the planes.

17.4.3 The Order Parameter
If we assume that the molecules of a nematic or cholesteric liquid crystal are rigid and rodlike in

shape, then we can describe the orientation of the ith molecule by introducing a unit vector v!ðiÞ

along its axis. v!ðiÞ
is different from the director n, which gives the average preferred direction of the

molecules. It is not possible to introduce a vector order parameter for liquid crystals, which possess a

center of symmetry due to which the average of v!ðiÞ
vanishes. Hence, the order parameter can be

expressed only as a second-rank tensor

SαβðrÞ = 1
N
∑
i

vðiÞα vðiÞβ − 1
3
δαβ

� �
, (17.23)

where the sum is over all the N molecules in a macroscopic volume located at r, and the vα are the
components of v! referred to by a set of laboratory-fixed axes. Sαβ is a symmetric traceless tensor
of rank two and has five independent components. In the isotropic case, where the molecules have
random orientation, Sαβ = 0 (Problem 17.5).

To express the order parameter for nonlinear rigid molecules, one can introduce a Cartesian
coordinate system x′y′z′ fixed in the molecules. In the case of a uniaxial liquid crystal, the order
parameter tensor is defined by

Sα′β′ðrÞ = < cos θα′ cos θβ′ −
1
3
δα′β′>, (17.24)

where cos θα′ is the angle between the α′ molecular axis, and the preferred direction or the optic
axis. The angle brackets indicate an average over the molecules in a small but macroscopic
volume. It can be shown that Eq. (17.24) is equivalent to Eq. (17.23) in the case of linear mole-
cules or molecules with a well-defined long axis about which they rotate rapidly (Problem 17.6).
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In real liquid crystals, different parts of the molecules might have to be described by different
Sαβ tensors. It is preferable to define the order parameter through a macroscopic property such as
the anisotropy in the diamagnetic susceptibility,

Qαβ = χαβ −
1
3
δαβχγγ , (17.25)

where χαβ is the magnetic susceptibility tensor per unit volume. By convention, repeated indices are
to be summed over. Here, Qαβ is a symmetric traceless tensor of rank two and has five independent
components.

The diamagnetic susceptibility is approximately the sum of the susceptibilities of individual
molecules. We choose the principal susceptibilities of a rigid molecule to be χð0Þ1 , χð0Þ2 , and χð0Þ3 , and
choose the fixed axes x′, y′, and z′ of the molecule to coincide with the principal axes of the sus-
ceptibility. It can be easily shown for a uniaxial liquid crystal (Problem 17.7),

Qxx = Qyy = 2N½ðSy′y′ + Sz′z′Þχð0Þ1 + ðSz′z′ + Sx′x′Þχð0Þ2 + ðSx′x′ + Sy′y′Þχð0Þ3 � (17.26)

and

Qzz = NðSx′x′χð0Þ1 + Sy′y′χ
ð0Þ
2 + Sz′z′χ

ð0Þ
3 Þ, (17.27)

where N is the number of molecules per unit volume. Further, it can be easily shown that

Sx′x′ + Sy′y′ + Sz′z′ = 0: (17.28)

Hence, there are only two independent parameters on the right side of Eqs. (17.26) and (17.27).

17.4.4 Curvature Strains
There is a preferred axis along which the molecules orient themselves in the microscopic region of
a liquid crystal. The direction of this axis varies from place to place in equilibrium, and it can also
be forced to vary by external forces. The relative orientations away from the equilibrium position
are known as curvature strain, and the restoring forces are known as curvature stresses. The free
energy density is a quadratic function of the curvature strains. The theory of the curvature elastic
energy is based on the symmetry properties of the liquid crystal.

The three distinct curvature strains of a liquid crystal are shown in Figure 17.10 by assuming
that n̂ðrÞ is a unit vector giving the direction of the preferred orientation at the point r and varies
slowly from point to point in molecules with permanent dipole moments. At r, we introduce a coor-
dinate system with z parallel to n. The curvature has six components, resulting in three curvature
strains: splay, twist, and bend.

17.4.5 Optical Properties of Cholesteric Liquid Crystals
The unusual optical properties of cholesteric liquid crystals include the color effects seen in reflec-
tion under white light. These effects are due to the interactions of the light with the twisted arrange-
ment of the molecules as well as the spatial variation of the dielectric constant. The variation of the
dielectric constant through the medium is small ðΔn/n∼ 0:03Þ, and we will assume that the normal
form of the waves propagating through the medium is approximately that of ordinary circularly
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polarized waves. These waves would be strongly
affected only if the half-wavelength nearly
matches the periodicity length (or its projection
on the wave vector) and if the sense of its rota-
tion is the same as the twisted structure. Other-
wise, the effect on the dispersion relation of the
wave would be the same as in other periodic
structures. Because n and –n are indistinguish-
able, the periodicity is one-half the pitch, and
according to the Bragg formula, a “band gap”
would appear at a matching wavelength

λ0 = p sin θ, (17.29)

where p is the periodicity length. The periodic perturbation determines the size of the band gap. The
form of the dispersion relation is shown in Figure 17.11. The right-hand circularly polarized wave is
strongly affected when its half-wavelength nearly matches the periodicity length. The left-hand cir-
cularly polarized wave of the same wavelength is unaffected.

The extrema of the band gaps are obtained from the fact that light of wavelength λ0 can travel at
two distinct speeds with its electric vector aligned with the principal axes of the dielectric constant.
Thus, the extrema of the band gap are

ω+ = 2πc/n−λ0,
ω− = 2πc/n+ λ0:

(17.30)

Here, n+ and n− are the refraction indices. If light of frequencies between ω+ and ω− and of
the appropriate circular polarization to match the twist is directed at the liquid crystal, it is

(a)

(b)

(c)

FIGURE 17.10

The three curvature strains of liquid crystals:
(a) splay: s1 = ∂nx /∂x , s2 = ∂ny /∂y ; (b) twist:
t1 = −∂ny /∂x , t2 = ∂nx /∂y ; (c) bend:
b1 = ∂nx /∂z ; b2 = ∂ny /∂z :
Reproduced from Stephen and Straley 25 with the permission of

the American Physical Society.
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Dispersion of light in a right-hand twisting
cholesteric.
Reproduced from Stephen and Straley 25 with the permission of

the American Physical Society.
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totally reflected, and the polarization of the reflected light matches the sense of the twist. Thus, a
right-hand cholesteric reflects right-polarized light, whereas left-polarized light suffers only weak
reflection. Because the reflected band is narrow ðΔω/ω∼Δn/n∼ 0:03Þ, a pure color is reflected;
this color depends on the pitch as well as the angle of incidence.

Liquid crystals are extensively used in fiber-optic devices applied in telecommunication circuits.
The optics of liquid-crystal devices (LCD) has evolved extensively in the past decade.

17.5 QUASICRYSTALS
17.5.1 Introduction
It had been generally accepted among solid state physicists that crystals can have translational peri-
odicity as well as one-, two-, three-, four-, and six-fold rotational symmetries. However, five-fold
rotational symmetry could not exist in equilibrium-condensed phases. An icosahedron, which is the
most locally densely packed arrangement, had been observed in liquids and amorphous solids. It
was thought that an icosahedral rotational symmetry contradicts the translational periodicity and is
unlikely to be found.

17.5.2 Penrose Tiles
Penrose introduced the concept of two-dimensional tiles in 1974 (the concept was published in
1977)23; he proposed that it is possible to cover (tile) any flat two-dimensional space with only two
different tile shapes (known as fat and skinny rhombus) in an infinite number of aperiodic ways.
The tiles, which are rhombi, must be placed such that the matching arrows are always adjacent. The
Penrose tiles are shown in Figure 17.12. The smaller angle of the fat rhombus is 2π/5, and the
smaller angle of the skinny rhombus is π/5. If
the length of each side is 1, the long diagonal of
the fat rhombus (dashed line) has length
τ = ð ffiffiffi

5
p

+ 1Þ/2, and the short diagonal of the
skinny rhombus (dashed line) has length 1/τ:

The Penrose lattice is obtained by tiling a
plane using a collection of the two Penrose tiles.
The Penrose lattice, shown in Figure 17.13,
shows the local regions of five-fold symmetry.

FIGURE 17.12

Penrose tiles.

FIGURE 17.13

The Penrose lattice.
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17.5.3 Discovery of Quasicrystals
In 1984, Shectman et al. (Ref. 24) discovered sharp diffraction patterns of icosahedral symmetry in
Al-Mn alloy rapidly quenched from the melt. The icosahedral phase in rapidly solidified Al-Mn
alloy is resistant to crystallization up to 350°C and is metastable. The results of Shectman et al. are
shown schematically in Figure 17.14.

In view of the above, Levine and Steinhardt generalized the notion of crystal to include a quasiperio-
dic translational order and named it “quasicrystal.” A quasicrystal has long-range quasiperiodic order as
well as long-range crystallographically forbidden orientation symmetry. The classes of quasicrystal
include Al-based transition metal alloys (TM alloys: AlMn, AlMnSi, AlCuFe, and AlPdMn); alloys
having similar composition to that of the Frank–Kasper phase with tetrahedrally close-packed structure
(FK alloys: Al-Cu-Li, Zn-Mg-RE; RE = rare earth); and stable binary alloys (Cd alloys: Cd5.7Yb and
Cd17Ca3). One can observe a decagonal phase with a diffraction pattern of 10-fold rotational symmetry
in AlMn, AlFe, AlCuCo, and AlCoNi. There is a one-dimensional translational periodicity along the
10-fold rotational axis in these alloys. CrNiSi and VNiSi are two-dimensional octagonal quasicrystals.
The two-dimensional dodecagonal quasicrystals are TaTe and a polymer alloy.

17.5.4 Quasiperiodic Lattice
The various methods used to mathematically generate the structures of quasicrystals include the
inflation–deflation operation, utilization of matching rules, grid method, strip projection method, cut
projection method, or generalized dual method. We will discuss the strip projection method and
note that the other methods are closely related.

In the strip projection method, the lattice points in the hypercubic lattice in the n-dimensional
space E″ are projected on vertices in the d-dimensional quasiperiodic lattice. E″ is decomposed into
two subspaces,

79.2°

58.29°

37.37°

31.72

63.43

FIGURE 17.14

Diffraction pattern of five-fold symmetry (area proportional to the intensity) and stereogram of the
icosahedral group.

Reproduced from Misra18 with the permission of Elsevier.
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E″ = E∥ +E⊥, (17.31)

where the subspace E∥ is the d-dimensional physical space, and E⊥ is orthogonal to E∥. E⊥ is
called the “perpendicular space” (perp-space). The projection of a unit “hypercube” onto E⊥ is
known as the “window” W. For any x0 in E∥, we write W0 for W+ x0. When a lattice point
in E″ is located inside W0, its projection onto E∥ is selected as a vertex in the physical space
E∥. If the “slope” of the hyperplane E∥ is rational to the hypercubic lattice in E″, the pro-
jected lattice is periodic. However, if the “slope” of the hyperplane E∥ is irrational, the projected
lattice becomes quasiperiodic. The hypercubic lattice, the directions of the two orthogonal sub-
spaces E∥ and E⊥, and W must be invariant under operations of the noncrystalline group of the
quasicrystal.

In Figure 17.15, we show a one-dimensional quasiperiodic lattice obtained by projection from a
two-dimensional square lattice. The Fibonacci lattice is generated when the E∥-axis is generated at
θ = arctan 1/τ to the x-axis. Here, the golden mean τ = ð ffiffiffi

5
p

+ 1Þ/2.
In Figure 17.16, we show a Fibonacci lattice, obtained in this manner, that can also be described

as a one-dimensional section ðd = 1Þ of a two-dimensional periodic function ðN = 2Þ: The two-
dimensional periodic structure consists of a periodic arrangement of a line segment extending in the
direction of E⊥. The line segment is called an atomic surface. A point sequence is obtained on the
E∥ section comprised of two spacings L and S. The irrational shape indicates the lack of periodicity
in the arrangement of L and S.

The distribution function of lattice points ρðxÞ of a two-dimensional square lattice is given by

ρðxÞ = ρðx∥, x⊥Þ = ∑
jl
δðx∥ − j cos θ− l sin θÞ× δðx⊥ + j sin θ− l cos θÞ, (17.32)

and the distribution function on the projected lattice on E∥ is (Problem 17.8)

ρ0ðx∥Þ =
Z∞
−∞

dx⊥ρðx∥, x⊥ÞWðx⊥Þ: (17.33)

E

W

EII

FIGURE 17.15

One-dimensional quasiperiodic lattice (crossmarks
on the E∥-axis) generated by projection.

Reproduced from Misra18 with the permission of Elsevier.

EII

E⊥

L L L L L L
O

L L L LS S S S S S

FIGURE 17.16

A Fibonacci lattice.
Reproduced from Misra18 with the permission of Elsevier.
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Here,

Wðx⊥Þ =
(
1, if 2jx⊥j< ð cos θ + sin θÞ

=

(
0, otherwise:

(17.34)

The diffraction pattern of the one-dimensional Fibonacci lattice is expressed by a structure factor

f ðkÞ =
Z∞
−∞

dx∥e−ikx
∥
ρ0ðx∥Þ

� ∑
∞

m,n=−∞

sin k⊥ω
k⊥ω

δðk− 2πðm sin θ+ n cos θÞÞ:
(17.35)

Here,

ω = 1
2
ð cos θ+ sin θÞ (17.36)

and

k⊥ = 2πðm cos θ+ n cos θÞ: (17.37)

This procedure of projection and calculation of structure factor is generalized to higher-dimensional
cases. For example, the pentagonal quasicrystal is obtained by a projection of the hypercubic lattice
to a two-dimensional space and the icosahedral quasicrystal by that of the six-dimensional one to a
three-dimensional space. The three-dimensional icosahedral quasicrystals are constructed by two
rhombohedral units: prolate and oblate.

17.5.5 Phonon and Phason Degrees of Freedom
The diffraction intensity pattern IðqÞ of a solid is, in general, given by

IðqÞ�jSðqÞj2, (17.38)

where

SðqÞ =
Z

ρðrÞe−2πiq.rdr, (17.39)

q is the wave vector, and ρðrÞ is the atomic-density function in real space. For a quasicrystal, the
characteristics of the function I(q) observed experimentally are as follows:

a. It consists of δ− functions.
b. The number of basis vectors necessary for indexing the positions of the δ− functions exceeds

the number of dimensions.
c. It shows a rotational symmetry forbidden in the conventional crystallography.
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As an example, we consider the Fibonacci lattice in Figure 17.17a. We consider the translation
of the two-dimensional periodic structure by a vector U with respect to the origin of the physical
space E∥ (Figure 17.17b). It can be shown that the two structures on E∥ before and after the displa-
cement U can be overlapped out to large finite distances by a finite translation in E∥. These two
structures are said to belong to the same local isomorphic class (LI class). Because these structures
are physically indistinguishable, they give the same diffraction intensity function I(q) and have the
same energy. The vector U can be written as

U = u+w, (17.40)

where u represents the degrees of freedom of d-dimensional translation in physical space that crystals
also possess, and w represents ðN − dÞ degrees of freedom characteristic of a quasiperiodic system.
Figure 17.17c shows u results in a translation of the Fibonacci lattice in E∥, and Figure 17.17d shows
how w generates a rearrangement of L and S.

Here, u and w are called phonon and phason displacements. When these displacements vary spa-
tially, their gradients yield a strain. The gradient of u yields the conventional elastic strain (phonon
strain), whereas the gradient of w yields the phason strain. A phonon-strained Fibonacci lattice is
shown in Figure 17.18. A uniform phonon strain is introduced by a compression deformation of the
two-dimensional structure.

Ell Ell

Ell Ell

u⊥

E⊥

E⊥ E⊥

(a)

O

E⊥

L L L L L L
O

L L L LS S S S S S
O

U

ull
O

(b)

(c) (d)

FIGURE 17.17

(a) A Fibonacci lattice, the structure resulting from a displacement of (b) U, (c) u, and (d) w.
Reproduced from Misra18 with the permission of Elsevier.

17.5 Quasicrystals 587



A uniform phason strain is introduced by a shear deformation of the Fibonacci lattice, as shown
in Figure 17.19.

A phason displacement results in a local rearrangement of points (atoms) such as LS↔SL, which
is known as the phason flip. Examples of the phason flip in two-dimensional Penrose lattice, which
is known as a two-dimensional decagonal quasicrystal, are shown in Figure 17.20.

To decompose properly the total N degrees of freedom into d phonon and ðN − dÞ phason
degrees of freedom, i.e., to embed properly a given d-dimensional quasiperiodic structure into an
N-dimensional hypercrystal, one needs to know the point group symmetry of the system.

O

FIGURE 17.19

Phason-strained Fibonacci lattice.
Reproduced from Misra18 with the permission of Elsevier.

O

FIGURE 17.18

Phonon-strained Fibonacci lattice.
Reproduced from Misra18 with the permission of Elsevier.

FIGURE 17.20

Examples of phason flips in the two-dimensional Penrose lattice.
Reproduced from Misra18 with the permission of Elsevier.
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17.5.6 Dislocation in the Penrose
Lattice

The perfect edge dislocation introduced in the
two-dimensional Penrose lattice (or Penrose
tiling) is shown in Figure 17.21. The phason strain
field cannot be easily recognized around the dislo-
cation. However, the tiling pattern changes when
the dislocation position is translated to the left by
a distance represented by the arrow.

17.5.7 Icosahedral Quasicrystals
An icosahedron, shown in Figure 17.22, is a reg-
ular polyhedron with 20 identical equilateral
triangular sides. The main characteristics of a
quasicrystal structure are that it is a combination
of a quasiperiodic lattice and a cluster decorating
it. Three types of icosahedral quasilattices, P-, F-,
and I-types, are known theoretically, out of
which two types, P and F, have been observed
experimentally. These two types are distinguished
by reflection conditions.

The reflection vector of g of a icosahedral
quasicrystal can be written as

g = 1
a6D

∑
6

1
miei// , (17.41)

where the six ei// vectors with length 1/2 are par-
allel to the lines connecting to the center and
vertices of an icosahedron, and a6D is the lattice
parameter of the six-dimensional hypercubic lat-
tice in the framework of the section. There are
no restrictions for the indices in the case of
P-type reflections, whereas either all odd or all
even indices appear in the F-type. The reflection
condition in the F-type exhibits a τ-scaling rule
(τ: golden mean), whereas the P-type has a τ3-scaling rule. However, in real space, a P-type quasi-
lattice can be decomposed into two F-type sublattices. Thus, the F-type quasicrystal can be inter-
preted as an ordered phase, in which two kinds of atomic clusters with different atomic
configurations are arranged regularly.

In the case of Al-transition metal quasicrystals, the Mackay-type cluster is considered as a basic
structural unit. The 54 atoms form the triple shells as presented in Figure 17.23a. The first and the

FIGURE 17.21

A perfect edge dislocation in the Penrose lattice.
The shaded tiles are destroyed to produce intratile
phason defects after gliding the dislocation to
the left.

Reproduced from Misra18 with the permission of Elsevier.

FIGURE 17.22

The icosahedron.
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second shell, which are composed of Al, are an icosahedron and an icosidodecahedron, respectively.
The third shell is a larger icosahedron of the transition metal. The five ternary alloys, which are of
the stable Mackay type, are Al-Cu-(Fe, Ru, Os) and Al-Pd-(Mn, Re).

The Zn-based quasicrystals are the Bergman clusters shown in Figure 17.23b. They include 104
atoms. This cluster has four concentric shells: an icosahedron, a dodecahedron, a larger icosahedron,
and a truncated icosahedron (soccer ball). The 10 ternary alloys, which are of the Bergman type, are
Al-Li-Cu, Zn-Mg-Ga, Ti-Zr-Ni, Mg-Al-Pd, and Zn-Mn-(Y, Dy, Gd, Ho, Tb, and Er).

17.6 AMORPHOUS SOLIDS
17.6.1 Introduction
Amorphous solids have attracted a great deal of attention in recent years. There are an infinite
number of ways in which the geometrical arrangement of atoms can be visualized. Sometimes,
amorphous solids have been visualized as frozen-liquid structures, but there are some significant
differences between the two types of states. For example, there are distinct differences between
the radial distribution of functions for a true liquid and an amorphous solid. Another interesting
difference in their properties is that whereas liquid Ge and Si are metals, amorphous Si and Ge

2.45 Å 4.70 Å 4.83 Å

2.48 Å 4.50 Å 4.93 Å 6.78 Å

(a)

(b)

FIGURE 17.23

Icosahedral atomic clusters. (a) Mackay type in Al-Mn-Si approximant and (b) Bergman type in Zn-Mg-Al
approximant. The radius in each shell is inserted.

Reproduced from Misra18 with the permission of Elsevier.
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are semiconductors. The bonds are broken in liquid Ge and Si, where presumably the sp3

configuration in the solid is changed to an s2p2 configuration in the liquid, which makes it
metallic. However, in the amorphous state, the sp3 bonds are still present between nearest
neighbors. These bonds are imperfect because the amorphous films are produced at relatively
low temperature. Due to this bonding, amorphous Ge and Si are semiconductors like their crys-
talline counterpart, but there are significant differences arising out of the fact that (1) the bond-
ing is imperfect because there is no true tetrahedral symmetry in spite of four-fold coordination
over small regions; (2) different regions are not linked because there is no long-range order;
and (3) many atoms could have only three nearest neighbors due to which the bond angles are
severely distorted from the ideal value.

Amorphous solids can be obtained in a variety of ways. In some cases, they are obtained in
the frozen-liquid amorphous state either by evaporation into a cooled substrate or by extremely
rapid cooling from the melt. The more popular method is by a process known as “sputtering” the
components onto a cooled substrate. In this process, the atoms in a solid are knocked out by
energetic ions of inert gas such as argon. The inert gas is at a reduced pressure. It is ionized by
an electrical discharge. A substrate is placed above the solid, which is in contact with an elec-
trode, and the atoms are discharged by the impingement of the energetic argon ionized by the
electric discharge. The atoms condense above the substrate and form a thin film. The sputtering
process has the advantage that a thin layer of an amorphous film is deposited on the substrate.
The disadvantage of this method is that both argon and oxygen are invariably present as
impurities.

17.6.2 Energy Bands in One-Dimensional Aperiodic Potentials
To consider the localized states, we consider the energy bands in one-dimensional aperiodic poten-
tials.8 We consider a finite segment of a line a< x< b, where b− a = L: The potential energy of the
segment is periodic but can be derived from a periodic potential by a disordering process. The two
linearly independent real solutions of the Schrodinger equation are

Zb
a

ψ2
1 dx = 1, where ψ1ðaÞ = ψ1ðbÞ, (17.42)

and Z b

a
ψ1ðxÞψ2ðxÞdx = 0,

Zb
a

ψ2
2 ðxÞdx = 1: (17.43)

Economou and Cohen (Ref. 8) postulated that the solutions of the aperiodic case that most resemble
the Bloch functions of the periodic case are those combinations of φ that satisfy an extremal condi-
tion in relation to the average value of momentum <p̂>. φ is so chosen that the real part of <p̂> is
as extremum. One can write φ as

φ = ψ1 + ðα+ iβÞψ2=½1+ α2 + β2�12, (17.44)
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where x and y are real. The average value of p̂ (Problem 17.9) is

<p̂> = −iħ
Z

φ�ðdφ/dxÞdx = ħ
βðπ12 − π21Þ− i½π11 + ðα2 + β2Þπ22 + αðπ12 + π21Þ�

1+ α2 + β2
, (17.45)

where

πij =
Zb
a

ψ idψ j, i, j = 1, 2 : (17.46)

The extremum requirement on Re <p̂> gives

α = 0, β = 1 or α = 0, β = −1: (17.47)

To avoid obtaining the nonzero imaginary part of the expectation value of the extremum value of
<p̂> from the preceding solutions, Economou and Cohen imposed periodic boundary conditions,

ψ2ðaÞ = ψ2ðbÞ, (17.48)

so that the energy eigenvalues originating from Eq. (17.48) are exactly the same as the first, third,
fifth, and so on, obtained by setting V = ∞ outside (a, bÞ. Thus, there are half the number of values
in this problem as in the infinite-barrier problem.

From Eqs. (17.44) and (17.47), there are two functions that make <p̂> an extremum (Problem
17.10),

φ = ðψ1 + iψ2Þ/
ffiffiffi
2

p
(17.49)

and

φ� = ðψ1− iψ2Þ/
ffiffiffi
2

p
: (17.50)

The corresponding values of <p̂> are

pext = ± 1
2
ħðπ12 − π21Þ = ±ħπ12: (17.51)

One can easily show that the set of functions
φnðxÞ,φ�

nðxÞ, n= 1, 2, 3,… is complete and ortho-
normal and makes each momentum expectation
value extremal. This set is the closest one can
come to a set of Bloch functions in the aperiodic
case. A schematic representation of these results
is shown in Figure 17.24. Here, Ec is the energy
at which the states change from localized to
extended. EB is the energy at which the density
of states vanishes, the bound of the spectrum.
They coincide in the periodic case and move in
the opposite direction as the aperiodicity is
increased.

Periodic

Aperiodic

EC

EC = EB

EB E

log (density of states)
log (|pext|)

FIGURE 17.24

Density of states (solid curve) and distribution of
the extended states (dashed curve) for an energy
band of an ordered and disordered lattice.

Reproduced from Economou and Cohen (Ref. 8) with the

permission of the American Physical Society.
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17.6.3 Density of States
Concepts such as crystal momentum, effective mass, or band structure function E(k) cannot be used
for localized one-electron states. However, the concept that is used and still valid is the density of
states, gðEÞ, which can be defined as

gðEÞ = 1
Vg

∑
i
δðE−EiÞ: (17.52)

In delocalized states of disordered solids, bands can exist in which tails with localized states are
attached to their edges. The region without states between the tails of two adjacent bands is called a
gap, or if the tails overlap, the region is known as a pseudogap.

17.6.4 Amorphous Semiconductors
We first assume that each Ge or Si atom in the amorphous state has four nearest neighbors as in the
crystalline state. However, the covalent bonds in the crystalline phase are distorted in the amor-
phous phase. The band edges of the conduction and valence band contain localized states. They
are separated from the extended states by the mobility edges. The abrupt band edges are shown in
Figure 17.25.

The electrons occupying the tail states cannot take part in the conduction because they are loca-
lized due to the disorder in the potential.

Normally, each Si or Ge atom, which has four valence electrons, shares one electron in the
covalent bond with its neighbor. However, in the amorphous state, the three-fold-coordinated atoms
produce a dangling bond because one bond remains uncompensated. A dangling bond essentially
means an electron and an empty state. The electron in the dangling bond is localized at 0° K
because there are no adjacent sites available for it to move in the amorphous state. The concentra-
tion of these dangling bonds is very high (on the order of 1025m−3Þ, and they control the position
of the Fermi level.

However, at finite temperatures, the process of electrical conduction occurs in three different
regimes: the propagating regime, the jumping regime, and the hopping regime. The propagating

regime, which is commonplace in the crystalline
solid state theory, is dominant in disordered sys-
tems only at very high temperatures. At inter-
mediate temperatures, electronic conduction in
such systems takes place by diffusion or Brownian
motion. This type of conduction, encountered
near the mobility edges of amorphous solids, is
known as jumping conduction. At low tempera-
tures, the hopping regime is prevalent. In this
regime, the electrons can move only through
phonon-assisted hopping. At relatively higher
temperatures in the hopping regime of conduc-
tion, the largest tunnel contribution arises from
jumps to unoccupied levels of nearest-neighbor
centers. At lower temperatures, the number and

E

EG

O

μ

FIGURE 17.25

Localized states at the edges of the valence and
conduction bands in amorphous semiconductors.
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energy of phonons available for absorption decrease so that tunneling is restricted to seek centers
that are not nearest neighbors but lie energetically closer. This type of conduction is known as
variable-range hopping.

The overlap of tails of the localized states in amorphous tetrahedral semiconductors is shown in
Figure 17.26.

The regime of variable-range hopping is subdivided into two ranges. At relatively higher tempera-
tures of this regime, variable-range hopping transport is done by tunneling conduction in a band tail
with somewhat large activation energy. At the lower temperature range, hopping transport by tunneling
conduction near the Fermi level is favored.

The local defects, such as dangling bonds, can cause impurity bands to appear in the gap or
pseudogap. This is shown in Figure 17.27.

The extended states above the mobility gap are important in deciding the optical properties. How-
ever, at low temperatures, the transport properties of amorphous semiconductors are mainly determined
by the states of the local defects rather than the localized states of the tail states.

PROBLEMS
17.1. Show that in a region where jχ0j is everywhere nonzero, the application of the Stokes

theorem to the curl of Eq. (17.14) leads to the conclusion that the integral of vs around any
closed curve is zero.

17.2. Show that when we integrate Eq. (17.14) around a circuit that encloses the one-dimensional
region, the fact that the phase of the wave function χ0 must be single-valued modulo 2π
leads to the Onsager–Feynman quantization conditionI

vs . dl = nh/m: (1)

E

EC′

O

μ

FIGURE 17.26

The overlap of the tails of the localized states in
amorphous tetrahedral semiconductors.
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μ

FIGURE 17.27

Impurity band of local defects in the gap or the
pseudogap.
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17.3. Show that because, in the range of temperatures above 0.01° K, the nuclear spins of the 3He
atoms comprising the solid are almost fully disordered, the entropy Ssolid = R ln 2 (per mole).

17.4. The dipolar interaction is calculated by taking a quantum mechanical average of the dipolar
Hamiltonian over the order parameter (pair-wave function). It can be shown that the dipolar
free energies are given by

ΔFD =
− 3
5
gDðTÞ½1− d

! . l
!Þ2�, A phase,

4
5
gDðTÞ cos θ + 2 cos2 θ + 3

4

n o
, B phase,

8<
: (1)

where

gD � 1− T
Tc

	 

10−3ergs/cm3: (2)

Show that to minimize the free energy, l
!

and d
!

must be parallel in the A phase, and the
dipolar energy is minimized for θ = cos−1ð− 1

4Þ = 104° in the B phase:

17.5. For a nematic or cholesteric liquid crystal where the molecules are rigid and rodlike in
shape, the order parameter can be expressed as a second-rank tensor

SαβðrÞ = 1
N
∑
i

vðiÞα vðiÞβ − 1
3
δαβ

� �
, (1)

where the sum is over all the N molecules in a macroscopic volume located at r, and the vα
are the components of v! referred to by a set of laboratory-fixed axes. Show that in the
isotropic case, where the molecules have random orientation, Sαβ = 0.

17.6. In the order parameter for nonlinear rigid molecules, one can introduce a Cartesian
coordinate system x′y′z′ fixed in the molecules. In the case of a uniaxial liquid crystal, the
order parameter tensor is defined by

Sα′β′ðrÞ = < cos θα′ cos θβ′ −
1
3
δα′β′>, (1)

where cos θα′ is the angle between the α′ molecular axis, and the preferred direction or the
optic axis. The angle brackets indicate an average over the molecules in a small but
macroscopic volume. Show that Eq. (1) in Problem (17.6) is equivalent to Eq. (1) in
Problem (17.5) in the case of linear molecules or molecules with a well-defined long axis
about which they rotate rapidly.

17.7. Show that for a uniaxial liquid crystal,

Qxx = Qyy = 2N½ðSy′y′ + Sz′z′Þχð0Þ1 + ðSz′z′ + Sx′x′Þχð0Þ2 + ðSx′x′ + Sy′y′Þχð0Þ3 � (1)

and

Qzz = NðSx′x′χð0Þ1 + Sy′y′χ
ð0Þ
2 + Sz′z′χ

ð0Þ
3 Þ, (2)

where N is the number of molecules per unit volume where the symbols are defined in the text.
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17.8. In a quasicrystal, the distribution function of lattice points ρðxÞ of a two-dimensional square
lattice is given by

ρðxÞ = ρðx∥, x⊥Þ = ∑
jl
δðx∥ − j cos θ− l sin θÞ× δðx⊥ + j sin θ− l cos θÞ: (1)

Show that the distribution function on the projected lattice on E∥ is

ρ0ðx∥Þ =
Z∞
−∞

dx⊥ρðx∥, x⊥ÞWðx⊥Þ: (2)

Here,

Wðx⊥Þ =
(
1, if 2jx⊥j < ð cos θ+ sin θÞ

=

(
0, otherwise:

(3)

17.9. Show that if one writes φ as

φ = ψ1 + ðα+ iβÞψ2=½1+ α2 + β2�12, (1)

where x and y are real, the average value of the momentum p̂ is

<p̂> = −iħ
Z
φ�ðdφ/dxÞdx = ħ

βðπ12 − π21Þ− i½π11 + ðα2 + β2Þπ22 + αðπ12 + π21Þ�
1+ α2 + β2

, (2)

where

πij =
Zb
a

ψidψj, i, j = 1, 2 : (3)

17.10. Show from Eqs. (17.44) and (17.47) that the two functions that make <p̂> an extremum are

φ = ðψ1 + iψ2Þ/
ffiffiffi
2

p
(1)

and

φ� = ðψ1− iψ2Þ/
ffiffiffi
2

p
: (2)
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18.1 GRAPHENE
18.1.1 Introduction
Carbon has four perfect crystalline forms: graphite, diamond, “Buckminsterfullerene” and a fuller-
ene nanotube. In addition, graphene is a one-atom-thick allotrope of carbon, which is a honeycomb
lattice of carbon atoms. Graphene also has two-dimensional Dirac-like excitations. We discussed the
properties of graphene as well as its possible applications in electronics in Sections 10.7 and 10.8.
In the following sections, we will discuss graphene as a building block for all novel materials of
carbon as well as derive the theory of Dirac fermions discussed in Section 10.7.

One can view graphite as a stack of graphene layers, and carbon nanotubes can be considered as
rolled cylinders of graphene. “Buckminsterfullerene” ðC60Þ can be viewed as molecules obtained by
introducing pentagons on the hexagonal lattice of wrapped graphene. These are shown in Figure 18.1.

Diamond is not shown in the diagram because it is primarily used in making jewelry due to its
beauty and elegance, and it does not have any major applications in materials science, presumably
because of its cost. In addition, each atom in diamond is surrounded in all three directions in space
by a full coordination. Because all directions are taken up, it would be nearly impossible for an
atom in a diamond lattice to have any bonding with any other atom in the outside 3D space.

Graphene is a two-dimensional (2D) allotrope of carbon that can be imagined to be benzene
rings stripped out from the hydrogen atoms. Fullerenes are molecules where carbon atoms are
arranged spherically and are zero-dimensional (0D) objects that have discrete energy states. Fuller-
enes can be thought of as wrapped-up graphene because they are obtained from graphene with the
introduction of pentagons, which create positive curvature defects. Carbon nanotubes, which have
only hexagons and can be thought of as one-dimensional (1D) objects, are obtained by rolling
graphene along a definite direction and reconnecting the carbon bonds. Graphite, which is a three-

dimensional (3D) allotrope of carbon, is made
out of stacks of graphene layers that are weakly
coupled by van der Waals forces. Two-dimen-
sional materials like graphene were presumed
not to exist until 2004, when it was obtained in
liquid suspension.2 Graphene could also be
obtained on top of noncrystalline substrates3‒5

and was eventually spotted in optical micro-
scopes due to the subtle optical effects made by
it on top of an SiO2 substrate. Graphene exhibits
high crystal quality, in which charge carriers can
travel thousands of interatomic distances without
scattering.

The Coulomb interactions are considerably
enhanced in small geometries such as graphene
quantum dots that lead to Coulomb blockade
effects. The transport properties of graphene lead
to a variety of applications, which range from sin-
gle molecule detection to spin injection. Because

FIGURE 18.1

Clockwise: graphene (2D), graphite (3D),
“Buckminsterfullerene” (0D), and carbon
nanotubes (1D).
Reproduced from Castro Neto et al.1 with the permission of the

American Physical Society.
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graphene has unusual structural and electronic flexibility, it can be tailored: deposition of metal atoms or
molecules on top; incorporation of boron and/or nitrogen in its structure; and using different substrates
that modify the electronic structure. The control of graphene properties can be extended in new
directions that would allow for the creation of graphene-based systems with magnetic and superconduct-
ing properties.

18.1.2 Graphene Lattice
Carbon has four valence electrons, three of which form tight bonds with neighboring atoms in the
plane. Their wave functions are of the form

1ffiffiffi
3

p
�
ψeð2sÞ+

ffiffiffi
2

p
ψeðτi2pÞ

�
, ði = 1, 2, 3Þ, (18.1)

where ψ eð2sÞ is the ð2sÞ wave function for carbon, and ψ eðτi2pÞ are the ð2pÞ wave functions of which
the axes are in the directions τi joining the graphite atom to its three neighbors in the plane. The
fourth electron is in the 2pz state. Its nodal plane is the lattice plane and its axis of symmetry perpen-
dicular to it. Because the three electrons forming coplanar bonds do not play any part in the conduc-
tivity, graphene can be considered to have one conduction electron in the 2pz state.

The unit cell of the hexagonal layer, designated as PQRS in Figure 18.2, contains two carbon
atoms A and B. The distance AB ≈ a = 1:42 A° : The fundamental lattice displacements are a1 = AA′
and a2 = AA″, and their magnitude is a1 =

ffiffiffi
3

p
× 1:42 A° = 2:46 A° : The reciprocal lattice vectors

have magnitude 8π/3a and are in the directions AB and AS, respectively. Hence, the first Brillouin
zone is a hexagon (see Figure 18.3) of which the sides are at a distance 4π/3a from its center. The
density of electron states in k space is 2A, where A is the area of the crystal. The zone has exactly
one electron per atom. Therefore, the first Brillouin zone of graphene has 2N electron states, and
the second Brillouin zone is empty. As we discussed in Sections 10.7 and 10.8, it becomes a semi-
conductor at finite temperatures.

K

b
→

1

b
→

2

MΓ N

K′

ky

kx

FIGURE 18.3

First Brillouin zone of the honeycomb lattice and the
Dirac points K and K ′ at the corners.

P

Q

S

RA

A′′

B

A′

a2
→

a1
→

δ 2
→

δ 3
→ δ 1

→

FIGURE 18.2

Honeycomb lattice structure of graphene, made out
of two interpenetrating triangular lattices. The lattice
unit vectors a!1 and a!2 and the nearest-neighbor
vectors δ

!
1, δ
!

2, and δ
!

3. AB = a.
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The lattice vectors of graphene can be written as (Figure 18.2)

a1 =
3a
2

�
x̂+ 1ffiffiffi

3
p ŷ

�
; a2 =

3a
2

�
x̂− 1ffiffiffi

3
p ŷ

�
, (18.2)

where the carbon–carbon distance is a≈ 1:42 A° . The reciprocal lattice vectors (shown in
Figure 18.3) are given by (Problem 18.1)

b1 =
2π
3a

�
x̂+

ffiffiffi
3

p
ŷ
�
; b2 =

2π
3a

�
x̂−

ffiffiffi
3

p
ŷ
�
: (18.3)

The positions of the two Dirac points K and K′, located at the corners of the Brillouin zone (of
which the significance is to be explained later), are (Problem 18.2)

K = 2π
3a

x̂+ 1ffiffiffi
3

p ŷ

� �
; K′ = 2π

3a
x̂− 1ffiffiffi

3
p ŷ

� �
: (18.4)

The three nearest-neighbor vectors in real space are given by

δ
!

1 =
a
2

�
x̂+

ffiffiffi
3

p
ŷ
�
; δ

!
2 =

a
2

�
x̂ −

ffiffiffi
3

p
ŷ
�
; δ
!

3 = −ax̂: (18.5)

The six second-nearest neighbors are located at δ
!′1 = ±a1; δ

!′2 = ±a2, and δ3′ = ±ða2 − a1Þ.

18.1.3 Tight-Binding Approximation
Wallace (Ref. 19) developed a “tight-binding” method for the band theory of graphite. Because the
spacing of the lattice planes of graphite is large ð3:37 A° Þ compared with the hexagonal spacing of
the layer ð1:42 A° Þ, he neglected, as a first approximation, the interactions of the planes and
assumed that conduction takes place in the layers. This is precisely graphene, which at that time
was merely a concept. We note that some the notations have different values in that paper, presum-
ably because it was published in 1947, but these have been modernized in the present derivation.

If χðrÞ is the normalized orbital 2pz wave function for an isolated atom, the wave function in the
tight-binding approximation has the form

ψ = ϕ1 + λϕ2, (18.6)

where

ϕ1 =
1ffiffiffiffi
N

p ∑
A
eik.rA χðr− rAÞ (18.7)

and

ϕ2 =
1ffiffiffiffi
N

p ∑
B
eik.rB χðr− rBÞ: (18.8)

Here, the first sum is taken over A and all the lattice points generated from it by primitive lattice
translations, and the second sum is similarly over the points generated from B (Figure 18.2).
Neglecting the overlap integrals, Z

χðr− rAÞχðr− rBÞ dr = 0, (18.9)
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and substituting in Eq. (18.6),

Hψ = Eψ , (18.10)

we obtain (Problem 18.3)

H11 + λH12 = E (18.11)

and

H12 + λH22 = λE: (18.12)

Here,

H11 = H22 =
Z

ϕ1
� Hϕ2dν; H12 = H21

� =
Z

ϕ1
� Hϕ2dν (18.13)

and Z
ϕ1

� ϕ1dν =
Z

ϕ2
� ϕ2dν = 1: (18.14)

Eliminating λ from Eqs. (18.11) and (18.12), we obtain the secular equation���H11 −E H12

H21 H22 −E

��� = 0: (18.15)

From Eq. (18.15), it is easy to show that

E = 1
2

H11 +H22 ±
�
ðH11 −H22Þ2 + 4jH12j2

�1
2

( )
: (18.16)

Because H11 = H22, Eq. (18.16) can be rewritten in the alternate form

E± = H11 ± jH12j: (18.17)

The positive sign in Eq. (18.17) will apply to the outside of the hexagonal zone and the negative
sign to the inside. The discontinuity of energy across the zone boundary is

ΔE = 2jH12j: (18.18)

From Eqs. (18.7), (18.13), and (18.17), we obtain

H11 =
1
N

∑
A,A′

e−ik.ðrA−rA′Þ
Z

χ � ðr− rAÞHχðr− rA′Þ dν: (18.19)

Keeping only the nearest-neighbor integrals among the atoms A and writing

E0 =
Z

χ � ðrÞHχðrÞ dν (18.20)

and

γ0′ = −
Z

χ � ðr− ρ!′ÞHχðrÞ dν, (18.21)
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where ρ!′ = a1ðsayÞ is a vector joining the nearest neighbor among atoms A, we can show that
(Problem 18.4)

H11 = E0 − 2γ0′ cos
� ffiffiffi

3
p

kya
�
+ 2cos

�
3
2
kxa

�
cos

� ffiffiffi
3

p
2

kya
�� 	

: (18.22)

Writing

H = H0 + ðH −H0Þ, (18.23)

where H0 is the Hamiltonian of an isolated carbon atom, and using

H −H0 = V −U < 0, (18.24)

where U is the potential field of an isolated atom and V is the periodic potential of the lattice
because

H0χ = Eχ, (18.25)

(E is the energy of an electron in the 2pz state in carbon), from Eqs. (18.20), (18.21), (18.24), and
(18.25), we obtain

E0 = E −
Z

χ �ðrÞðU −VÞχðrÞ dν (18.26)

and

γ0′ =
Z

χ �ðr− ρ!′ÞðU −VÞχðrÞ dν> 0: (18.27)

Similarly, we obtain the expression for H12,

H12 =
1
N
∑
A,B

e−ik.ðrA−rBÞ
Z

χ �ðr− rAÞHχðr− rBÞ: (18.28)

Considering only the nearest-neighbor interactions in the lattice (between atoms of type A and type
B and vice versa), we write (in analogy with Eq. 18.27)

γ0 =
Z

χ �ðr− ρ!ÞðU −VÞχðrÞ dν> 0, (18.29)

where

ρ! = AB: (18.30)

It can be shown that (Problem 18.5)

H12 = −γ0
h
e−ikxa + 2 cos

� ffiffiffi
3

p
2

kya
�
e
i

�
3

2
kxa

�i
(18.31)

and

jH12j2 = γ20 1+ 4 cos2
� ffiffiffi

3
p
2

kya
�
+ 4 cos

�
3
2
kxa

�
cos

� ffiffiffi
3

p
2

kya
�� 	

: (18.32)
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From Eqs. (18.22) and (18.32), we can write

E±ðkÞ = H11 ±H12 = E0 − γ0′ f ðkÞ± γ0½3+ f ðkÞ�1/2, (18.33a)

where

f ðkÞ = 2 cos ð
ffiffiffi
3

p
kyaÞ+ 2 cos

�
3
2
kxa

�
cos

� ffiffiffi
3

p
2

kya
�� 	

: (18.33b)

The energies at the various points in the Brillouin zone can be written as

Γ: E = E0 − 3γ0 − 6γ0′,
N: E = E0 + 3γ0 − 6γ0′,
K: E = E0 + 3γ0′,

M ðinsideÞ: E = E0 − γ0 + 2γ0′,
MðoutsideÞ: E = E0 + γ0 + 2γ0′:

(18.34a)

Across the boundary at any point over a side of the zone (Figure 18.3), there is a discontinuity of
energy of amount

2γ0 2 cos
� ffiffiffi

3
p
2

kya
�
− 1

� 	
, (18.34b)

which is a maximum at the center and decreases to zero at the corners. The degeneracy at K and
similar points (called Dirac points) and the zero-energy gap at these points are consequences of the
symmetry of the lattice and are independent of any approximation.

The energy contours are given by

E = E0 − 3γ0 − 6γ0′+
3
4
ðγ0 + 6γ0′Þðk2x + k2y Þ a2: (18.35)

The curves of constant energy are shown in Figure 18.4.
It may be noted that near the corners K or K′ (Dirac points),

jE−EK j = 3γ0′±
3
2
γ0jk−Kja− 9

4
γ0′jk−Kj2a2: (18.36)

The surfaces of constant energy are circular. If
one neglects γ0′ relative to γ, Eq. (18.36) can be
rewritten near the corners of the zone,

jE−EK j≈ 3
2
γ0ajk−Kj+O½ðq
K2Þ�

≈ 3
2
γ0ajqj+O½ðq
K2Þ�, (18.37)

which can be rewritten in the alternate form

E±ðqÞ≈ vFjqj+O½ðq
KÞ2�, (18.38)

K

K ′

FIGURE 18.4

Curves of constant energy.
Reproduced from Wallace19 with the permission of the American

Physical Society.
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where q is the momentum (in units ħ = 1) measured relatively to the Dirac points, and vF is the
Fermi velocity,

vF = 3γ0a/2: (18.39)

The numerical value of vF ≈ 1× 106 m/s. From Eqs. (18.36) and (18.39), we obtain

E±ðqÞ = 3γ0′± vF jqj+O½ðq
KÞ2�: (18.40)

Conduction in the graphene layer will take place through the electrons excited into the upper band
and through the equal number of positive holes created in the lower band, as shown in Figure 18.5.

For moderate temperatures, NðEÞ is even in ∈ = jE−EK j over the whole range in which the Fermi
distribution f ðEÞ is different from its value at absolute zero. One can write ξ = EK and express

f ðEÞ = f ð∈Þ = 1

ðe∈/kBT + 1Þ: (18.41)

It is interesting to note that the original tight-binding method, used by Wallace19 in 1947 as a first
approximation for the calculation of band structure of a single layer of graphite, is now being widely
used to study the energy bands of graphene.

The tight-binding Hamiltonian for electrons in graphene can be written in the second-quantiza-
tion form1 (in units such that ħ = 1),

Ĥ = −t ∑
<i,j>,σ

ðâ†i,σ b̂j,σ +H:c:Þ−t′ ∑
<<i,j>>,σ

ðâ†i,σâj,σ + b̂
†

i,σ b̂j,σ +H:C:Þ, (18.42)

where â†i,σðâi,σÞ are the creation and annihilation operators with spin σ ðσ = ↑, ↓Þ on site Ri on sub-

lattice A, and b̂
†

j,σðbj,σÞ are the corresponding operators on site Rj on sublattice B.
Here, tð≈ 2:7 eVÞ is the nearest-neighbor hopping energy (between A and B), and t′ = −0:2 t is

the next nearest-neighbor hopping energy (between two A’s or two B’s). We note that t = γ0 and
t′ = γ0′ in Wallace’s theory.

The electronic dispersion in the honeycomb lattice is shown in Figure 18.6, for finite values of
t = 2:7 eV and t′ = −0:2 t: We also note the most striking difference between the results of Eq. (18.39)
and the usual case in which ∈ðqÞ = ħ2q2/2m, where m is the electron mass. In Eq. (18.39), the Fermi
velocity vF does not depend on the energy and momentum while in the usual case, v = ħk/m =

ffiffiffiffiffiffiffiffiffiffiffi
2E/m

p
,

and hence the velocity changes substantially with energy. We also note that the presence of the second-
order terms (arising due to t′ in Eq. 18.40) shifts
in energy the position of the Dirac point and
breaks the electron-hole symmetry.

18.1.4 Dirac Fermions
Graphene’s charge carriers have a particularly
unique nature. Its charge carriers mimic relativistic
particles and are described starting with the Dirac
equation rather than the Schrodinger equation.
The interaction of the electrons with the gra-
phene’s honeycomb lattice gives rise to new

N(E)

EK E

FIGURE 18.5

The form of the electronic energy states, NðE Þ,
near EK .
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quasiparticles, which, at low energies E, are accurately described by the (2+ 1)-dimensional Dirac equa-
tion with an effective speed of light vF ≈ 106 m−1s−1. These quasiparticles are called massless Dirac
fermions. They can be viewed as electrons that have lost their rest mass me or as neutrinos that have
acquired the electron charge e. The reason the quasiparticles are known as Dirac fermions is as follows.

The Dirac equation for an electron in a periodic potential V can be written as

Ĥϕi = ðc α! . p!+ βmec
2 + IVÞϕi = εiϕi, (18.43)

where

α! = 0 σ!
σ! 0

� 	
, β =

E 0
0 −E

� 	
, I =

E 0
0 E

� 	
, (18.44)

σ! is the Pauli spin matrix vector, E is a 2× 2 unit matrix, p! is the momentum operator, me is the rest
mass of the electron, and ϕi is a four-component Bloch function with an energy εi: The suffix i sig-
nifies a set of the wave vector, band index, and spin direction and is limited to positive energy states.

Graphene is a zero-gap semiconductor, in which low-E quasiparticles within each valley can be
described by the Dirac-like Hamiltonian

Ĥ = ħvF
0 kx − iky

kx + iky 0

� �
= ħvF σ! . k

!
: (18.45)

Eq. (18.43) can be approximated by Eq. (18.45) when the k-independent Fermi velocity vF plays the
role of the velocity of light c, p! = ħk

!
, and because the electrons are fermions, they are called Dirac

fermions. The honeycomb lattice is made up of two equivalent carbon sublattices A and B, and the
cosine-like energy bands associated with the sublattices intersect at zero E near the edges of the
Brillouin zone, giving rise to conical sections of the energy spectrum. The electronic states at the inter-
section of the bands are composed of states belonging to the different sublattices, and their relative
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FIGURE 18.6

Left: Energy spectrum (in units of t) for t = 2:7 eV and t ′ = −0:2 t : Right: Close-up of the energy bands
near to one of the Dirac points.

Reproduced from Castro Neto et al.1 with the permission of the American Physical Society.
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contributions are taken into account by using two-component wave functions (spinors). The index to
indicate sublattices A and B is known as pseudospin σ! because it is similar to the spin index (up and
down) in quantum electrodynamics (QED). The real spin of the electrons must be described by addi-
tional terms in the Hamiltonian. Because the QED-specific phenomena are often inversely proportional
to c and because c/vF ≈ 300, the pseudospin effects usually dominate over those due to the real spin.

One can introduce the concept of chirality, which is formally a projection of σ! on the direction
of motion k

!
, and is positive (negative) for electrons (holes). Chirality in graphene signifies the fact

that k
!

electrons and − k
!

hole states originate from the same sublattice. The concepts of chirality
and pseudospin are important because they are conserved quantities.

18.1.5 Comprehensive View of Graphene
A comprehensive view of the unit cell of monolayer, bilayer, and trilayer graphene and the first
Brillouin zone with its high symmetry points are shown in Figure 18.7.

18.2 FULLERENES
18.2.1 Introduction
If one forms a vapor of carbon atoms and lets them condense slowly while keeping the temperature
high, as the intermediate species grow, there is a path where the bulk of all reactive kinetics follows
that make spheroidal fullerenes. There are two types of fullerenes that are famous for different rea-
sons. The “Buckminsterfullerene” ðC60Þ is the most symmetric of all possible molecules. In addition,
it is possible by adding a few percent of other atoms (nickel and cobalt) to trick the carbon into mak-
ing tubes. The (10,10) fullerene nanotube is the most famous nanotube. The propensity for bonding
that causes C60 to be the end point of 30−40% of all the reactive kinetics leads to the (10,10)
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FIGURE 18.7

A top view of (a) unit cell of monolayer graphene, showing the inequivalent atoms A and B and unit vectors
a1 and a2; (b) real-space bilayer graphene in which the light-/dark-gray dots and black circles/black dots
represent the carbon atoms in the upper and lower layers; (c) the unit cell and the x̂ and ŷ unit vectors of
bilayer graphene; (d) the same as (c) for trilayer graphene; and (e) the reciprocal space unit cell showing
the first Brillouin zone with its high symmetry points.

Reproduced from Malard et al.12 with the permission of Elsevier.
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nanotube. The metal atoms (nickel and cobalt) prevent the addition of the seventh, eighth, and ninth
pentagons, and ultimately, the growing tubelet can anneal to its most energetically favored form.

The idea that C60 would form a stable molecule originated from Euler’s rule stating that a solid
figure with any even number n of 24 or more vertices could be constructed with 12 pentagons and
ðn− 20Þ/2 hexagons. The spheroidal carbon–cage carbon molecules consisting only of pentagons
and hexagons were given the generic name “fullerenes.”

18.2.2 Discovery of C60
The truncated icosahedron form of C60 is shown in Figure 18.8. It was discovered by Kroto et al.9

by using a supersonic laser-vaporization nozzle source, as shown in Figure 18.9a.
C60 is chemically a very stable structure. Cluster “cooking” reactions in the “integrating cup” were

responsible for the C60 cluster’s becoming over 50 times more intense than any other cluster in the
nearby size range. The up-clustering reactions with small carbon chains and rings reacted away nearly

all clusters except for C60, which survived because
of its perfect symmetry. C60 does not have any
dangling bonds because the valences of every
carbon atom are satisfied. There is no specific
point of chemical attack because every atom is
equivalent by symmetry. While curving the intrin-
sically planar system of double bonds into a sphe-
rical shape, strain is introduced. However, this
strain is uniformly and symmetrically distributed
over the molecule. No other structure has this high
degree of symmetry, and hence, the experimental
observation that carbon-vapor condensation condi-
tions could be found where the intensity of the
mass spectrum peak of the C60 in the carbon cluster
beam was many times the intensity of any of its
near neighbors in mass is shown in Figure 18.9b.

FIGURE 18.8

Truncated icosahedron C60, popularly known as
“Buckminsterfullerene.”

Reproduced from Curl 2 with the permission of the American

Physical Society.

Vaporization laser

Integration cup

10atm
helium

Rotating graphite disk

FIGURE 18.9a

Schematic cross-sectional drawing of the supersonic laser-vaporization nozzle source used in the discovery
of fullerenes.

Reproduced from Smalley 16 with the permission of the American Physical Society.
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To confirm the existence of C60, Kroto and
coworkers9 made two pioneering NMR experi-
ments. The first experiment was done on a solu-
tion of C60 with benzene, which yielded a very
strong resonance line at 128 ppm (for benzene)
and a very tiny NMR trace in which C60 reso-
nance was identified at 143 ppm. However,
a second experiment (Ref. 18) in which C-NMR
spectrum obtained from chromatographically
purified samples of soluble material extracted
from arc-processed graphite, yielded a spectrum of
purified C60, in which a strong resonance was
obtained at 143 ppm. This result is shown in
Figure 18.10.

44 52 60 68 76 84

Carbon atoms per cluster

FIGURE 18.9b

Intensity of the mass spectrum peak of the C60 in the
carbon cluster beam relative to its neighbors in mass.

Reproduced from Curl 2 with the permission of the American

Physical Society.
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FIGURE 18.10

C-NMR spectrum of (a) purified C60 (143 ppm); (b) mixed sample; (c) purified C70 (five lines).
Reproduced from Kroto8 with the permission of the American Physical Society.
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The fullerenes have a wide variety of technological applications. An example of a fullerene-based
n-channel FET is shown in Figure 18.11. A highly doped n-type silicon wafer takes the place of the
gate metal, a ∼30−300 nm thick layer of SiO2 serves as the oxide, and the fullerene film serves as the
semiconductor.

When an appropriate positive gate voltage VG is applied, the drain current ID increases, which
indicates that a conduction channel is formed near the fullerene-insulator interface.

Another application of fullerene is in C60 photolithography. The sequence of steps (deposition,
exposure, development, and pattern transfer) used in photolithography, in which C60 acts as a nega-
tive photoresist, is shown in Figure 18.12.

One of the many important potential applications of fullerenes is the nature of the fullerenes
and metallic and semiconductor substrates. Direct rectification between solid C60 and p-type
crystalline Si has been shown in Nb/Co60/p-Si and Ti/Co60/p-Si heterojunctions, which are
strongly rectifying. Because the potential barriers at the Nb-C60 and Ti-C60 interfaces are close to
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(source)
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(gate)

D
(drain)
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Cr
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Cr

n+Si

VG

VD

ID

(VD ≥ 0)
D

FIGURE 18.11

(a) The terminal designations and blasting conditions for Si-based MOSFETs. G, D, B, and S, respectively,
denote the ground, drain, base, and source. (b) The corresponding structure for the fullerene C60 device.

Reproduced from Dresselhaus et al.3 with the permission of Elsevier.
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C60 Photolithography

Si water

Mask

(a) C60 deposition by thermal sublimation

(b) UV exposure

(c) Negative developing

(d) Postprocess etching

(e) Removal of C60 in solvents

Organic solvents Thermal sublimation Photon irradiation

C60

FIGURE 18.12

Sequence of steps of C60 photolithography.
Reproduced from Dresselhaus et al.3 with the permission of Elsevier.
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zero, it is the C60/p-Si interface that is responsible for the strong rectifying properties of
the heterostructure. A schematic cross-section of the Nb/C60/p-Si interface is shown in
Figure 18.13.

18.3 FULLERENES AND TUBULES
18.3.1 Introduction
The fullerene nanotube (10,10) mentioned in the
introduction of the previous section, with one
end open, is shown in Fig. 18.14. The (10,10)
tube is formed because the metal atoms frustrate
the ability of the open edge to curve in and
close. The addition of the seventh, eighth, and
ninth pentagons is prevented, and by appropriate
choice of temperature and reaction rate, the
growing tubelet can anneal to its most energeti-
cally favored form.

The closed end is a hemifullerene dome (one
half of C240), whereas the other end is left open.
These ends are directly amenable to the forma-
tion of excellent C-O, C-N, or C-C covalent
bonds to attach any molecule, enzyme, mem-
brane, or surface to the end of the tube. If two
objects A and B are attached to the two ends,
they will communicate with each other by
metallic transport along the tube. Thus, the
(10,10) tube is a metallic wave guide for
electrons.

Vbias

Nb or Ti
C60

p-Si

Al ohmic contact

FIGURE 18.13

Schematic cross-section of an Nb/C60/p-Si structure used as a heterojunction diode.
Reproduced from Dresselhaus et al.3 with the permission of Elsevier.

FIGURE 18.14

Section of a (10,10) fullerene nanotube with one end
open.
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18.3.2 Carbon Nanotubeles
It is convenient to specify a general carbon nanotubule in terms of the tubule diameter dt and the
chiral angle θ, which are shown in Figure 18.15 as the rectangle bounded by the chiral vector OA
or Ch. The chiral vector

Ch = na1 +ma2 (18.46)

is defined on the honeycomb lattice by unit vectors a1 and a2. Ch connects two crystallographically
equivalent sites O and A on a two-dimensional graphene sheet where a carbon atom is located at
each vertex of the honeycomb structure. Figure 18.15 shows the chiral angle θ of the nanotube with
respect to the zigzag direction ðθ = 0Þ and the unit vectors a1 and a2 of the hexagonal honeycomb
lattice. The armchair tubule (Figure 18.16a) corresponds to θ = 30° on this construction. An ensem-
ble of chiral vectors can be specified by Eq. (18.46) in terms of pairs of integers ðn,mÞ, and this
ensemble is shown in Figure 18.17. Each pair of integers ðn,mÞ defines a different set of rolling the
graphene sheet to form a carbon nanotube.

Along the zigzag axis θ = 0°: Also shown in the figure is the basic translation vector OB=T of
the 1D tubule unit cell, and the rotation angle ψ and the translation τ, which constitute the basic
symmetry operation R = ðψ jτÞ. The integers ðn,mÞ uniquely determine the tubular diameter dt and θ.
The diagram is constructed for ðn,mÞ = ð4, 2Þ.

18.3.3 Three Types of Carbon
Nanotubes

When the two ends of the vector Ch are super-
imposed, the cylinder connecting the two hemi-
spherical caps of Figure 18.16 is formed. The
line AB′ (in Figure 18.15) is joined to the paral-
lel line OB, where the lines OB and AB′ are per-
pendicular to the vectors Ch at each end. There
are no distortions of the bond angles in the
chiral tubule except the distortions caused by
the cylindrical curvature of the tubule. Differ-
ences in the tubular diameter dt give rise to the
differences in the various properties of carbon
nanotubes. The vectors ðn, 0Þ denote zigzag
tubules, and the vectors ðn, nÞ denote armchair
tubules. The larger the value of n, the larger
the tubule diameter. The ðn, 0Þ and ðn, nÞ have
high symmetry and exhibit a mirror symmetry
plane normal to the tubular axis. The other vec-
tors ðn,mÞ correspond to chiral nanotubes.
Because both right- and left-handed chirality are
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B′
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a1

Ch

B

τ

FIGURE 18.15

The 2D graphene sheet is shown along with the
vector that specifies the chiral nanotube.

Reproduced from Dresselhouse et al.4 with the permission

of Elsevier.
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possible for chiral nanotubes, the chiral tubules are optically active to either right- or left-circularly
polarized light propagating along the tubule axis.

The tubular diameter dt is given by

dt = Ch/π =
ffiffiffi
3

p
aC−Cðm2 +mn+ n2Þ1/2/π, (18.47)

where aC−C is the nearest-neighbor C–C distance, Ch is the length of the chiral vector C
!

h, and the
chiral angle θ is given by

θ = tan−1½
ffiffiffi
3

p
m/ðm+ 2nÞ�: (18.48)

The three types of carbon nanotubes are shown in Figure 18.16.
Figure 18.17 shows the number of distinct caps that can be formed theoretically from pentagons

and hexagons, such that each cap fits continuously onto the cylinder of the tubule, specified by a
given ðn,mÞ pair. It shows that the hemispheres of C60 are the smallest caps that satisfy these
requirements, so that the smallest carbon nanotube is expected to be 7A° , which is in agreement
with the experiment. Figure 18.17 also shows that the number of possible caps increases rapidly
with increasing tubular diameter. Below each pair of integers ðn,mÞ is listed the number of distinct
caps that can be joined continuously to the cylindrical carbon tubule denoted by ðn,mÞ.

Due to the point group symmetry of the honeycomb lattice, several values of ðn,mÞ will give
rise to equivalent nanotubes. Therefore, one restricts consideration to the nanotubes arising from the
30° wedge of the 3D Bravais lattice shown in Figure 18.17. Because the length-to-diameter ratio of

(a)

(b)

(c)

FIGURE 18.16

Three types of nanotubes obtained by rolling a graphene sheet into a cylinder and capping each end of the
cylinder with half of a fullerene molecule; a “fullerene-derived tubule” that is one atomic layer in thickness
is formed: (a) θ = 30° (an armchair tubule); (b) θ = 0° (a) zigzag tubule; and (c) chiral tubule.

Reproduced from Dresselhaus et al.4 with the permission of Elsevier.
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carbon nanotubes is >103 while the diameter is only ∼10 A° , carbon nanotubes are an important
system for studying one-dimensional physics.

18.3.4 Symmetry Properties of Carbon Nanotubes
To study the properties of carbon nanotubes as 1D systems, we define the lattice vector T along the
tubule axis normal to the chiral vector Ch defined in Eq. (18.46) and Figure 18.15. The vector T
defines the unit cell of the 1D carbon nanotube. The length T of the translation vector T corre-
sponds to the first lattice point of the 2D graphene sheet through which the vector T passes. Thus,
we obtain from Figure 18.15 and these definitions

T = ½ð2m+ nÞa1 − ð2n+mÞa2�


dR, (18.49)

with a length

T =
ffiffiffi
3

p
Ch



dR: (18.50)

The length Ch is defined in Eq. (18.47). Defining d as the highest common divisor of ðn,mÞ, we
have

dR =
d if n−m is not a multiple of 3d
3d if n−m is a multiple of 3d:

�
(18.51)

The relation between the fundamental symmetry vector R = pa1 + qa2 of the 1D unit cell and the
two vectors that specify the carbon nanotube ðn,mÞ, the chiral vector Ch, and translation vector T
are shown in Figure 18.18.
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FIGURE 18.17

The 2D graphene sheet that specifies the chiral nanotube.
Reproduced from Dresselhaus et al.4 with the permission of Elsevier.
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The projection of R on the Ch and T axes
yields ψ and τ. X in the figure is ψ scaled by

Ch/2π:

18.3.5 Band Structure of a Fullerene
Nanotube

The electronic band structure of a (10,10) fuller-
ene nanotube was first calculated by Dresselhaus
et al.3 by using tight-binding methods and by
using zone folding from the band structure of an
infinite 2D graphene sheet. Their results are
shown in Figure 18.19.

As one can see in Figure 18.19, the two
bands that cross the Fermi energy at ka = −2π/3
have different symmetry and guarantee that the
tube will be a metallic conductor.

18.4 POLYMERS
18.4.1 Introduction
A long chain of molecules that has a backbone
of carbon atoms is known as a polymer. The
basic building block, which usually but not
necessarily consists of one carbon atom and two
hydrogen atoms, is known as a monomer.
A polymer is formed by repeating the structure
of the monomer over and over again. In fact, a
single polymer can be constituted from several
thousand monomers.

Materials composed from polymers, such as
bone, wood, skin, and fibers, have been used
by man since prehistoric times. However, polymer
science was developed in the twentieth century
by Hermann Staudinger, who developed the

concept of macromolecules in the 1920s. Wallace Carothers showed the great industrial poten-
tial of synthetic polymers and invented nylon in 1935. Synthetic polymers are now used in
large quantities in a variety of applications. In the 1950s, Ziegler and Natta discovered polymer-
ization catalysts, which led to the development of the modern plastics industry. Some of the
most popularly known polymers are rubber, plastic, and Teflon. They do not have any common
property other than the fact that they are lightweight, flexible, resistant to corrosion, and easy to
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FIGURE 18.18

Relation between R, Ch , and T .

Reproduced from Dresselhaus et al.3 with the permission of

Elsevier.
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Band structure of a (10,10) fullerene nanotube,
calculated by Dresselhaus et al., using zone folding
from the band structure of an infinite 2D graphene
sheet.
Reproduced from Dresselhaus et al. (Ref. 3) with the permission

of Elsevier.

18.4 Polymers 617



mold or cut into any desired shape. Some polymers such as rubber are very elastic and can be
deformed very easily. Other polymers that have similar elastic property to rubber are known as
elastomers.

Paul Flory created modern polymer science through both experimental and theoretical studies of
“macromolecules.” A polymer is essentially a giant molecule. There are a variety of ways in which
giant molecules can be obtained. Other examples of such giant molecules are branched polymers, in
which hydrogen atoms are replaced by any of the halogen elements that need one electron to have
a filled subshell. When the hydrogen atoms are replaced by molecules, more complex polymers are
obtained. A third alternative is that the carbon chain can be replaced by silicon atoms. In view of
the fact that there is a huge variety of ways in which polymers can be obtained, and the fact that
they can be easily and cheaply produced, there is a great deal of excitement in finding new ways of
obtaining and using complex polymers.

18.4.2 Saturated and Conjugated Polymers
In the saturated polymers studied by Staudinger, Flory, Ziegler, and Natta, all four valence electrons
of carbon are used up in covalent bonds, and hence, they are insulators. Therefore, they are viewed
as unsuitable for use as electronic materials. In contrast, in conjugated polymers, the chemical bond-
ing leads to one unpaired electron (the π electron) per carbon atom. The carbon orbitals are in the
sp2pz configuration in the π bonding. Because the orbitals of the successive carbon atoms overlap,
the electrons are delocalized along the backbone of the polymer, which provides the path for charge
mobility along the polymer chain. The molecular structure of some conjugated polymers is shown
in Figure 18.20. The bond-alternated structure of polyacetylene is characteristic of conjugated poly-
mers, which are typically semiconductors.

The electronic structure of conducting polymers can be determined by the symmetry of the
chain. These polymers can exhibit either metallic or semiconducting properties. These electrically
conducting polymers are known as the “fourth generation of polymeric materials.”

The electronic structure in conducting polymers is determined by the number and kinds of atoms
within the repeat unit (chain symmetry). The classic example is trans- and cis-polyacetylene, (-CH)n,
which is shown in Figure 18.21.

In polyacetylene, if the carbon–carbon bond lengths were equal, the chemical formula, (-CH)n
with one unpaired electron per formula unit, would yield a metallic state. If the electron–electron
interactions were too strong, (-CH)n would be an antiferromagnetic Mott insulator, a possibility that
has been eliminated through a variety of studies together with the fact that these are easily con-
verted to a metallic state on doping.

The structure in polyacetylene is dimerized due to Peierls instability with two carbon atoms in
the repeat unit, ð�CH = CHÞn. Thus, the π band is divided into π and π� bands, each of which can
hold two electrons per atom (spin-up and spin-down). The π − π� energy gap Eg implies that there
are no partially filled bands and polyacetylene is a semiconductor. However, the electrical conduc-
tivity of polyacetylene can be increased by more than a factor of 107 to a level approaching that of
a metal by using a dopant. The electrical conductivity of trans-(CH), as a function of (AsF5) dopant
concentration, is shown in Figure 18.22.

However, until 1990, there were no known examples of stable metallic polymers. It was
shown that polyaniline (PANI) could be rendered, conducting either through oxidation of the
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Molecular structures of some conjugated polymers (bond-alternated structures).
Reproduced from Heeger6 with the permission of the American Physical Society.
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leucoemeraldine base or protonation of the
emeraldine base. Eventually, protonic acids
were used to both convert PANI to metallic
form and render the resulting PANI complex
soluble in common organic solvents. The pro-
cessibility of PANI induced by the “surfactant”
counterions has made possible the fabrication
of conducting polymer blends with a variety of
host polymers. The “surfactant” counterions
led to the formation of a self-assembled net-
work, due to which the PANI network remains
connected and conducting even after the
removal of the host polymer. This led to the
fabrication of novel electrodes for use in elec-
tronic devices.

The chemistry and physics of these poly-
mers in the semiconducting state are also of
great interest since their application to “plastic
electronic” devices. The polymer diodes were
fabricated in the 1980s and the light-emitting
diodes (LEDs) in 1990. The other “plastic”
optoelectronic devices include lasers, high-
sensitivity plastic photodiodes, photovoltaic
cells, ultrafast image processors, thin-film tran-
sistors, and all-polymer integrated circuits. All
these are fabricated semiconducting and metal-
lic polymers that are thin-film devices in which
the active layers are fabricated by casting the
semiconducting and/or metallic polymers from
solution.
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C

H

C
C

H

H

C
C

H

H

C
C

H

H

C

H

C C

H

H H

C
H

C C

H

H H

C C C
H

C C

0.00

σ 
(Ω

-c
m

)−1

10−6

10−5

10−4

10−3

10−2

10−1

1

10

100

1000

0.05 0.10 0.15

y

0.20

CIS

TRANS

Trans[CH(AsF5)y]x

0.05 0.30

FIGURE 18.22

Electrical conductivity of trans-ðCHÞ as a function
of (AsF5) dopant concentration.
Reproduced from Heeger6 with the permission of the American

Physical Society.

620 CHAPTER 18 Novel Materials



18.4.3 Transparent Metallic Polymers
In conventional metals, the length of the interchain spacing and of the repeat unit are large com-
pared to the interatomic distances. However, in metallic polymers, N, the number of electrons per
unit volume is on the order of N ∼ 2− 5× 1021 cm−3: The plasma frequency (the frequency below
which the metals reflect light) is given by

ω2
p = 4πNe2/m�, (18.52)

where m� is the effective mass of the electrons. Thus, the plasma frequency of metallic polymers is
on the order of 1 eV: Hence, they are semitransparent in the visible part of the spectrum but exhi-
bit high reflectance in the infrared. Therefore, optical-quality thin films of metallic polymers are
used as transparent electrodes. Transparent conducting films are used as antistatic coatings, as elec-
trodes in liquid-crystal display cells or in polymer LEDs, or for fabricating electrochromic
windows.

18.4.4 Electronic Polymers
Electronic polymers are those polymers of which the conductivity can be increased by several
orders of magnitude, which can be obtained by doping. The increase of conductivity of electronic
polymers by doping is shown in Figure 18.23.

In Figure 18.23, trans-(CH)x and the emeraldine base form of polyamine are shown to give an
example of the increase in electrical conductivity by doping. Electronic polymers are extensively
used in light-emitting diodes. In addition, superconductivity has been discovered in regioregular
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Reproduced from MacDiarmid11 with the permission of the American Physical Society.
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poly (3-hexylthiophene) around a critical temperature of 2º K. The future application of this amazing
discovery is still being speculated.

18.5 SOLITONS IN CONDUCTING POLYMERS
18.5.1 Introduction
Trans-polyacetylene (trans-(CH)x) was the first highly conducting organic polymer. The simple
molecular structure −CH− units are repeated, which implies that each carbon contributes a single pz
electron to the π band, and as a result, the π band would be half-filled. Thus, polyacetylene would be
a one-dimensional metal. However, in 1955, Peierls showed that 1D metals are unstable with respect
to a structural distortion that opens up an energy gap at the Fermi level; thereby, 1D metals end up as
semiconductors. The periodicity of the Peierls distortion is Λ = π/kF , where the Fermi wave vector
kF = 2π/a for the half-filled band of trans-(CH)x. Hence, it converts trans-polyacetylene into trans-
ð−HC = CH−Þx, which is essentially alternating single and double bonds, as shown in Figure 18.24a.

However, a chain of monomers can be dimerized in two distinct patterns, both of which have
the same energy (the degenerate A and B phases), as shown in Figure 18.24b.

Thus, in addition to electron and hole excitations in a dimerized semiconductor, a domain wall
separates regions of different bonding structures or different vacua, which would be a new type of
excitation. The large width of the domain walls leads to a small effective mass for the excitations,
on the order of electron mass instead of the ionic mass. The domain-wall excitation, which propa-
gates freely, has been called a “soliton.” Because a moving soliton converts A− phase material into
B− phase material (or vice versa), these objects can only be created or destroyed in pairs. The crea-
tion of a soliton is shown in Figure 18.24c.

As we will see, because the midgap state is
a solution to the Schrodinger equation in the
presence of the structural kink, it can be occu-
pied with zero, one, or two electrons. However,
a charged soliton, which has either zero or two
electrons in the gap state, carries a charge ±e
and has spin zero, rather than the spin 1

2
as for

an electron or a hole. These reversed spin-
charge relations are a fundamental feature of the
soliton model of polyacetylene and are sup-
ported by experiment.

The π band of (CH)x is split into two sub-
bands: a fully occupied π band (valence band)
and an empty π� band (the conduction band),
each with a wide bandwidth ð∼5 eVÞ and sig-
nificant distortion. The resulting band structure
results from the opening of the band gap that
originates from the doubling of the unit cell.
This is shown in Figure 18.25.

(a)

(b)

(c)

FIGURE 18.24

(a) Dimerized structure due to Peierls instability.
(b) Degenerate A and B phases of dimerized
structure. (c) Soliton in trans-polyacetylene.
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18.5.2 Electronic Structure
The electronic structure of conjugated polymers
(SSH) was described by Su et al.17 by using a
tight-binding model in which the π electrons are
coupled to distortions in the polymer backbone
by the electron–phonon interaction. In the SSH
model, photoexcitation across the π − π� band
gap creates the excitations of conducting
polymers: solitons (in degenerate ground-state
systems), polarons, and bipolarons. Direct
photogeneration occurs due to the overlap
between the uniform chain in the ground state
and the distorted chain in the excited state.

18.5.3 Tight-Binding Model
Each (CH) group (Figure 18.26) has six degrees of freedom for nuclear translation. Su et al.17

postulated that only the dimerization coordinate un, which specifies the displacement of the nth
group along the molecular symmetry group, is important. The tight-binding Hamiltonian can be
written as

H = Hπ +Hπ−ph +Hph

= ∑
n,s
½−t0 + αðun+1 − unÞ�ðc†n+1,scn.s + c†n,scn+1,sÞ+∑

n

p2n
2M

+ 1
2
Kðun+1 − unÞ2

� 	
,

(18.53)

where pn are the nuclear momenta, un are the displacements from equilibrium, M is the carbon
mass, and K is an effective spring constant. The c†n,s, cn,s are the fermion creation and annihila-
tion operators for site n. The first term describes the hopping of πðpzÞ electrons along the chain
without spin flip. The second term describes the π− electron–phonon interaction where the terms
linear in un dominate higher-order terms for the weak-coupling systems. The last two terms are,
respectively, a harmonic “spring constant” term, which represents the increase in potential energy
that results from displacement from the uniform bond lengths in (CH)x, and a kinetic energy
term, where M is the mass of the (CH) group and pn is the momentum conjugate to un:

k

E

2a

2t0

−2t0

π

Δ0

−Δ0
0

FIGURE 18.25

Band structure of polyacetylene. Energy opening at
k = 2π/a due to Peierls distortion.

un

un−1 un+1

x

FIGURE 18.26

Dimerization coordinate un defined for trans-(CH)x.
Reproduced from Heeger et al. (Ref. 7), with the permission of the American Physical Society.

18.5 Solitons in Conducting Polymers 623



18.5.4 Soliton Excitations
The ground state of a one-dimensional metal is spontaneously distorted to form a charge-density
wave <un>≠ 0, as per Peierls theorem. The strongest instability occurs for a charge-density wave
of wave number Q = kF = π/a, and hence, we consider the adiabatic ground-state energy E0 as a
function of the mean amplitude of distortion u, where the un’s are considered to be

un ! <un> = ð−1Þnu: (18.54)

For un given by Eq. (18.54), Hπ−ph is invariant under spatial translation 2ma, m = ±1, ±2,…, and
H can be diagonalized in k space in the reduced zone, −π/2a< k< π/2a, for the valence ð−Þ and
conduction (+) bands. For a chain of monomers of ring geometry, we obtain (Problem 18.6)

ĤðuÞ = −∑
n,s
½t0 + ð−1Þn2αu�ðĉ†n+1,sĉn,s + ĉ†n,sĉn+1,sÞ+ 2NKu2: (18.55)

For α = 0, HðuÞ can be made diagonal by using the Bloch operators,

ĉks = ðN−1/2Þ ∑
n,s

e−iknaĉns (18.56)

in the extended zone, where −π/a< k≤ π/a.
For α ≠ 0, the big zone can be folded into the little zone, as shown in Figure 18.27. The

valence- and conduction-band operators are defined as

ĉks− = ðNÞ−1/2∑
n,s

e−ikna ĉns (18.57)

and

ĉks+ = −iðNÞ−1/2∑
n,s
e−iknað−1Þnĉns: (18.58)

From Eqs. (18.55), (18.57), and (18.58), we obtain (Problem 18.8)

ĤðuÞ = ∑
ks

h
εkðĉ†ks+ ĉks− − ĉ†ks−ĉks−Þ+Δkðĉ†ks+ ĉks− + ĉ†ks−ĉks+ Þ

i
+ 2NKu2, (18.59)

where Δk, the energy gap parameter, is defined as

Δk = 4αu sin ka: (18.60)

In the reduced zone, the unperturbed band energy
is defined as

εk = 2t0 coska, ð−πÞ/ð2aÞ< k<ðπÞ/ð2aÞ,
(18.61)

where εk describes particles for (+) and holes for
ð−Þ. We now convert H in Eq. (18.59) to a diag-
onal form by making the transformation

âks− = αkĉks− − βkĉks+

εk

C

V

k− −a
π

a
π

2a
π

2a
π

FIGURE 18.27

The reduced and extended zone schemes.
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and

âks+ = βkĉks− + αkĉks+: (18.62)

We have, in analogy with BCS theory of superconductivity,

jαkj2 + jβkj2 = 1, (18.63)

so that the a’s satisfy the Fermi anticommutation relations. Because H has no term that mixes the
ð+ Þ and ð−Þ operators, we obtain from Eq. (18.59) through (18.62)

H = ∑
k
Ekðnks+− nks−Þ+ 2NKu2: (18.64)

The quasiparticle energy is given by (in analogy with BCS superconductivity theory)

Ek = ð∈2
k +ΔkÞ1/2, (18.65)

αk = ½ð1+ εk/EkÞ/2Þ�1/2, (18.66)

βk = ½ð1− εk/EkÞ/2Þ�1/2 sgnΔk, (18.67)

and

αkβk = Δk/ð2EkÞ: (18.68)

If one were to clamp un at the ground-state mean-field value, ð−1Þnu, the chain would behave as a con-
ventional semiconductor with electron and hole excitations. However, because of the two-fold-degenerate
ground-state Eðu0Þ = Eð−u0Þ, the system supports nonlinear excitations, which act as moving walls
separating the A phase ð+ u0Þ and B phase ð−u0Þ.This is shown in Figure 18.28, which implies that
the nonlinear excitations, solitons, will bef important. To determine the soliton, one introduces

φn = ð−1Þnun, (18.69)

so that in the A phase, φn = u0, and in the B phase,
φn = −u0: However, numerical calculations have
shown that the form of φn, for the preferred width
ξ of the soliton that minimizes the total energy, is

φn = u0 tanh ½ðn− n0Þa/ξÞ�: (18.70)

It has been calculated that ξ≈ 7a, and the
energy to create a soliton at rest is Es ≈ 0:42 eV.
Thus, Es < 0:5 Δ, where Δ is the single-particle
gap. Thus, it is less costly to create a soliton than
an electron or hole, and they are spontaneously
generated by photoexcitation, by thermal genera-
tion, or by injection of electrons and/or holes. It

−u0 u0

u

E↑

FIGURE 18.28

The total energy of the dimerized polyacetylene
chain.
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can also be shown that for each widely spaced soliton or antisoliton (a reverse boundary from the
B phase back to the A phase), there exists a normalized single-electron state in the gap center that can
accommodate zero, one, or two electrons.

18.5.5 Solitons, Polarons, and Polaron Excitations
It can be seen from Figure 18.29c that because the nonbonding or atomic state formed by the
chain relaxation can be mapped to a specific atomic site, the resulting distribution of charge and
spin can be understood. If the state is unoccupied (doubly occupied), the carbon atom at the
boundary is left with a positive (negative) charge, but there are no unpaired spins. Therefore, the
charged soliton is positively (negatively) charged but spinless. Single occupation of the soliton
state neutralizes the electronic charge of the carbon nucleus, while introducing an unpaired spin
onto the chain. The localized electronic state associated with the soliton is a nonbonding state at
an energy that lies at the middle of the π − π� gap, between the bonding and antibonding levels
of the perfect chain.

18.6.6 Polarons and Bipolarons
A polaron can be thought of as a bound state of
a charged soliton and a neutral soliton of which
the midgap energy states hybridize to form
bonding and antibonding levels. The neutral
soliton contributes no charge and a single spin.
The charged soliton carries a charge of ±e and
no spin. The resulting polaron is a fermion with
the charge-spin relationship q = ±e and s = 1=2.
The positive polaron is a radical cation; the
negative polaron is a negative anion. Both are
quasiparticles consisting of a single electronic
charge dressed with a local geometrical relaxa-
tion of the bond lengths. The schematic picture
of polarons in PPP is shown in Figures 18.29a
and b.

A bipolaron is a bound state of two charged
solitons of like charges or two polarons of which
the neutral solitons annihilate each other with
two corresponding midgap levels. The bipolarons
are shown in Figure 18.30. Because each charged
soliton has a single electronic charge and no
spin, the bipolaron has charge ±2e and zero spin.
Both positive and negative bipolarons are doubly
charged bound states of two polarons bound
together by enhanced geometrical relaxation of
the bond lengths or the overlap of a common
lattice distortion.

Polaron
s = 1/2, q = −|e|

(a)

(b)

(c)

Negative soliton
s = 0, q = −|e|

Positive solition
s = 0, q = |e|

FIGURE 18.29

(a) Schematic picture of a polaron in
polyparaphenylene (PPP); (b) band diagram of an
electron polaron—the lower gap state is single occupied
and the upper gap state is empty for a hole polaron;
(c) band diagrams for positive and negative solitons.
Reproduced from Heeger 6 with the permission of the American

Physical Society.
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18.6 PHOTOINDUCED ELECTRON TRANSFER
The electrons are promoted to the antibonding π� band of semiconducting polymers when they are photo-
excited. The photoinduced nonlinear excitations (such as polarons) on the conjugated polymer backbone
are quite stable. Thus, semiconducting polymers are electron donors when they are photoexcited. On the
other hand, Buckministerfullerene, C60, is an excellent electron acceptor capable of accepting up to six
electrons. It forms charge-transfer salts with several types of donors. The photoinduced transfer process
from a conjugated semiconducting polymer to C60 is shown schematically in Figure 18.31.

A study of the dynamics of the photoinduced electron transfer from semiconducting polymers to C60

by Lanzani et al. (Ref. 10) demonstrated that the charge transfer occurs within 50 fs after photoexcita-
tion. This charge transfer rate is more than 1000 times faster than any other process. The quantum
efficiency for charge separation approaches one. In addition, the charge separation state is metastable.

PROBLEMS
18.1. Show that the reciprocal lattice vectors of honeycomb lattice of graphene (Figure 18.3) are

b1 =
2π
3a

ð̂i+
ffiffiffi
3

p
ĵÞ; b2 =

2π
3a

ð̂i−
ffiffiffi
3

p
ĵÞ: (1)

18.2. Show that the positions of the two Dirac points K and K′, located at the corners of the
Brillouin zone (Figure 18.3), are

K = 2π
3a

î+ 1ffiffiffi
3

p ĵ

� �
; K′ = 2π

3a
î− 1ffiffiffi

3
p ĵ

� �
: (1)

(a)

(b)

Bipolaron
s = 0, q = −2|e|

FIGURE 18.30

Bipolarons in polymer with nondegenerate ground
state. (a) Negative bipolaron in PPP; (b) band
diagram for a negative bipolaron. For a positive
bipolaron, both gap states are unoccupied.
Reproduced from Heeger6 with the permission of the American

Physical Society.
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FIGURE 18.31

Photoinduced electron transfer from a conjugated
semiconducting polymer to C60.
Reproduced from Heeger6 with the permission of the American

Physical Society.
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18.3. Show that by substituting in Eq. (18.6),

Hψ = Eψ , (1)

we obtain

H11 + λH12 = E (2)

and

H12 + λH22 = λE: (3)

Here,

H11 =
Z

ϕ1
� Hϕ1 dν, H12 = H21

� =
Z

ϕ1
� Hϕ1 dν; H22 =

Z
ϕ2

� Hϕ2 dν (4)

and Z
ϕ1

� ϕ1dν =
Z

ϕ2
� ϕ2dν = 1: (5)

18.4. It has been shown in Eq. (18.19) that

H11 =
1
N

∑
A,A′

e−ik.ðrA−rA′Þ
Z

χ � ðr−rAÞHχðr− rA′Þ dν: (1)

Keeping only the nearest-neighbor integrals among the atoms A, and writing

E0 =
Z

χ � ðrÞHχðrÞ dν (2)

and

γ0′ = −
Z

χ � ðr− ρ!′ÞHχðrÞ dν, (3)

where ρ!′ = a1ðsayÞ is a vector joining the nearest neighbor among atoms A, show that

H11 = E0 − 2γ0′½ cosð2πkyaÞ+ 2 cosðπkxa
ffiffiffi
3

p
Þ cosðπkyaÞ�: (4)

18.5. It has been shown in Eq. (18.28) that

H12 =
1
N
∑
A,B

e−ik.ðrA−rBÞ
Z

χ � ðr− rAÞHχðr− rBÞ: (1)

Considering only the nearest-neighbor interactions in the lattice (between atoms of type A
and type B and vice versa), we write (in analogy with Eq. 18.27)

γ0 =
Z

χ �ðr− ρ!ÞðU −VÞχðrÞ dv> 0, (2)
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where

ρ! = AB: (3)

Show that

H12 = −γ0½e−ikxa + 2 cos ð
ffiffiffi
3

p
kyaÞe3ikxa/2� (4)

and

jH12j2 = γ20 1+ 4 cos2
� ffiffiffi

3
p
2

kya
�
+ 4 cos

� ffiffiffi
3

p
2

kya
�

cos 
�
3
2
kxa

�� 	
: (5)

18.6. The translation vector of a general chiral tubule can be written as

T = ½ð2m+ nÞa1 − ð2n+mÞa2�


dR: (1)

The length T of the translation vector T corresponds to the first lattice point of the graphene
sheet. Show that

T =
ffiffiffi
3

p
Ch/dR, (2)

where the length Ch is defined in Eq. (18.47). Defining d as the highest common divisor of
ðn,mÞ, we have

dR =
d if n−m is not a multiple of 3d
3d if n−m is a multiple of 3d:

�
(3)

18.7. The tight-binding Hamiltonian for the polymer trans-(CH)x is given by (Eq. 18.53)

H = Hπ +Hπ−ph +Hph

= ∑
n,s
½−t0 + αðun+1 − unÞ�ðĉ†n+1,sĉn:s + ĉ†n,sĉn+1,sÞ+∑

n

p2n
2M

+ 1
2
Kðun+1 − unÞ2

� 	
:

(1)

Show that if

un ! <un> = ð−1Þnu, (2)

one can write

HðuÞ = −∑
n,s
½t0 + ð−1Þn2αu�ðĉ†n+1,sĉn,s + ĉ†n,sĉn+1,sÞ+ 2NKu2 (3)

for a chain of monomers in a ring geometry.

18.8. Show that for α = 0, HðuÞ in Eq. (3) of Problem 18.7 can be made diagonal by using the
Bloch operators,

ĉks = ðN−1/2Þ∑
n,s
e−iknaĉns, (1)

in the extended zone, where −π/a< k ≤ π/a.

Problems 629



18.9. Show that by using the operators

ĉks− = ðNÞ−1/2∑
n,s

e−ikna ĉns (1)

and

ĉks+ = −iðNÞ−1/2∑
n,s
e−iknað−1Þnĉns, (2)

Eq. (3) in Problem 18.7 can be rewritten as

HðuÞ = ∑
ks

�
εkðĉ†ks+ ĉks− − ĉ†ks−ĉks−Þ+Δkðĉ†ks+ ĉks− + ĉ†ks−ĉks+ Þ

	
+ 2NKu2, (3)

where Δk, the energy gap parameter, is defined as

Δk = 4αu sin ka: (4)

18.10. From Eqs. (18.59) through (18.62), show that

H = ∑
k
Ekðnks+ − nks−Þ+ 2NKu2: (1)
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A.1 SYMMETRY AND ITS CONSEQUENCES
A.1.1 Symmetry of Crystals
Crystalline solids possess translational symmetry as well as symmetries involving rotations and
reflections. The fundamental principle is that the quantum mechanical operators representing a
symmetry operation of a crystal must commute with the Hamiltonian of the crystal. This facilitates
the derivations of restrictions limiting possible Hamiltonians, the classification of eigenstates accord-
ing to symmetry, as well as determining the selection rules for transitions between states. Often, one
has to use group theory to consider these symmetry considerations.

A.1.2 Definition of a Group
A group has to satisfy the following three basic conditions:

a. The group must contain the unit element, generally denoted by E.
b. The product of any two elements in the group must be another element in the group.
c. The inverse of every element in the group must belong to the group.

If the members commute with each other, the group is Abelian.
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A.1.3 Symmetry Operations in Crystal Lattices
For the purpose of considering the symmetry operations of crystals as well as their reciprocal
lattices, we consider a set of symmetry operations (matrices) that form a group. We denote this
group as fGg. There are two types of such groups known as space groups and point groups.

A.2 SPACE GROUPS
A.2.1 Introduction
The elements of symmetry groups relevant to solids include translations as well as proper and
improper rotations. These are also known as space groups.

A Bravais lattice is generally characterized by the specification of all rigid operations that take
the lattice into itself. This set of operations is known as the space group or symmetry group of the
Bravais lattice. All translations through the lattice vectors of a Bravais lattice are included in
the operations of a symmetry group. In addition, rotations, reflections, and inversions can also take
the Bravais lattice into itself.

For example, a cubic Bravais lattice can be taken into itself by a rotation through 90° about a
line of lattice points in a <100> direction, a rotation through 120° about a line of lattice points in a
<111> direction, and reflection of all points in a f100g lattice plane. In contrast, a simple hexago-
nal Bravais lattice can be taken into itself by a reflection in a lattice plane perpendicular to the
c-axis, or rotation through 60° about a line of points parallel to the c-axis.

The symmetry operation of a Bravais lattice can be compounded out of a translation TR through
a lattice vector R and a rigid operation leaving at least one point fixed. A simple example of two
such consecutive operations (symmetry operation S and translation T−R through −R) is also known
as a composite operation T−RS. In this example, because S transports the origin of the lattice O to
R while T−R carries R back to the origin O, T−RS also leaves at least one lattice point (O) fixed. In
contrast, if the operation TR is performed after performing the operation T−RS, the result is the
operation S alone. In the process, TR has reversed the previous application of T−R. Hence, S can be
compounded out of operations that leave a point fixed (T−RS), translations through Bravais lattice
vectors (TR), or through successive applications of operations of both types.

A.2.2 Space Group Operations
An operator of a space group contains a part that is denoted by the symbol feαjtg, where eα denotes
a proper or improper rotation and t denotes a translation part. The coordinate transformation from x
to x′ can be expressed as

x′ = eαx+ t: (A.1)

Here, eα can be represented by a 3× 3 orthogonal matrix. One can multiply two such operators by

feβjt′gfeαjtg = feβαjeβt+ t′g: (A.2)
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It is easily verified that the unit operator is fεj0g. It can be shown from Eq. (A.2) that the inverse
of the operator feαjtg is

feαjtg−1 = feα−1jj−eα−1tg: (A.3)

In the block notation, we can write Eq. (A.1) in the alternate form, where the position vector x is
denoted by

x =
x1
x2
x3

0
@

1
A, t =

t1
t2
t3

0
@

1
A, and eα =

eα11 eα12 eα13eα21 eα22 eα23eα31 eα32 eα33

0
@

1
A: (A.4)

Eq. (A.1) can be written as

1
x1′
x2′
x3′

0
BB@

1
CCA =

1 0 0 0
t1 eα11 eα12 eα13
t2 eα21 eα22 eα23
t3 eα31 eα32 eα33

0
BB@

1
CCA

1
x1
x2
x3

0
BB@

1
CCA (A.5)

or in the block notation

1
x′

� �
=

1 0
t eα

� �
1
x

� �
: (A.6)

From Eqs. (A.2) and (A.6), we obtain

1 0
t′ eβ

� �
1 0
t eα

� �
=

1 0
t′+eβt eβeα

� �
; (A.7)

and the inverse is

1 0
t eα

� �−1
=

1 0
−eα−1t eα−1

� �
: (A.8)

fεjRig is an operator that represents a lattice translation through Ri, each fεjRig has an inverse
fεj−Rig, and because the sum Ri +Ri′ = Rj, the lattice translations form a group. We will now
define a few common terms used in group theory.

Abelian: If the members commute with each other, the group is Abelian. The operators of the
full space group, which contains both rotations and translations, are not necessarily Abelian.

Invariant subgroup: If A is a member of a subgroup and X is a member of the full group and if
B = XAX−1 is in the subgroup concerned for all A and all X, the subgroup is said to be invariant.
This can be proved as follows.
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Proof: Let Ri be any direct lattice vector and eα be the rotational part of any space group opera-
tion, then eαRi is also a lattice vector. It is easy to show that

feαjtgfeεjRigfeαjtg−1 = feαjeαRi + tgfeα−1j−eα−1tg = feεjeαRig: (A.9)

Thus, if fεjRig is a lattice translation, then fεjeαRig is also a lattice translation and Eq. (A.9) proves
that the subgroup is invariant. Thus, a space group is defined as a group of operators of the form
feα,tg, which possesses an invariant subgroup of pure translations.

A.3 POINT GROUP OPERATIONS
A.3.1 Introduction
It can be easily shown that a point group can contain rotations eα through 60°, 90°, and (or) multi-
ples of these, but it forbids five-fold rotational symmetry.

Proof: If R is a direct lattice vector,

R = ∑
3

j=1
njaj; (A.10)

then eαR is also a direct lattice vector. Here, aj are the primitive translation vectors and the nj′s are
integers. Thus, eαR can be expressed in terms of aj with integer coefficients.

Because eα can be a rotation through an angle θ about some axis, in considering the operation ofeα on R, one has to include the possibility that aj may not be orthogonal and assume that the aj are
related to a Cartesian system by a nonsingular matrix eA. If the original vector is represented by n
(with components nj) and the rotated vector is denoted by n′, we have

n eAeα = n′eA; (A.11)

which can be written in the alternate form

n eAeαeA−1
= n′: (A.12)

The elements of eAeαeA−1
as well as the trace of eAeαeA−1

must be integers because the elements of both n
and n′ are arbitrary integers. Because the trace of a matrix is invariant under a similarity transformation,

trðeAeαeA−1Þ = trðeαÞ = 1+ 2 cos θ = integer: (A.13)

Eq. (A.13) implies that θ = 60°, 90°, or an integral multiple of these angles.

A.3.2 Description of Point Groups
There are 32 possible crystal point groups. There are two widely used but different notations for
point groups: the Schoenflies system and the international system. We will first discuss the
Schoenflies notation (see Table A.1).
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1. Cn: These point groups contain only a single axis of symmetry, around which rotations through
angles of 2π/n are permitted. As we have seen, n = 1, 2, 3, 4, 6:

2. Cnv: In addition to the operation Cn, these groups have a mirror plane that contains the axis of
rotation, plus as many mirror planes as the existence of the n-fold axis requires. The reflection
symmetry must be consistent with the rotational symmetry, and n-fold rotational symmetry
about some axis demands the existence of n reflection planes at angles of π/n if there are any
reflection planes containing the axis. The allowed values of n are 2, 3, 4, 6.

3. Cnh: These groups contain, in addition to the n-fold axis, a single mirror plane that is
perpendicular to the axis. Thus, there is a “horizontal” reflection plane (operation σh), which is a
reflection in a plane to the origin perpendicular to the axis of highest symmetry. The group also
contains the inversion operation i if n is even. In this case, n = 1, 2, 3, 4, 6:

4. Sn: These groups have n-fold improper rotation (rotation combined with improper reflection in a
plane perpendicular to the axis of rotation). Because the group S3 is identical with C3h, it is not
counted. Thus, the distinct groups are S2 (simple inversion), S4, and S6:

5. Dn: In addition to the n-fold rotation axis, these groups contain a two-fold axes perpendicular to
the highest symmetry (Cn) axis plus as many additional two-fold axes as are required by the
existence of the n-fold axis. Thus, one can have n = 2, 3, 4, 6:

6. Dnh: These (the most symmetric of the groups) contain all the elements of Dn plus mirror planes
containing the n-fold axes, which bisect the angles between the two-fold axes. Therefore, there
are twice as many elements in Dnh as in Dn:

7. Dnd: These contain the elements of Dn plus reflections in a “diagonal” plane (σd) containing the
symmetry axis and bisecting the angle between the two-fold axis. The diagonal planes are
special cases of vertical planes. There are two cases: D2d and D3d:

The international notation for point groups and the three Schoenflies equivalents are given in
Table A.2.

Table A.1 Shoenflies Symbol

Operation Shoenflies Symbol

Identity E
Rotation through 2π/n Cn

Inversion i
Improper rotation through 2π/n Sn

Reflection in a plane σ

Reflection in a plane perpendicular to highest symmetry axis σh
Reflection in a plane containing the highest symmetry axis σv
Reflection in a plane containing the highest symmetry axis and bisecting the
angle between two-fold axes perpendicular to symmetry axis

σd

Reproduced from Quantum Theory of the Solid State by J. Callaway (Academic Press, New York, 1976) with the
permission of Elsevier.
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A.3.3 The Cubic Group Oh
The operations of the full cubic group Oh, which is the point group of highest symmetry, may be
described as follows:

a. The identity E.
b. Rotations by ±90° about a coordinate (four-fold) axis. Class C4, six operations.
c. Rotations by 180° about the same axis. There are six such axes. Class C2, six operations.
d. Rotations by ±120° about a three-fold axis (body diagonal of the cube). There are four such

axes. Class C3, eight operations.
e. The inversion with respect to the origin, class J, one operation.
f. X Classes JC4, JC4

2, JC2, and JC3: Combinations of the preceding operations with the inversion.
These four classes contain 23 operations.

The cubic group Oh is described in Table A.3. The operations on a position vector r (with com-
ponents x, y, z) can be specified as possible permutations of x, y, z with change of signs.

The operations contained in the classes E, C4
2, C4, C2, and C3 form the subgroup O. The

subgroup Td are composed of E, C4
2, JC4, and C3.

A class is a set of elements of a group that are conjugate to each other. For example, if X and A
are members of a group, the element B = XAX–1 is conjugate to A. If two elements A and C are
conjugate to a third member D, they are conjugate to each other.

Table A.2 International Notation for Point Group Symbols

Axis Symbol*
Schoenflies
Equivalent

n-fold rotation axis n n↔Cn

Improper n-fold rotation axis n
Rotation axis with reflection plane perpendicular to it n

m

n-fold rotation axis with two-fold axis perpendicular to it n2 n22↔Dn

n-fold rotation axis with reflection plane containing the axis nm nmm↔Cnv

Improper rotation axis with two-fold axis perpendicular to it n2
Improper rotation axis with reflection planes containing the axis nm
Rotation axis with a perpendicular reflection and a set of reflection
planes containing it

n
mm or n

m m

* n is an integer 1, 2, 4, 6.
Reproduced from Quantum Theory of the Solid State by J. Callaway (Academic Press, New York, 1976) with the permission
of Elsevier.
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1. Callaway J. Quantum theory of the solid state. New York: Academic Press; 1986.

Table A.3 The Cubic Group Oh

Class Operation Class Operation

E x y z J −x −y −z
C4

2 −x −y z JC4
2 x y −z

x −y −z −x y z

−x y −z x −y z
C4 −y x z JC4 y −x −z

y −x z −y x −z

x −z y −x z −y

x z −y −x −z y

z y −x −z −y x

−z y x z −y −x
C2 y x −z JC2 −y −x z

z −y x −z y −x

−x z y x −z −y

−y −x −z y x z

−z −y −x z y x

−x −z −y x z y
C3 z x y JC3 −z −x −y

y z x −y −z −x

z −x −y −z x y

−y −z x y z −x

−z −x y z x −y

−y z −x y −z x

−z x −y z −x y
y −z −x −y z x

Reproduced from Quantum Theory of the Solid State by J. Callaway (Academic Press, New York, 1976) with the
permission of Elsevier.
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B.1 INTRODUCTION
We will first consider the case of free nucleus at rest of mass M. We assume that the nucleus is
initially in an excited state of energy Ex above the ground state. When it emits a γ ray of energy Eγ

(and momentum p = Eγ /cÞ, some recoil energy R is transferred to the nucleus. The recoil energy is
given by

R = p2/2M = Eγ
2/2Mc2: (B.1)

Because R is much smaller than Ex, the energy of the γ ray is

Ey = Ex −R = Ex − ðEγ
2/2Mc2Þ�Ex½1− ðEx/2Mc2Þ�: (B.2)

The typical values are 10 keV<Ex< 100 keV while 2× 10−4 <R< 5× 10−2 eV: For example, for 57Fe,
Ex � 14 keV and R� 0:002 eV. However, the natural linewidth Γ� 4:6 × 10−9 eV. An energy Eγ +R
must be supplied to a nucleus in its ground state to absorb a γ ray and make a transition to an excited
state. However, because R≫Γ, the emitted γ rays will not be reabsorbed with appreciable probability.

If the radioactive nucleus is rigidly bound in a solid, the macroscopic mass of the solid, instead
of the nuclear mass, appears in Eq. (B.1) and hence R = 0: This is an ideal case, because the bind-
ing of an atom to a solid is not rigid, and the lattice possesses vibrational degrees of freedom at
finite temperature, which can be excited by a displaced nucleus. In general, a fraction of the emis-
sion of γ rays takes place with no perceptible recoil energy, and a width close to the natural width.
This is known as the Mossbauer effect because Mossbauer (Ref. 1) had observed in 1958 that when
radioactive nuclei, which emit low-energy γ rays, are bound in a lattice (solid), a considerable
portion of the decay occurs without any transfer of energy to the lattice. Thus, the γ ray spectrum is
extremely sharp and the resonant absorption of the γ rays by unexcited atoms can be easily
observed. The Mossbauer effect is a significant tool for determining the hyperfine interactions, i.e.,
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the interactions between a nucleus and the surrounding electrons. The hyperfine interactions involve
the product of a nuclear quantity, such as the nuclear magnetic dipole moment and the electric
quadrupole moment, as well as an atomic quantity, such as the electron density at the nucleus or
the electric field gradient at the nuclear site.

This larger fraction f (known as the recoilless fraction and originally observed by Mossbauer)
will be calculated in Section B.2. A smaller fraction R, the average energy transferred to the lattice
in the emission process, was calculated by Lipkin by using a sum rule. Thus, in a solid, one can
find both a sharp γ ray line unshifted by frequency and a broad shifted background. The relative
proportions are temperature dependent, and the width of the sharp line is independent of tempera-
ture. The natural width is usually dominant.

B.2 RECOILLESS FRACTION
The interaction of a single radioactive nucleus bound in a crystal with a radiation field can be writ-
ten (using a semiclassical theory) as

HI = − ðe/mpÞ∑
i
AðxiÞ .pi, (B.3)

where mp is the proton mass, xi and pi are the proton coordinate and momentum, AðxiÞ is the
vector potential, and the sum includes all the protons in the nucleus. Here, the interaction with the
magnetic moment has been neglected.

We consider a monatomic lattice and introduce the following notations to simplify the problem.
Consider the center of mass of the nucleus located at the position

Xν = Rν + uν, (B.4)

and relative coordinates for the protons in a given nucleus

xi = Xν + ri: (B.5)

The vector potential AðxiÞ is proportional to eikμ
.xi where the plane electromagnetic wave vector has

a wave vector. When the nucleus makes a transition i→ f , the matrix element for the transition is

MT = <fnf ðqÞgjeikμ.Xν jfniðqÞ>g< f jaðkμÞji>, (B.6)

where

aðkμÞ = K∑
j
eikμ.rjA0

. pj, (B.7)

K is a proportionality constant, and A0 is the amplitude of the radiation field. < f jaðkμÞji> is inde-
pendent of the lattice position because aðkμÞ involves all the nuclear physics of the problem.

The matrix element for a transition between phonon states is such that the transition rate is
proportional to

Pðnf , niÞ = j< nf jeikμ.Xν jni >j2: (B.8)
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The recoilless fraction f is the probability that a transition would occur between phonon states
(ni → nf Þ without a change in energy of the phonon distribution and can be written as

f = ∑
f
j< nijeikμ.Xν jnf>j2δðEf −EiÞ: (B.9)

However, Eq. (B.9) should be multiplied by the probability PniðTÞ of a phonon distribution at tem-
perature T and summing over all states ni: In addition, it can be assumed that the equilibrium posi-
tion of the radioactive atom is at the origin, i.e., X0 = u0, the displacement of this atom.
Incorporating these, we rewrite Eq. (B.9) as

f = ∑
if
PniðTÞj< nijeikμ.u0 jnf >j2 δðEf −EiÞ: (B.10)

Because the natural width of the γ ray line is negligible compared to phonon energies, the transition
can be considered to be sharp. If the final state in emission differs from the initial state by energy
ħω, Eq. (B.10) can be generalized as

f ðωÞ = ∑
if
PniðTÞj< nijeikμ.u0 jnf >j2 δðEf −Ei − ħωÞ: (B.11)

B.3 AVERAGE TRANSFERRED ENERGY
The eigenstates of the Hamiltonian H contain a definite number of phonons. Because the kinetic
energy operator for the radioactive nucleus, p2/2M, is the only portion of H that does not commute
with eikγ

.u0 , we obtain

½H, eikμ.u0 � = ½ p2 /2M, eikμ.u0 � = eikμ.u0 ½ðħ2kμ
2/2MÞ+ ðħ/MÞkμ

.p�: (B.12)

Similarly,

½H,eikμ.u0 �, e−ikμ.u0� �
= 2H − eikμ

.u0He−ikμ
.u0 − e−ikμ

.u0Heikμ
.u0 = − ħ2kμ

2/M: (B.13)

From Eq. (B.13), we obtain

<nij ½H, eikμ
.u0 �, e−ikμ.u0� �jni> = 2Ei −<nijeikμ.u0He−ikμ.u0 jni>−<nije−ikμ.u0Heikμ.u0 jni>: (B.14)

By inserting a complete set of final states, jnf><nf j, Eq. (B.14) can be written in the alternate form

<nij ½H, eikμ
.u0 �, e−ikμ.u0� �jni> = 2Ei −∑

f
<nijeikμ.u0 jnf><nf jHje−ikμ.u0 jni>

+∑
f
<nije−ikμ.u0 jnf><nf jHeikμ.u0 jni> (B.15)

= 2Ei − 2∑
f
Ef j<nijeikμ.u0 jnf>j2: (B.16)
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We use the identity

∑
nf

j<nijeikμ.u0 jnf>j2 = ∑
nf

<nijeikμ.u0 jnf><nf je−ikμ.u0 jni> = <nijni> = 1: (B.17)

From Eqs. (B.8), (B.13), (B.16), and (B.17), we obtain

∑
f
ðEf −EiÞPðnf , niÞ = ħ2kμ

2/2M: (B.18)

Thus, the average energy transferred to the phonon system is equal to the recoil energy
ħ2kμ2

2M ,
which was the result originally derived by Lipkin.

The advantage of the Mossbauer effect is that one can measure the magnetic fields at the nuclear
sites through the Zeeman effect. If a nucleus has spin I, the magnetic moment μ!n = γnħI (γn is the
nuclear gyromagnetic ratio) would interact with an effective magnetic field Heff : The interaction is
given by Hz = − μ!n

.Heff , which removes the (2I + 1) degeneracy of the spin orientation. This spin
splitting is easily observable.

Reference
1. Mossbauer R. Nuclear resonance fluroscence of gamma rays in Ir 191. Zeitschrift. fur Physik 1958;181:124.
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C.1 CRITICAL BEHAVIOR
We consider a ferromagnet in equilibrium at temperature T and under the action of a uniform
magnetic field H. The reduced temperature variable is defined as

t = ðT −TcÞ/Tc, (C.1)

where Tc is the critical temperature, and we consider the properties as t → 0 with H = 0. The initial
susceptibility in this regime diverges as

χ0ðTÞ�C/tγ , (C.2)

where γ is known as the critical exponent. For ferromagnets like Fe and Ni, the critical exponent
has values near 1.36, which implies that the mean-field, or “classical,” prediction γ = 1 is incorrect.
The zero-field specific heat can be written as

CH=0ðTÞ� A/tα, (C.3)

or in the alternate form

CH=0ðTÞ� Aðt−α − 1Þ/α, (C.4)

where α≃ − 0:1 for Ni and other isotropic magnets. The scaling theory of critical behavior asserts
that the singular part of the free energy F(T, H) varies asymptotically as

f ðT ,HÞ = −ðkBTÞ−1FsingðT ,HÞ� t2−αYðH/tΔÞ, (C.5)

where the gap exponent

Δ = 1
2
ð2− α+ γÞ: (C.6)
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Y(y) is known as the scaling function and depends only on a single variable but is not explicitly
given by the theory. From Eq. (C.4), we find that the spontaneous magnetization vanishes when
t → 0 as

M0ðTÞ�Bjtjβ, (C.7)

where β is predicted by the exponent relation

β = 1
2
ð2− α− γÞ: (C.8)

β� 0:36 for magnets. Further, the equation of state M = M ðT ,HÞ can be written in the scaled form

M/tβ �WðH/tΔÞ, (C.9)

where W(y) is a single-variable scaling function.
The basic two-point correlation function is defined as

Gðx, TÞ = < S
!

0 . S
!

x>, (C.10)

where S
!

x denotes a localized spin at site x. The variation of the scattering intensity in the critical
region is given by

Ĝðq,TÞ = ∑
x
eiq.x Gðx, TÞ: (C.11)

At the critical point,

GcðxÞ�Dc/x
d−2+η as x→∞,

ĜcðqÞ� D̂c/q
2−η as q→ 0:

(C.12)

Here, the critical exponent η lies in the range 0.03–0.1.
In zero field, as t → 0, the form predicted by scaling is

Gðx,TÞ� x−d+2−ηDðx/ξÞ, ξ∼t−ν, (C.13)

where ξ is the correlation length. Eq. (C.13) can be written in the equivalent form

Ĝðq, TÞ�Ct−γD̂ðq2/t2νÞ: (C.14)

The correlation length exponent is given by

ν = γ/ð2− ηÞ: (C.15)

The scaling function D̂ðz2Þ represents the scattering “line shape” near Tc.

C.2 THEORY FOR SCALING
Any adequate theory for scaling should (a) show how to calculate the exponents α, γ, and η; (b) pre-
dict or justify scaling; (c) lead to explicit calculations of scaling functions YðyÞ,WðyÞ, D̂ðz2Þ, etc; and
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(d) describe the corrections of the asymptotic scaling laws and give a concrete estimate of their
magnitude.

The first step in building a theory is to describe a lattice structure of spacing a, generated by a
set of nearest-neighbor vectors δ

!
. In usual treatments of such problems, we consider the lattice

sites with coordinate vectors x = ðxiÞ with i = 1, 2, d, where d = 3 and is known as the spatial
dimensionality. However, because d enters theoretical calculations in an essential way only through
space and momentum (or wave number integrals), the definition of dimensionality can be extended
to continuous values of d beyond 3. It turns out that the difference

∈ = 4− d (C.16)

is a small but important parameter. The lattice, as constructed above with sites x, is populated with
spins S

!
x . S
!
x has n components, i.e., Sx = ðSxμÞ with μ = 1, 2, …, n, which enter equally into inter-

actions. Some known examples are as follows:

a. n = 3, Heisenberg spins: S = ðSx, Sy, SzÞ:
b. n = 2, XY or “planar” spins: S = ðSx, SyÞ:
c. n = 1, uniaxial or Ising spins: S = Sz.

One can show that for systems with short range, isotropic coupling is represented by an interac-
tion Hamiltonian of the form

Hfs′xg = Hiso:exch: = − 1
2
∑
x,x′

Jðx− x′Þ s!x . s!x′: (C.17)

The parameters n and d are the only ones that apparently determine the critical exponents. In
Eq. (C.17), s! is the normalized spins or local variables

s! = S
!
/½SðS+ 1Þ�1/2: (C.18)

It is often convenient to allow the spin length j S!j to vary continuously but introduce a spin
weighting function in order to restrict the fluctuations in spin length. The partition function for a
system of N spins is

ZN ½H� = TrNfexpH g, (C.19)

where the reduced Hamiltonian, H , is defined as

H = −ðH /kBTÞ+W: (C.20)

W is a spin weighting function, which is a sum of identical terms −wð s!j Þ for each spin.
W becomes very large and negative as j S!j becomes large. The specification of H determines the
temperature, the external magnetic field, pressure, and so on, as well as all the interactions that are
translationally invariant. The thermodynamics follow from the free energy per spin (the thermody-
namic limit N → ∞ is essential if the critical behavior is to be investigated),

f ½H � = −FðT ,HÞ/kBT = lim
N!∞

N−1 ln ZN ½H �: (C.21)
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C.3 RENORMALIZATION GROUP APPROACH
The exact construction of a renormalization group is in general a very difficult task. The main ideas
can be summarized as follows:

a. The initial Hamiltonian H is renormalized to obtain a new Hamiltonian

H ! H ′ = R½H �: (C.22)

b. The renormalization group operator R reduces the spin variables (the degrees of freedom) from
N to

N′ = N/bd, (C.23)

where b (b > 1) is known as the spatial rescaling factor and d is the dimensionality.
c. Sometimes R is defined via a partial trace over (N − N′) of the spin variables so that

expH ′ = TrN−N′fexpH g: (C.24)

d. The partition function must be preserved by R,

ZN′½H ′� = ZNfH g: (C.25)

e. It is implicitly assumed that the renormalized Hamiltonian H ′ displays translational invariance.
f. All spatial vectors entering into correlation functions are rescaled by the factor b according to

x⇒ x′ = x/b, (C.26)

so that the spatial density of degrees of freedom (of spins) is preserved. Thus, the momenta are
rescaled by

q⇒ q′ = bq: (C.27)

g. The basic spin fluctuation magnitude is preserved by rescaling the renormalized spin vectors as

s!x ⇒ s!′x′ = s!x /c, (C.28)

where the spin rescaling factor c depends on H , i.e., c = c½H �. This step is an essential feature
of linear renormalization groups where the local variable is transformed into an equivalent
renormalized variable to which it is linearly related.

The renormalization group operator depends on b and c. From Eqs. (C.20) and (C.25), we obtain
that the free energy is transformed according to

f ½H ′� = bd f ½H �, (C.29)

and from Eq. (C.28), we find that the basic spin–spin correlation function transforms as (for a linear
renormalization group)

G½x;H � = c2G½x/b;H ′�: (C.30)
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Eqs. (C.29) and (C.30) lead to scaling properties. The steps followed in completing the renormaliza-
tion process are as follows:

a. The transformation of the renormalization group operator R (defined in Eq. C.22) is iterated
until one obtains a fixed-point Hamiltonian H� by varying the parameters of the initial
Hamiltonian, such that

R½H�� = H�: (C.31)

b. It can be shown from Eqs. (C.30) and (C.31) that one can obtain a functional equation with the
unique solution

G½x;H��∼1/x2ω (C.32)

and

c� = c½H�� = b−ω: (C.33)

Comparison of Eqs. (C.10), (C.12), and (C.33) shows that η is determined by the equation

c� = b−ðd−2+ηÞ/2: (C.34)

The preceding results are brief outlines only to introduce the reader to the fascinating field of the
magnetic phenomena arising from different symmetry, spatial form, and magnitude of the
Hamiltonians of magnetic materials. The field of renormalization group, which offers a
systematic approach for studying the effect of such terms on critical behavior and distinguishing
between them, is much more complex and requires much further reading and solving a host of
existing problems before one can use them in practice.
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U-based compounds, 511, 509–513

Heisenberg Hamiltonian, application of, 418–420
Heisenberg model, 416
Heitler–London model, 414
Helmholtz free energy, 377
Heterojunction diode, 613
Hexagonal close-packed (hcp) structure, 17–19, 18

Brillouin zones, 119, 119
lattice constants of elements, 19–18
unit cell of, 17

Hexagonal systems, 10, 10
Highest occupied shell (HOS), 559
Hilbert transform, 498
Hohenberg–Kohn (HK) theorem, 532
Holstein–Primakoff transformation, 418
Homogeneous semiconductor, see Intrinsic semiconductor
Honeycomb lattice structure of graphene, 601, 607

electronic dispersion in, 606, 607
HOS, see Highest occupied shell
Houston functions, 252
Hubbard model, 433, 498
Hund’s rules, 373–374
Hydrogen-bonded structures, 174
Hydrogen molecule, covalent bond, 167
Hyperfine interactions, 641
Hysteresis, 426–427, 427

I
Icosahedral atomic clusters, 590
Icosahedral group, stereogram of, 584
Icosahedral quasicrystals, 589–590
Impurity band of local defects, 594
Impurity scattering, 189–192
Indirect exchange model, 416–417, 417
Indirect semiconductors, 276
InGaAsP laser, structure of, 327
Injection coefficient, 361–364
Insulators, 112–117, 276, 354
Integrated circuits, 325
Intrinsic semiconductor, 276, 278, 283–284

chemical potential for, 283
types of, 276

Invariant subgroup, 635
Ionic crystals, 176–177
Ionic magnetic susceptibility, see Atomic magnetic

susceptibility
Ionic solids, 172

Ising model, 427
Isotope effect, superconductors, 454

J
Jellium model

Coulomb interaction, 204–205
exchange term, 205
kinetic energy, 204
Kronecker delta function, 206
Lindhard dielectric function, 206
N-electron system, 206
Thomas–Fermi theory, 207

Josephson effect
AC, 462
DC, 462, 462
two superconductors, oxide layer, 461, 460–462

Josephson tunneling, 477–478, 478

K
k
!� �! model, 295–296
k · p perturbation theory, 245–246
Kinetic theory of gas, 73
KKR, see Green’s function method
Kohn–Sham equations, 158–159, 534
Kondo effect, 439, 501
Kondo insulators, 516–519

theory of, 517–519
Kondo-lattice models, 490–491, 501
Kronecker delta function, 206

L
Lagrangian function, 180
Lambda point, 571
Landau diamagnetism, 380–383
Landau Fermi-Liquid (LFL) state, 508
Landau gauge, 379
Landau levels, 384, 384, 386
Landau theory, second-order phase transitions, 441–442
Landau’s argument, 225, 227
Landé g factor, 375–376
Langevin susceptibility, see Larmor diamagnetic

susceptibility
Large clusters, 533, 535–536, 536
Larmor diamagnetic susceptibility, 373
Larmor diamagnetism, 372–373
Laser, 326

diode, 327, 327
double-heterostructure, 327, 327
InGaAsP, structure of, 327
master, 327–328
semiconducting, 327
slave, 327–328
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Lattice
planes, 11–12, 12, 13
specific heat

Debye model of, 49–51
Einstein model of, 52–53
theory, 48–49

structure, graphene, 601–602
translation, 636

Lattice constants, 4–5, 44, 61
of bcc lattices, 6
of elements with hcp structure, 18–19
of fcc lattices, 8

Lattice dynamics, 37–46
normal modes

of one-dimensional chain with basis, 44–46
of one-dimensional monoatomic lattice, 41–44

theory, 37–41
Lattice points, 41, 41, 42

group, 3
Lattice waves, quantization of, 61–65
Laue condition, alternative formulation of, 25–27
Laue method, 20–21
Law of conservation of energy, 226
Law of mass action, 282
LCAO, see Linear combination of atomic orbitals

method
LCH model, see Linear combination of hybrids model
LDA, see Local density approximation
LDM, see Liquid drop model
LED, see Light-emitting diode
Legendre polynomial, 215
Leonard–Jones potential, 175, 175
Light dispersion in cholesteric, 582
Light-emitting diode (LED), 326
Lindhard dielectric function, 206
Lindhard theory, 202

Fermi sphere, 213, 213
first-order perturbation theory, 209
Fourier transform, 214
Friedel oscillations, 214
Thomas–Fermi approximation, 211

Linear combination of atomic orbitals (LCAO) method,
134–140

Linear combination of hybrids (LCH) model for tetrahedral
semiconductors, 297–299, 299, 300

Liouville’s theorem, 182
Liquid crystals, 568

classes of, 578–580
curvature strains, 581, 582
optical properties of, 581–583
order parameter, 580–581

Liquid drop model (LDM), 528, 529

Liquid 3He
Fermi liquid theory, 574–575
liquid–solid phase equilibrium, 573
superfluidity in, 574

experimental results of, 575
theoretical model

A and A1 phases, 575–577
B phase, 577–578

Liquids
correlation function, 570
phase diagram, 568–569
specific heat vs. temperature, 571, 571
Van Hove pair correlation function, 569

Local density approximation (LDA), 158, 224–225
Local impurity self-consistent approximation (LISA), 498–499

application to periodic Anderson model, 499–500
Localized states

in amorphous semiconductors, 593, 594
overlap of tails, 594

London equation, 455–456
London penetration depth, Ginzburg–Landau theory, 458–459
Longitudinal acoustic phonons, 270
Lorentz force equation, 253
Lowest unoccupied shell (LUS), 559
Luttinger theorem, 503, 518
Luttinger–Kohn ( k

!� p!) model, 295
Lyotropic liquid crystal, 578

M
Mackay icosahedron, 539, 539

filling between complete shells, 540
Macroscopic order parameter, 572
Magnetic breakdown, 252
Magnetic dipole moments, 411
Magnetic ordering

Anderson model, 439–440
antiferromagnetism, spin waves in, 421–422
ferrimagnetism, 410
ferromagnetism

direct, indirect, and super exchange, 416–417
Heisenberg Hamiltonian, application, 418–420
Heisenberg model, 416
Heitler–London approximation, 412–414
magnons, 417
metallic ions, 412
Schwinger representation, 417–418
in solids, 422–427
spin Hamiltonian, 414–416
in transition metals, 412, 427–433

Kondo effect, 439
magnetic dipole moments, 411
spontaneous magnetization, 410
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Magnetic permeability, 370
Magnetic phase transition

Landau theory, second-order phase transitions of, 441–442
order parameter, 441

Magnetic random access memory (MRAM), 355
principles of, 355

Magnetic susceptibility
of atoms, see Atomic magnetic susceptibility
of Bloch electrons in solids, many-body theory, 388–396
definition, 370
of free electrons in metals, 378–387

de Haas–van Alphen effect, 378, 382–387
formulation, 378–380
Landau diamagnetism, 380–383
Pauli paramagnetism, 380–383

general formula for, 390–393
of nonferromagnetic solid, 388
orbital contribution to exchange and correlation effects,

395–396
spin contribution to exchange enhancement, 394–395
spin-orbit contribution to, 393

exchange and correlation effects on, 396
Magnetic switching, 356–357
Magnetic tunnel junctions (MTJ), 352–356
Magnetism

in embedded clusters, 553–555, 554, 555
2D nanostructures, 554, 554–555, 555
small clusters, 554, 554–555, 555
switching and blocking temperature, 553

experimental techniques for cluster
chemical probe methods, 549–550, 550
gradient-field deflection method, 551, 552, 551–553

graphite surfaces, 555, 556
in isolated clusters, 547–549

cluster magnetism, 548–549
superparamagnetism and blocking temperature, 547–548

Magnetization
of Bloch electrons

correlations contribution to, 436–437
quasiparticle contribution to, 435–436
theory of magnetization, 434–435

in zero external magnetic field, 291
Magnetoresistance, 340

effect, 348
Mass spectrum peak of C60, 610
Massless Dirac fermions, 331, 607
Master laser, 327–328
Matrix element, transition in phonon states, 642
Maxwell–Boltzmann distribution function, 80
MBE, see Molecular-beam epitaxy
Mean-field approximation, 423
Mean-field rate equations, 541–542

Mean-field theories, 498–502
Meissner–Ochsenfeld effect, 455, 455
Metals, 112–117, 275

cohesion in, 178–179
Metamagnetism in heavy fermions, 506–507
Miller indices, 11–12, 13
Mixed-valence compounds, 492–493
Model pseudopotentials, 156–157

for KKR matrix elements, 157
Molecular-beam epitaxy (MBE), 322
Molecular crystals, 174–176
Molecular solids, 174
Molecular structures

of conjugated polymers, 619
MBBA, 578
PAA, 578

Monoatomic lattice, 41–44
Monoclinic systems, 10–11, 11
Monomer, 617
Monte Carlo simulations, 540–541
MOSFET, 320, 611

inversion layer in, 320, 320
n-type, structure of, 319, 319

Mossbauer effect
advantage of, 644
average transferred energy, 643–644
definition of, 641
recoilless fraction, 642–643

Mott transition, 140, 222
Mott’s theory of spin-dependent electron scattering, 342–344
MRAM, see Magnetic random access memory
MTJ, see Magnetic tunnel junctions
Muffin-tin potential, 149–150, 150

N
n-doped semiconductor, 285–286

charge movement to metal, 306
donor and acceptor levels for, 287

n-p-n bipolar transistor, 318, 318
n-type MOSFET, structure of, 319, 319
Nanoclusters

nanoscience and, 528
superconducting state of

qualitative analysis, 558–559
thermodynamic Green’s function, 559–561

Negative effective mass, 257
Negative soliton, 626
Nematic liquid crystals, 578

molecule arrangement in, 579
Newton’s law, 247
NMR, see Nuclear-magnetic-resonance
Noble gases, 174–176
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Nonalkali clusters, 535
Nondegenerate semiconductors, 281
Nuclear-magnetic-resonance (NMR), 477

O
One-dimensional aperiodic potentials, energy bands, 591–592
One-dimensional electron gas (1DES), 323
One-dimensional quasiperiodic lattice, 585
Optical modes in diatomic linear chain, 46, 46
Optoelectronic devices, 325–329
OPW method, see Orthogonalized plane-wave method
Order parameter, 441

Ginzburg–Landau theory, 456–457
liquid crystals, 580–581
for superfluid 3He, 577, 578

Orthogonalized plane-wave (OPW) method, 145–146, 147
Orthorhombic systems, 9, 10

P
3p energy bands, 113, 114
p-n junction, 306–310, 307

in equilibrium, 307–310, 308
rectification by, 311–318

equilibrium case, 311–313
nonequilibrium case, 313–318

P-T-H diagram, 575, 576
p-type semiconductor, 285

donor and acceptor levels for, 287
p-wave pairing, 474–476
PAM, see Periodic Anderson model
Para-azoxyanisole (PAA), molecular structure, 578
Paramagnetism

susceptibility, 378
Van Vleck, 374–375

Pauli exclusion principle, 73, 228, 575
Pauli limiting, 508
Pauli paramagnetism, 380–383
Peierls instability, 622, 622
Peierls theorem, 624
Penrose lattice, 583, 583

perfect edge dislocation in, 589, 589
Penrose tiles, 583
Pentagonal quasicrystal, 586
Periodic Anderson model (PAM), 490–491

application of LISA to, 499–500
Periodic zone scheme, 100–101, 101, 111, 111, 243
Phase diagram

of liquid 3He, 575
of liquids, 568, 568–569
in magnetic field, 576
superconductors, 454, 454

Phase transition, liquid 4He, 570–571
Phason degrees of freedom, 586–588
Phason flips in two-dimensional Penrose lattice, 588, 588
Phason-strained Fibonacci lattice, 588
Phonon-assisted hopping, 593
Phonon-strained Fibonacci lattice, 587, 588
Phonons, 38–39, 48

absorption, 265
average energy transfer in, 643–644
degrees of freedom, 586–588
emission, 265
resistivity due to scattering by, 192–194

Phosphorus atom in silicon crystal, 286
Photoconductivity, 325
Photodiode, 326
Photoexcitation, SSH model, 623
Photoinduced electron transfer, semiconducting polymer to

C60, 627, 627
Photons, 48

absorption of, 276
Plane wave solutions

Born–von Karman boundary conditions, 97–98
Schrodinger equation, 97

Plasma frequency of metallic polymers, 621
Plasma mode, 221
Plastic crystals, 568
Point groups

cubic group, 638, 639
description of, 636–637
symbols, international notation for, 638

Poisson’s equations, 207
Polarons, 626

excitations, 626
Polyacetylene structure, 618
Polyaniline (PANI) as conducting polymer, 618
Polycritical point (PCP), 575
Polyhedra

bcc, 539, 540
fcc, 538, 538
Mackay icosahedron, 539, 539

Polymers, 617–618
conducting polymers, solitons in

bipolarons, 626
electronic structure, 623
excitations, 624–626
introduction, 622
polarons and polaron excitations, 626

Polyparaphenylene (PPP)
bipolaron in, 627
polaron in, 626

Positive effective mass, 257
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Positive soliton, 626
Primitive cell, 2, 3, 3

of bcc lattice, 5, 6
of fcc lattice, 7, 7
of rectangular lattice, 3
of two-dimensional square Bravais lattice, 2

π–rings, 478, 478–480, 479
PrOs4Sb12, 513, 514
Pseudogap, 593
Pseudopotentials, 147–149

empirical, 157–158
first-principles, 158–160
model, 156–157

Pseudospin, 608
Pu superconductor, 516
PuCoGa5, 513, 514
PuRhGa5, 515, 515–516

Q
QED, see Quantum electrodynamics
QHE, see Quantum Hall effect
Quantization of lattice waves, 65–66

formulation, 61–65
Quantized Hall resistance, 397, 400, 400
Quantum electrodynamics (QED), 331, 608

chirality, 332
Quantum Hall effect (QHE)

fractional, 400, 400
from gauge invariance, 400
in two-dimensional electron gas, 396–397

in strong magnetic field, 397–399
Quasi-electrons, microscopic theory of superconductivity,

463–464
Quasiclassical dynamics, 246–247
Quasicrystals

discovery of, 584
icosahedral quasicrystals, 589–590
Penrose tiles, 583
perfect edge dislocation in the Penrose lattice,

589, 589
phonon and phason degrees of freedom, 586–588
quasiperiodic lattice, 584–586
see also Liquid crystals

Quasiparticles
Green’s function, 227
Hartree–Fock approximation, 225
Landau’s argument, 225, 227
law of conservation of energy, 226
N-electron system, 226
Thomas–Fermi screened potential, 226

Quasiperiodic lattice, 584–586

R
Reciprocal lattice

definition, 21–22
properties of, 22–25

Recoil energy, 641
Recoilless fraction, 642–643
Rectification

in heterojunctions, 611
by p-n junction, 311–318

Reduced zone scheme, 100, 100, 109–110, 110
Relaxation time, 188

approximation, 184–185
Renormalization group approach, 648–649
Repeated zone scheme, 100–101, 101, 111, 111
Rhombohedral systems, 10, 10
Riseborough’s theory, 518–519
Rudderman–Kittel–Kasuya–Yosida (RKKY) interactions, 490,

500–501
Russsell–Saunders Coupling, 373

S
3s electrons energy levels, 72, 72
3s energy bands, 113, 114
s-wave pairing, 474–476
Saturated polymers, 618–620
Saturation magnetization, 425
sc lattice, see Simple cubic lattice
Scaling theory, 646–647

of critical behavior, 645
Scanning tunneling microscope (STM), 555–557, 557
Scattering

of electrons, 71, 72
impurity, 189–192
probability, 188
resistivity due to, 192–194

Schoenflies notation, point groups, 636, 637
Schottky diode, 305

rectifying effect of, 306
Schrieffer-Heeger (SSH) model, 623

Schrodinger equations, 77, 132, 135, 200, 223, 244
effective Hamiltonian, 102
Josephson effect, 461
plane wave solutions, 98

Schwinger representation, 417–418
SDL, see Spin diffusion length
Second-order perturbation theory, 245
Second-order phase transition, superconductors, 454, 454
Second quantization, 53–60

creation and annihilation operators, 54–58
field operators and Hamiltonian, 58–60
occupation number representation, 53–54
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Semi-empirical potentials, 544–546
Semiclassical model, 179–182, 243–244
Semiclassical theory, 642
Semiconductors, 112–117

amorphous, 296–299
physical properties of, 299

Boltzmann equation for, 313
degenerate, 281
DMS, 290–296
doped, 285–287
elements, 276
extrinsic, 284–285
III-V zincblende, 277
III–V semiconductors, 277
indirect, 276
intrinsic, see Intrinsic semiconductor
n-type, 285–286

donor and acceptor levels for, 287
p-type, 285

donor and acceptor levels for, 287
spintronics with, 357–364
tetrahedral, LCH model, 297–299, 299, 300
work function of, 305
zinc-blende, 170

Semimetals, 115
SET, see Single-electron transistor
SHE, see Spin Hall effect
Short circuit effect, 342, 342
Si, 168–169

band structure of, 170
tetrahedral bonding, 167

Simple cubic (sc) lattice, 4, 13
Brillouin zones, 118, 118

Single-electron transistor (SET), 321–325
Slater–Koster hopping integrals, 544
Slave boson method, 493
Slave laser, 327–328
Small clusters, 554, 554–555, 555
Smetic liquid crystals, 579

molecule arrangement, 579
Sodium chloride, 172

structure, 15, 15
Sodium metal in Wigner–Seitz method, 143
Solids

cohesion of, 174–179
ionic, 172
molecular, 174

Solitons in conducting polymers
bipolarons, 626
electronic structure, 623
excitations, 624–626
introduction, 622

polarons and polaron excitations, 626
tight-binding model, 623

Sommerfeld model
density of electron states

comparison of, 82, 82
concept of, 81
vs. energy, 81–82, 82

density operator, 75–77
Fermi distribution function, 74
free-electron Fermi gas

Born–von Karman boundary conditions, 77
definition, 77
Fermi energy, 79
Fermi sphere, 79, 79
Fermi wave vector, 79
Schrodinger equation, 77
two-dimensional k-space, points, 78, 78

ground-state energy of electron gas, 79–81
Pauli exclusion principle, 73

Space groups
operations, 634–636
see also Point groups

Spatial dimensionality, 647
Specific heat

Debye model of, 49–51, 51
Einstein model of, 52–53
of electron gas, 84–86
measurements of liquid 3He, 575

Spherical jellium model
harmonic oscillator potential, 531
self-consistent, 532–535
spherical square-well potential, 531–532
Woods–Saxon potential, 532, 533

Spherical square-well potential, 531–532
Spin accumulation in ferromagnetic and nonmagnetic

layer, 353
Spin-dependent electron scattering, 341

Mott’s theory of, 342–344
Spin diffusion length (SDL), nonmagnetic and ferromagnetic

layers, 350, 352
Spin fluctuation effect, 577
Spin Hall effect (SHE), 362
Spin Hamiltonian, 414–416
Spin-orbit interaction, 362
Spin-orbit splitting, modulation of, 358
Spin states, 421
Spin-transfer, 357

torques, 356–357, 357
Spin transistor, 358
Spin-triplet pair-wave function, 576
Spin-up functions, 203
Spin-valve system, 344
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Spin weighting function, 647
Spintronics, 339

with semiconductors, 357–364
Squeezed-vacuum-state generation, 328
Stabilized jellium model, 535
Step function, 192
Stern-Gerlach experiment, 551, 551–553, 552
STM, see Scanning tunneling microscope
Stoner model, 428–429
Strong coupling theory, 472–473
Super exchange model, 416–417, 417
Superconducting compounds

Ce-based, 508–509
U-based, 509–513, 511

Superconductivity, microscopic theory
BCS theory, 466
Cooper pairs, 464, 464–466
excited states at T = 0, 469–470, 470
excited states at T ≠ 0, 470–472, 471
quasi-electrons, 463–464
superconducting electron gas, ground state, 466–469

Superconductors
high-temperature

ARPES, 476, 476–477
atomic structure of, 473, 473
d-wave pairing, 474–476, 480–481
flux quantization of superconducting ring, 480
Josephson tunneling, 477–478, 478
NMR, 477
p-wave pairing, 474–476
π–rings, 478–480, 478, 479
properties of, 474, 474
s-wave pairing, 474–476
theoretical mechanism of, 481
tricrystal magnetometry, 480

properties of
electron–phonon interaction, 452
isotope effect, 454
phase diagram, 454, 454
resistivity, 452, 452–453, 453
second-order phase transition, 454, 454
type I superconductors, 453, 453
type II superconductors, 454, 454

Superfluid component, 571
Superfluid 4He

phase transition, 570–571
theory of superfluidity, 571–573
two-fluid model, 571

Superfluidity in liquid 3He, 574
Superparamagnetism, 547–548
Surface effects, 14–15
Symmetry of crystals, 633, 634

T
Temperature variable, reduced, 645
Tetragonal systems, 9, 9
Tetrahedral bonding, 167

of Si, 169
Tetrahedral semiconductors for LCH model, 297–299,

299, 300
Theory of magnetization, 434–435
Theory of superfluidity, liquid 4He, 571–573
Thermal conductivity, 187–188
Thermal equilibrium

acceptor levels, 288–289
donor levels, 288
impurity levels in, 288–290

Thermodynamic Green’s function, 559–561
Thermodynamic potential, 390
Thermotropic liquid crystal, 578
Thomas–Fermi approximation, 208–209, 323
Tight-binding approximation, 131–134

graphene, 602–606
Tight-binding methods, 544
Tight-binding model, 623
Time-independent perturbation theory, 220
TMR, see Tunneling magnetoresistance
trans-polyacetylene, 618, 620, 622
Transistors

bipolar, 318, 318–319
amplification of current in, 319

FET, 319–321
SET, 321–325

Transparent metallic polymers, 621
Transverse acoustical (TA) mode

for diatomic linear lattice, 47
displacement direction of ions in, 47

Transverse optical (TO) mode
for diatomic linear lattice, 47
displacement direction of ions in, 47

Transverse phonons, 270
Triclinic systems, 10–11, 11
Tricrystal magnetometry, 480
Trigonal systems, 10, 10
Truncated icosahedron, Buckminsterfullerene C60,

609, 609
Tunneling magnetoresistance (TMR), 352–356
Two-fluid model, liquid 4He, 571
Type I superconductors, 453, 453
Type II superconductors, 454, 454

U
U-based superconducting compounds, 509–513, 511
Umklapp process, 250, 270
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Unit cell, 3, 3
of cubic lattices, 4, 5
of hcp structure, 17
of monolayer graphene, 608
of rectangular lattice, 3

Universal function, 223

V
Valence bands, 276, 276
Valence electrons, 71
van der Waals interaction, 174
Van Hove pair correlation function, 569
Van Vleck paramagnetism, 374–375
Variable-range hopping, 594
Velocity operator, 244–245
V–F theory, 350
Volume filling fraction (VFF), 558
Vortex, 573

W
Wannier functions, 140–141, 142
Wave functions, 214, 216, 413

carbon, 601
Wave-number-dependent dielectric constant

Fermi distribution function, 218
Fourier component, 218

plasma mode, 221
time-independent perturbation theory, 220

Weak scattering theory of conductivity, 188–192
Weiss Field Model and Spin-wave theory, 424–425
Wiedemann–Franz law, 188
Wigner–Eckart theorem, 375
Wigner–Seitz cell, 3–4

of bcc Bravais lattice, 6
of fcc Bravais lattice, 7, 8
of reciprocal lattice, 27
of sodium metal, 142
of two-dimensional Bravais lattice, 3

Wilson ratio, 488
WKB approximation, 259–260
Woods–Saxon potential, 532, 533
Wulff construction, 537, 537, 538

Z
Zeeman effect, 644
Zener breakdown, 252, 258–260
Zener tunneling, calculation of, 261–264
Zero-field specific heat, reduced, 645
Zero-gap semiconductor, graphene as, 607
Zinc-blende semiconductors, 170

structure, 17, 17
Zinc oxide (ZnO), 296
Zinc sulphide bond, 171
Zone boundary, 105–109
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